Related
At what struct size should I consider allocating on the heap / free store using new keyword (or any other method of dynamic allocation) instead of on the stack?
10 bytes? 20 bytes? 200 bytes? 2KB? 2MB? Never?
Even if I wanted to pass it around by pointer, I could still take a reference from the stack variable. I understand that a stack variable will disappear at the end of the scope and dynamically allocated variables will not. I can deal with that either way, but so far I've not found any guidance for when to allocate dynamically. Sure, avoid stack overflow by not putting too much on the stack... but how much is too much?
Any guidance would be appreciated.
To actually answer the question, you'll need to know:
How big the stack is. This is often configurable at a compile-time, but may be capped by the target platform.
What is on the stack already. This knowledge is obtainable either by using deterministic call graph or by making decision actively, based on the current value of the stack pointer.
Without all of the above, any passive decision would be a gamble. Which also means that it's a gamble by default — indeed, in most cases we have to trust the compiler developers to understand how much of a stack space a "typical" program would need, and that our views on "typical" programs do align well and often.
In the long term, just like with any optimization problem, put your bets on measuring the overall performance and testing edge cases that may cause the stack overflow.
(Note. I probably should have searched before answering, but this question is essentially a duplicate of How much stack usage is too much?, nevertheless, here is my opinion on it.)
If you intend to keep a large buffer around for an extended period of time, then you should allocate it on the heap.
If you are in a recursive function, then allocating large buffers on the stack can quickly lead to problems.
Personally, I would keep buffers below ~4KiB on the stack and allocate larger buffers on the heap, unless you have a good overview of your program, and more specifically, how and where your functions are called.
That being said, if you constantly create and destroy buffers, consider putting them on the stack.
(If you are working on an embedded system, then that's a very different story.)
I've been reading up a little on zero-pause garbage collectors for managed languages. From what I understand, one of the most difficult things to do without stop-the-world pauses is heap compaction. Only very few collectors (eg Azul C4, ZGC) seem to be doing, or at least approaching, this.
So, most GCs introduce dreaded stop-the-world pauses the compact the heap (bad!). Not doing this seems extremely difficult, and does come with a performance/throughput penalty. So either way, this step seems rather problematic.
And yet - as far as I know, most if not all GCs still do compact the heap occasionally. I've yet to see a modern GC that doesn't do this by default. Which leads me to believe: It has to be really, really important. If it wasn't, surely, the tradeoff wouldn't be worth it.
At the same time, I have never seen anyone do memory defragmentation in C++. I'm sure some people somewhere do, but - correct me if I am wrong - it does not at all seem to be a common concern.
I could of course imagine static memory somewhat lessens this, but surely, most codebases would do a fair amount of dynamic allocations?!
So I'm curious, why is that?
Are my assumptions (very important in managed languages; rarely done in C++) even correct? If yes, is there any explanation I'm missing?
Garbage collection can compact the heap because it knows where all of the pointers are. After all, it just finished tracing them. That means that it can move objects around and adjust the pointers (references) to the new location.
However, C++ cannot do that, because it doesn't know where all the pointers are. If the memory allocation library moved things around, there could be dangling pointers to the old locations.
Oh, and for long running processes, C++ can indeed suffer from memory fragmentation. This was more of a problem on 32-bit systems because it could fail to allocate memory from the OS, because it might have used up all of the available 1 MB memory blocks. In 64-bit it is almost impossible to create so many memory mappings that there is nowhere to put a new one. However, if you ended up with a 16 byte memory allocation in each 4K memory page, that's a lot of wasted space.
C and C++ applications solve that by using storage pools. For a web server, for example, it would start a pool with a new request. At the end of that web request, everything in the pool gets destroyed. The pool makes a nice, constant sized block of RAM that gets reused over and over without fragmentation.
Garbage collection tends to use recycling pools as well, because it avoids the strain of running a big GC trace and reclaim at the end of a connection.
One method some old operating systems like Apple OS 9 used before virtual memory was a thing is handles. Instead of a memory pointer, allocation returned a handle. That handle was a pointer to the real object in memory. When the operating system needed to compact memory or swap it to disk it would change the handle.
I have actually implemented a similar system in C++ using an array of handles into a shared memory map psuedo-database. When the map was compacted then the handle table was scanned for affected entries and updated.
