symbolic computation in C++ - c++

I need to do analytical integration in C++. For example, I should integrate expressions like this: exp[I(x-y)], I is an imaginary number.
How can I do this in C++?
I tried GiNaC but it can just integrate polynomials. I also tried SymbolicC++. It can integrate functions like sine, cosine or exp(x) and ln(x), but it is not very powerful. For example, it can not integrate x*ln(x) which can be easily obtained by use of Mathematica or by integration by parts.
Are there any other tools or libraries which are able to do symbolic computation like analytical integration in C++?

If you need to do symbolic integration, then you're probably not going to get anything faster than running it in mathematica or maxima - they're already highly optimised. So unless your equations have a very specific formulae that you can exploit in a way that Mathematica or Maxima can not then you're probably out of luck -- and at very least you're not going to get that kind of custom manipulation from an off-the-shelf library.
You may be justified in writing your own code to get a speed boost if you needed to do numerical solutions. ( I know that I did for generating numerical solutions to PDEs).

The other C++ libraries I am aware of that do symbolic computation are
SymEngine (https://github.com/symengine/symengine)
Piranha (https://github.com/bluescarni/piranha)
If I am not mistaken, SymEngine does not yet support integration; however, Piranha does. The documentation for Piranha is somewhat limited at the moment and is under development, but you can see the integration function here. Note that the second link uses the syntax for the Python wrapper Piranha. However, Piranha "is a computer-algebra library for the symbolic manipulation of sparse multivariate polynomials and other closely-related symbolic objects (such as Poisson series)", so I do not think it can integrate the particular functions in which you may be interested.
Though it is not C++, you may also be interested in SymPy for Python, which can perform some of the more complicated symbolic integration you may be interested in. The documentation for SymPy's integrate is here.

A couple of days ago, I was searching for a symbolic math library like SymPy for C++, because I bedazzled by its speed comparing to Python or most of the other programming languages.
I found Vienna Math Library, an awesome library with very modern syntax, and SymPy's features to the best of my knowledge. This library also has an integral function that can be used for your problem.
It was good enough for solving IK (Inverse Kinematics) of 3 degrees of freedom articulated manipulator.

Related

Fast gradient-descent implementation in a C++ library? [duplicate]

I'm looking to run a gradient descent optimization to minimize the cost of an instantiation of variables. My program is very computationally expensive, so I'm looking for a popular library with a fast implementation of GD. What is the recommended library/reference?
GSL is a great (and free) library that already implements common functions of mathematical and scientific interest.
You can peruse through the entire reference manual online. Poking around, this starts to look interesting, but I think we'd need to know more about the problem.
It sounds like you're fairly new to minimization methods. Whenever I need to learn a new set of numeric methods, I usually look in Numerical Recipes. It's a book that provides a nice overview of the most common methods in the field, their tradeoffs, and (importantly) where to look in the literature for more information. It's usually not where I stop, but it's often a helpful starting point.
For example, if your function is costly, then your goal is to minimization the number of evaluations to need to converge. If you have analytical expressions for the gradient, then a gradient-based method will probably work to your advantage, assuming that the function and its gradient are well-behaved (lack singularities) in the domain of interest.
If you don't have analytical gradients, then you're almost always better off using an approach like downhill simplex that only evaluates the function (not its gradients). Numerical gradients are expensive.
Also note that all of these approaches will converge to local minima, so they're fairly sensitive to the point at which you initially start the optimizer. Global optimization is a totally different beast.
As a final thought, almost all of the code you can find for minimization will be reasonably efficient. The real cost of minimization is in the cost function. You should spend time profiling and optimizing your cost function, and select an algorithm that will minimize the number of times you need to call it (methods like downhill simplex, conjugate gradient, and BFGS all shine on different kinds of problems).
In terms of actual code, you can find a lot of nice routines at NETLIB, in addition to the other libraries that have been mentioned. Most of the routines are in FORTRAN 77, but not all; to convert them to C, f2c is quite useful.
One of the best respected libraries for this kind of optimization work is the NAG libraries. These are used all over the world in universities and industry. They're available for C / FORTRAN. They're very non-free, and contain a lot more than just minimisation functions - A lot of general numerical mathematics is covered.
Anyway I suspect this library is overkill for what you need. But here are the parts pertaining to minimisation: Local Minimisation and Global Minimization.
Try CPLEX which is available for free for students.