Generic memory compaction is not generally useful nor desirable because of its costs.
What may be desirable is to have no wasted/fragmented memory and that can be achieved by other methods than memory compaction.
In C++ one can come up with a different allocation approach for objects that do cause fragmentation in their specific application, e.g. double-pointers or double-indexes to allow for object relocation; object pools or arenas that prevent or minimize fragmentation. Such solutions for specific object types is superior to generic garbage collection because they employ application/business specific knowledge which allows to minimize the scope/cost of object storage maintenance and also happen at most appropriate times.
A research found that garbage collected languages require 5 times more memory to achieve performance of non-GC equivalent programs. Memory fragmentation is more severe in GC languages.
Unless you're programming parts of an OS or an embedded system are there any reasons to do so? I can imagine that for some particular classes that are created and destroyed frequently overloading memory management functions or introducing a pool of objects might lower the overhead, but doing these things globally?
Addition
I've just found a bug in an overloaded delete function - memory wasn't always freed. And that was in a not-so memory critical application. Also, disabling these overloads decreases performance by ~0.5% only.
We overload the global new and delete operators where I work for many reasons:
pooling all small allocations -- decreases overhead, decreases fragmentation, can increase performance for small-alloc-heavy apps
framing allocations with a known lifetime -- ignore all the frees until the very end of this period, then free all of them together (admittedly we do this more with local operator overloads than global)
alignment adjustment -- to cacheline boundaries, etc
alloc fill -- helping to expose usage of uninitialized variables
free fill -- helping to expose usage of previously deleted memory
delayed free -- increasing the effectiveness of free fill, occasionally increasing performance
sentinels or fenceposts -- helping to expose buffer overruns, underruns, and the occasional wild pointer
redirecting allocations -- to account for NUMA, special memory areas, or even to keep separate systems separate in memory (for e.g. embedded scripting languages or DSLs)
garbage collection or cleanup -- again useful for those embedded scripting languages
heap verification -- you can walk through the heap data structure every N allocs/frees to make sure everything looks ok
accounting, including leak tracking and usage snapshots/statistics (stacks, allocation ages, etc)
The idea of new/delete accounting is really flexible and powerful: you can, for example, record the entire callstack for the active thread whenever an alloc occurs, and aggregate statistics about that. You could ship the stack info over the network if you don't have space to keep it locally for whatever reason. The types of info you can gather here are only limited by your imagination (and performance, of course).
We use global overloads because it's convenient to hang lots of common debugging functionality there, as well as make sweeping improvements across the entire app, based on the statistics we gather from those same overloads.
We still do use custom allocators for individual types too; in many cases the speedup or capabilities you can get by providing custom allocators for e.g. a single point-of-use of an STL data structure far exceeds the general speedup you can get from the global overloads.
Take a look at some of the allocators and debugging systems that are out there for C/C++ and you'll rapidly come up with these and other ideas:
valgrind
electricfence
dmalloc
dlmalloc
Application Verifier
Insure++
BoundsChecker
...and many others... (the gamedev industry is a great place to look)
(One old but seminal book is Writing Solid Code, which discusses many of the reasons you might want to provide custom allocators in C, most of which are still very relevant.)
Obviously if you can use any of these fine tools you will want to do so rather than rolling your own.
There are situations in which it is faster, easier, less of a business/legal hassle, nothing's available for your platform yet, or just more instructive: dig in and write a global overload.
The most common reason to overload new and delete are simply to check for memory leaks, and memory usage stats. Note that "memory leak" is usually generalized to memory errors. You can check for things such as double deletes and buffer overruns.
The uses after that are usually memory-allocation schemes, such as garbage collection, and pooling.
All other cases are just specific things, mentioned in other answers (logging to disk, kernel use).
In addition to the other important uses mentioned here, like memory tagging, it's also the only way to force all allocations in your app to go through fixed-block allocation, which has enormous implications for performance and fragmentation.
For example, you may have a series of memory pools with fixed block sizes. Overriding global new lets you direct all 61-byte allocations to, say, the pool with 64-byte blocks, all 768-1024 byte allocs to the the 1024b-block pool, all those above that to the 2048 byte block pool, and anything larger than 8kb to the general ragged heap.
Because fixed block allocators are much faster and less prone to fragmentation than allocating willy-nilly from the heap, this lets you force even crappy 3d party code to allocate from your pools and not poop all over the address space.