Fast gradient-descent implementation in a C++ library?

I'm looking to run a gradient descent optimization to minimize the cost of an instantiation of variables. My program is very computationally expensive, so I'm looking for a popular library with a fast implementation of GD. What is the recommended library/reference?
GSL is a great (and free) library that already implements common functions of mathematical and scientific interest.
You can peruse through the entire reference manual online. Poking around, this starts to look interesting, but I think we'd need to know more about the problem.
It sounds like you're fairly new to minimization methods. Whenever I need to learn a new set of numeric methods, I usually look in Numerical Recipes. It's a book that provides a nice overview of the most common methods in the field, their tradeoffs, and (importantly) where to look in the literature for more information. It's usually not where I stop, but it's often a helpful starting point.
For example, if your function is costly, then your goal is to minimization the number of evaluations to need to converge. If you have analytical expressions for the gradient, then a gradient-based method will probably work to your advantage, assuming that the function and its gradient are well-behaved (lack singularities) in the domain of interest.
If you don't have analytical gradients, then you're almost always better off using an approach like downhill simplex that only evaluates the function (not its gradients). Numerical gradients are expensive.
Also note that all of these approaches will converge to local minima, so they're fairly sensitive to the point at which you initially start the optimizer. Global optimization is a totally different beast.
As a final thought, almost all of the code you can find for minimization will be reasonably efficient. The real cost of minimization is in the cost function. You should spend time profiling and optimizing your cost function, and select an algorithm that will minimize the number of times you need to call it (methods like downhill simplex, conjugate gradient, and BFGS all shine on different kinds of problems).
In terms of actual code, you can find a lot of nice routines at NETLIB, in addition to the other libraries that have been mentioned. Most of the routines are in FORTRAN 77, but not all; to convert them to C, f2c is quite useful.
One of the best respected libraries for this kind of optimization work is the NAG libraries. These are used all over the world in universities and industry. They're available for C / FORTRAN. They're very non-free, and contain a lot more than just minimisation functions - A lot of general numerical mathematics is covered.
Anyway I suspect this library is overkill for what you need. But here are the parts pertaining to minimisation: Local Minimisation and Global Minimization.
Try CPLEX which is available for free for students.

Which mathematics library to chose to convert LabView blocks

I'm looking for the best choice of C++ Mathematics library to make easier some operations from LabView blocks.
I need to realize many complex mathematics things on C++ alike: linear regression, peak detection, derivative for the graph and many others alike.
I found there are a lot of libraries for it: http://en.wikipedia.org/wiki/List_of_numerical_libraries#C_and_C.2B.2B
Which library is better to chose for my tasks?
(currently Im thinking about boost BLAS but I never worked with it earlier so maybe this choice is wrong)
Note that there isn't much more to boost uBLAS than basic linear algebra; and even if you consider the larger boost "Math and Numerics" section, it can hardly be considered a complete scientific computing package.
GSL is very good in that it's quite comprehensive. However, it's very much a 'C' library so you need to be prepared to work with raw pointers to array data and function pointer callbacks rather than higher level classes.
(Personally these days I find myself using Python/Numpy/Scipy as much as possible; the scope of Scipy is truly incredible and Numpy arrays are fantastically easy to work with; if there was a LabView/Python/Scipy integration that met any other requirements it'd be the first thing I'd be looking it).

How to choose an integer linear programming solver?