This is done often in systems which are time- and space-critical, such as games. 280Z28, Meeh, and Dan Olson have described why.
UnrealEngine3 overloads global new and delete as part of its core memory management system. There are multiple allocators that provide different features (profiling, performance, etc.) and they need all allocations to go through it.
Edit: For my own code, I would only ever do it as a last resort. And by that I mean I would almost positively never use it. But my personal projects are obviously much smaller/very different requirements.
Some realtime systems overload them to avoid them being used after init..
Overloading new & delete makes it possible to add a tag to your memory allocations. I tag allocations per system or control or by middleware. I can view, at runtime, how much each uses. Maybe I want to see the usage of a parser separated from the UI or how much a piece of middleware is really using!
You can also use it to put guard bands around the allocated memory. If/when your app crashes you can take a look at the address. If you see the contents as "0xABCDABCD" (or whatever you choose as guard) you are accessing memory you don't own.
Perhaps after calling delete you can fill this space with a similarly recognizable pattern.
I believe VisualStudio does something similar in debug. Doesn't it fill uninitialized memory with 0xCDCDCDCD?
Finally, if you have fragmentation issues you could use it to redirect to a block allocator? I am not sure how often this is really a problem.
You need to overload them when the call to new and delete doesn't work in your environment.
For example, in kernel programming, the default new and delete don't work as they rely on user mode library to allocate memory.
From a practical standpoint it may just be better to override malloc on a system library level, since operator new will probably be calling it anyway.
On linux, you can put your own version of malloc in place of the system one, as in this example here:
http://developers.sun.com/solaris/articles/lib_interposers.html
In that article, they are trying to collect performance statistics. But you may also detect memory leaks if you also override free.
Since you are doing this in a shared library with LD_PRELOAD, you don't even need to recompile your application.
I've seen it done in a system that for 'security'* reasons was required to write over all memory it used on de-allocation. The approach was to allocate an extra few bytes at the start of each block of memory which would contain the size of the overall block which would then be overwritten with zeros on delete.
This had a number of problems as you can probably imagine but it did work (mostly) and saved the team from reviewing every single memory allocation in a reasonably large, existing application.
Certainly not saying that it is a good use but it is probably one of the more imaginative ones out there...
* sadly it wasn't so much about actual security as the appearance of security...
Photoshop plugins written in C++ should override operator new so that they obtain memory via Photoshop.
I've done it with memory mapped files so that data written to the memory is automatically also saved to disk.
It's also used to return memory at a specific physical address if you have memory mapped IO devices, or sometimes if you need to allocate a certain block of contiguous memory.
But 99% of the time it's done as a debugging feature to log how often, where, when memory is being allocated and released.
It's actually pretty common for games to allocate one huge chunk of memory from the system and then provide custom allocators via overloaded new and delete. One big reason is that consoles have a fixed memory size, making both leaks and fragmentation large problems.
Usually (at least on a closed platform) the default heap operations come with a lack of control and a lack of introspection. For many applications this doesn't matter, but for games to run stably in fixed-memory situations the added control and introspection are both extremely important.
It can be a nice trick for your application to be able to respond to low memory conditions by something else than a random crash. To do this your new can be a simple proxy to the default new that catches its failures, frees up some stuff and tries again.
The simplest technique is to reserve a blank block of memory at start-up time for that very purpose. You may also have some cache you can tap into - the idea is the same.
When the first allocation failure kicks in, you still have time to warn your user about the low memory conditions ("I'll be able to survive a little longer, but you may want to save your work and close some other applications"), save your state to disk, switch to survival mode, or whatever else makes sense in your context.
The most common use case is probably leak checking.
Another use case is when you have specific requirements for memory allocation in your environment which are not satisfied by the standard library you are using, like, for instance, you need to guarantee that memory allocation is lock free in a multi threaded environment.
As many have already stated this is usually done in performance critical applications, or to be able to control memory alignment or track your memory. Games frequently use custom memory managers, especially when targeting specific platforms/consoles.
Here is a pretty good blog post about one way of doing this and some reasoning.
Overloaded new operator also enables programmers to squeeze some extra performance out of their programs. For example, In a class, to speed up the allocation of new nodes, a list of deleted nodes is maintained so that their memory can be reused when new nodes are allocated.In this case, the overloaded delete operator will add nodes to the list of deleted nodes and the overloaded new operator will allocate memory from this list rather than from the heap to speedup memory allocation. Memory from the heap can be used when the list of deleted nodes is empty.
I'm looking to write a self defragmenting memory manager whereby a simple incrementing heap allocator is used in combination with a simple compacting defragmenter.
The rough scheme would be to allocate blocks starting at the lowest memory address going upwards and keeping book-keeping information starting at the highest memory address working downwards.
The memory manager would pass back smart pointers - boost's intrusive_ptr's seems the most obvious to the book-keeping structs that would then themselves point to the actual memory block thus giving a level of indirection so that the blocks can be easily moved around.
The defragmenter would compact down the heap starting at 'generation' bookmarks to speed up the process and only defragmenting a fixed amount of memory at a time. Raw pointers to the blocks themselves would be valid until the next defrag pass and so could be passed around freely until such a time improving performance.
The specific application for this is console game programming and so at the beginning or end of each frame a defrag pass could be done relatively safely.
So my question is has anybody used this kind of allocation scheme in combination with STL would it just completely blow STL apart as I suspect. I can see std::list< intrusive_ptr > working at the intrusive_ptr level but what about the allocation of the stl list nodes themselves is there anyway to override the next/prev pointers to be intrusive_ptr's themselves or am I just going to have to have a standard heap allocator along side this more dynamic one.
If you're going to be moving objects around in memory then you can't do this fully generically. You will only be able to do this with objects that know that they might be moved. You also will need a locking mechanism. When a function is being called on an object, then it can't be moved.
The reason is that the whole C++ model relies on objects sitting at fixed points in memory, so if a thread was calling a method on an object, this thread was paused and the object moved, disaster would strike when the thread resumed.
Any object which held a raw memory pointer to another object that might be moved (including a sub-object of itself) would not work.
Such a memory management scheme may work but you have to be very careful. You need to be strict about implementing handles, and the handle->pointer locking semantics.
For STL containers, you can customize the allocator, but it still needs to return fixed raw memory pointers. You can't return an address that might move. For this reason, if you're using STL containers, they must be containers of handles, and the nodes themselves will be ordinary dynamically allocated memory. You may find that you too much in overhead in the handle indirection and still have problems in the fragmentation of the handle collections than you gain by using STL.
Using containers that understand your handles directly might be the only way forward, and even then there may still be a lot of overhead compared to a C++ application that uses traditional objects fixed in memory.
STL containers are implemented using naked pointers.
You can specify a custom allocator when you instantiate them (so they they initialize their pointers using your allocator), but (because the allocated values are stored in naked pointers) you don't know where those pointers are, and therefore you can't change them later.
Instead, you might consider implementing a subset of the STL yourself: your versions of the STL containers could then be implemented with managed pointers.
An alternative technique which is fairly well known is the buddy system. You should take a look at that for additional inspiration.
If this is for console game programming it's a lot easier to forbid un-scoped dynamic memory allocations at runtime. And at startup time, but that's a bit difficult to achieve.
My take on this, is that if have to be afraid of fragmentation, that means you are juggling around with data pieces which are a huge fraction of your memory, and by this virtue alone, you cannot have many of them. Do you already know what these will be? Maybe it would be better to step down a level and make more specific decisions, thus impeding less on the other code and the general performance of your application?
A list is an exceptionally bad example to put into a defragmenting memory manager, because it's a bunch of tiny pieces, as are most other STL data structures. If you do this, it will have all kinds of obvious bad implications - including the performance of your defragmenter going down, also the indirection cost etc. The only structures where it makes sense IMO are contigious ones - array, deque, main chunk of hashtable, those things, and only beyond a certain size, and only after they are not gonna be resized any longer. These kind of things call, again, for specific solutions, instead of generic ones.
Comment back on how it all turns out.
I'm working on a project that is supposed to be used from the command line with the following syntax:
program-name input-file
The program is supposed to process the input, compute some stuff and spit out results on stdout.
My language of choice is C++ for several reasons I'm not willing to debate. The computation phase will be highly symbolic (think compiler) and will use pretty complex dynamically allocated data structures. In particular, it's not amenable to RAII style programming.