I am newbie for integer linear programming.
I plan to use a integer linear programming solver to solve my combinatorial optimization problem.
I am more familiar with C++/object oriented programming on an IDE.
Now I am using NetBeans with Cygwin to write my applications most of time.
May I ask if there is an easy use ILP solver for me?
Or it depends on the problem I want to solve ? I am trying to do some resources mapping optimization. Please let me know if any further information is required.
Thank you very much, Cassie.
If what you want is linear mixed integer programming, then I would point to Coin-OR (and specifically to the module CBC). It's Free software (as speech)
You can either use it with a specific language, or use C++.
Use C++ if you data requires lots of preprocessing, or if you want to put your hands into the solver (choosing pivot points, column generation, adding cuts and so on...).
Use the integrated language if you want to use the solver as a black box (you're just interested in the result and the problem is easy or classic enough to be solved without tweaking).
But in the tags you mention genetic algorithms and graphs algorithms. Maybe you should start by better defing your problem...
For graphs I like a lot Boost::Graph
I have used lp_solve ( http://lpsolve.sourceforge.net/5.5/ ) on a couple of occasions with success. It is mature, feature rich and is extremely well documented with lots of good advice if your linear programming skills are rusty. The integer linear programming is not a just an add on but is strongly emphasized with this package.
Just noticed that you say you are a 'newbie' at this. Well, then I strongly recommend this package since the documentation is full of examples and gentle tutorials. Other packages I have tried tend to assume a lot of the user.
For large problems, you might look at AMPL, which is an optimization interpreter with many backend solvers available. It runs as a separate process; C++ would be used to write out the input data.
Then you could try various state-of-the-art solvers.
Look into GLPK. Comes with a few examples, and works with a subset of AMPL, although IMHO works best when you stick to C/C++ for model setup. Copes with pretty big models too.
Linear Programming from Wikipedia covers a few different algorithms that you could do some digging into to see which may work best for you. Does that help or were you wanting something more specific?

Open source C++ library for vector mathematics

I would need some basic vector mathematics constructs in an application. Dot product, cross product. Finding the intersection of lines, that kind of stuff.
I can do this by myself (in fact, have already) but isn't there a "standard" to use so bugs and possible optimizations would not be on me?
Boost does not have it. Their mathematics part is about statistical functions, as far as I was able to see.
Addendum:
Boost 1.37 indeed seems to have this. They also gracefully introduce a number of other solutions at the field, and why they still went and did their own. I like that.
Re-check that ol'good friend of C++ programmers called Boost. It has a linear algebra package that may well suits your needs.
I've not tested it, but the C++ eigen library is becoming increasingly more popular these days. According to them, they are on par with the fastest libraries around there and their API looks quite neat to me.
Armadillo
Armadillo employs a delayed evaluation
approach to combine several operations
into one and reduce (or eliminate) the
need for temporaries. Where
applicable, the order of operations is
optimised. Delayed evaluation and
optimisation are achieved through
recursive templates and template
meta-programming.
While chained operations such as
addition, subtraction and
multiplication (matrix and
element-wise) are the primary targets
for speed-up opportunities, other
operations, such as manipulation of
submatrices, can also be optimised.
Care was taken to maintain efficiency
for both "small" and "big" matrices.
I would stay away from using NRC code for anything other than learning the concepts.
I think what you are looking for is Blitz++
Check www.netlib.org, which is maintained by Oak Ridge National Lab and the University of Tennessee. You can search for numerical packages there. There's also Numerical Recipes in C++, which has code that goes with it, but the C++ version of the book is somewhat expensive and I've heard the code described as "terrible." The C and FORTRAN versions are free, and the associated code is quite good.
There is a nice Vector library for 3d graphics in the prophecy SDK:
Check out http://www.twilight3d.com/downloads.html
For linear algebra: try JAMA/TNT . That would cover dot products. (+matrix factoring and other stuff) As far as vector cross products (really valid only for 3D, otherwise I think you get into tensors), I'm not sure.
For an extremely lightweight (single .h file) library, check out CImg. It's geared towards image processing, but has no problem handling vectors.