I'm wondering if it is acceptable to forget about freeing memory, given that I expect the entire computation to consume less than the available memory and that the OS is free to reclaim all the memory in one step after the program finishes (assume program terminates in seconds). What are your feeling about this?
As a backup plan, if ever my project will require to run as a server or interactively, I figured that I can always refit a garbage collector into the source code. Does anyone have experience using garbage collectors for C++? Do they work well?
It shouldn't cause any problems in the specific situation described the question.
However, it's not exactly normal. Static analysis tools will complain about it. Most importantly, it builds bad habits.
Sometimes not deallocating memory is the right thing to do.
I used to write compilers. After building the parse tree and traversing it to write the intermediate code, we would simply just exit. Deallocating the tree would have
added a bit of slowness to the compiler, which we wanted of course to be as fast as possible.
taken up code space
taken time to code and test the deallocators
violated the "no code executes better than 'no code'" dictum.
HTH! FWIW, this was "back in the day" when memory was non-virtual and minimal, the boxes were much slower, and the first two were non-trivial considerations.
My feeling would be something like "WTF!!!"
Look at it this way:
You choose a programming language that does not include a garbage collector, we are not allowed to ask why.
You are basically stating that you are too lazy to care about freeing the memory.
Well, WTF again. Laziness isn't a good reason for anything, the least of what is playing around with memory without freeing it.
Just free the memory, it's a bad practice, the scenario may change and then can be a million reasons you can need that memory freed and the only reason for not doing it is laziness, don't get bad habits, and get used to do things right, that way you'll tend to do them right in the future!!
Not deallocating memory should not be problem but it is a bad practice.
Joel Coehoorn is right:
It shouldn't cause any problems.
However, it's not exactly normal.
Static analysis tools will complain
about it. Most importantly, it builds
bad habits.
I'd also like to add that thinking about deallocation as you write the code is probably a lot easier than trying to retrofit it afterwards. So I would probably make it deallocate memory; you don't know how your program might be used in future.
If you want a really simple way to free memory, look at the "pools" concept that Apache uses.
Well, I think that it's not acceptable. You've already alluded to potential future problems yourself. Don't think they're necessarily easy to solve.
Things like “… given that I expect the entire computation to consume less …” are famous last phrases. Similarly, refitting code with some feature is one of these things they all talk of and never do.
Not deallocating memory might sound good in the short run but can potentially create a huge load of problems in the long run. Personally, I just don't think that's worth it.
There are two strategies. Either you build in the GC design from the very beginning. It's more work but it will pay off. For a lot of small objects it might pay to use a pool allocator and just keep track of the memory pool. That way, you can keep track of the memory consumption and simply avoid a lot of problems that similar code, but without allocation pool, would create.
Or you use smart pointers throughout the program from the beginning. I actually prefer this method even though it clutters the code. One solution is to rely heavily on templates, which takes out a lot of redundancy when referring to types.
Take a look at projects such as WebKit. Their computation phase resembles yours since they build parse trees for HTML. They use smart pointers throughout their program.
Finally: “It’s a question of style … Sloppy work tends to be habit-forming.”
– Silk in Castle of Wizardry by David Eddings.
will use pretty complex dynamically
allocated data structures. In
particular, it's not amenable to RAII
style programming.
I'm almost sure that's an excuse for lazy programming. Why can't you use RAII? Is it because you don't want to keep track of your allocations, there's no pointer to them that you keep? If so, how do you expect to use the allocated memory - there's always a pointer to it that contains some data.
Is it because you don't know when it should be released? Leave the memory in RAII objects, each one referenced by something, and they'll all trickle-down free each other when the containing object gets freed - this is particularly important if you want to run it as a server one day, each iteration of the server effective runs a 'master' object that holds all others so you can just delete it and all the memory disappears. It also helps prevent you retro-fitting a GC.
Is it because all your memory is allocated and kept in-use all the time, and only freed at the end? If so see above.
If you really, really cannot think of a design where you cannot leak memory, at least have the decency to use a private heap. Destroy that heap before you quit and you'll have a better design already, if a little 'hacky'.
There are instances where memory leaks are ok - static variables, globally initialised data, things like that. These aren't generally large though.
Reference counting smart pointers like shared_ptr in boost and TR1 could also help you manage your memory in a simple manner.
The drawback is that you have to wrap every pointers that use these objects.
I've done this before, only to find that, much later, I needed the program to be able to process several inputs without separate commands, or that the guts of the program were so useful that they needed to be turned into a library routine that could be called many times from within another program that was not expected to terminate. It was much harder to go back later and re-engineer the program than it would have been to make it leak-less from the start.
So, while it's technically safe as you've described the requirements, I advise against the practice since it's likely that your requirements may someday change.
If the run time of your program is very short, it should not be a problem. However, being too lazy to free what you allocate and losing track of what you allocate are two entirely different things. If you have simply lost track, its time to ask yourself if you actually know what your code is doing to a computer.
If you are just in a hurry or lazy and the life of your program is small in relation to what it actually allocates (i.e. allocating 10 MB per second is not small if running for 30 seconds) .. then you should be OK.
The only 'noble' argument regarding freeing allocated memory sets in when a program exits .. should one free everything to keep valgrind from complaining about leaks, or just let the OS do it? That entirely depends on the OS and if your code might become a library and not a short running executable.
Leaks during run time are generally bad, unless you know your program will run in a short amount of time and not cause other programs far more important than your's as far as the OS is concerned to skid to dirty paging.
What are your feeling about this?
Some O/Ses might not reclaim the memory, but I guess you're not intenting to run on those O/Ses.
As a backup plan, if ever my project will require to run as a server or interactively, I figured that I can always refit a garbage collector into the source code.
Instead, I figure you can spawn a child process to do the dirty work, grab the output from the child process, let the child process die as soon as possible after that and then expect the O/S to do the garbage collection.
I have not personally used this, but since you are starting from scratch you may wish to consider the Boehm-Demers-Weiser conservative garbage collector
The answer really depends on how large your program will be and what performance characteristics it needs to exhibit. If you never deallocate memory, your process's memory footprint will be much larger than it would otherwise be. Depeding on the system, this could cause a lot of paging and slow down the performance for you or other applications on the system.
Beyond that, what everyone above says is correct. It probably won't cause harm in the short term, but it's a bad practice that you should avoid. You'll never be able to use the code again. Trying to retrofit a GC on afterwards will be a nightmare. Just think about going to each place you allocate memory and trying to retrofit it but not break anything.
One more reason to avoid doing this: reputation. If you fail to deallocate, everyone who maintains the code will curse your name and your rep in the company will take a hit. "Can you believe how dumb he was? Look at this code."
If it is non-trivial for you to determine where to deallocate the memory, I would be concerned that other aspects of the data structure manipulation may not be fully understood either.
Apart from the fact that the OS (kernel and/or C/C++ library) can choose not to free the memory when the execution ends, your application should always provide proper freeing of allocated memory as a good practice. Why? Suppose you decide to extend that application or reuse the code; you'll quickly get in trouble if the code you had previously written hogs up the memory unnecessarily, after finishing its job. It's a recipe for memory leaks.
In general, I agree it's a bad practice.
For a one shot program, it can be OK, but it kinda shows like you don't what you are doing.
There is one solution to your problem though - use a custom allocator, which preallocates larger blocks from malloc, and then, after the computation phase, instead of freeing all the little blocks from you custom allocator, just release the larger preallocated blocks of memory. Then you don't need to keep track of all objects you need to deallocate and when. One guy who wrote a compiler too explained this approach many years ago to me, so if it worked for him, it will probably work for you as well.
Try to use automatic variables in methods so that they will be freed automatically from the stack.
The only useful reason to not free heap memory is to save a tiny amount of computational power used in the free() method. You might loose any advantage if page faults become an issue due to large virtual memory needs with small physical memory resources. Some factors to consider are:
If you are allocating a few huge chunks of memory or many small chunks.
Is the memory going to need to be locked into physical memory.
Are you absolutely positive the code and memory needed will fit into 2GB, for a Win32 system, including memory holes and padding.
That's generally a bad idea. You might encounter some cases where the program will try to consume more memory than it's available. Plus you risk being unable to start several copies of the program.
You can still do this if you don't care of the mentioned issues.
When you exit from a program, the memory allocated is automatically returned to the system. So you may not deallocate the memory you had allocated.
But deallocations becomes necessary when you go for bigger programs such as an OS or Embedded systems where the program is meant to run forever & hence a small memory leak can be malicious.
Hence it is always recommended to deallocate the memory you have allocated.