I am getting a bit confused as to why my manually created mesh is not appearing correctly. I have created the vertex and index buffers and they seem (although I am not 100% sure) to contain the correct values.
Essentially I am creating a grid of mapSize * mapSize vetrices, at a height of 0, then creating the triangles out of them.
void TerrainGeneration::createTerrainMesh() {
/// Create the mesh via the MeshManager
Ogre::MeshPtr msh = Ogre::MeshManager::getSingleton().createManual("TerrainTest", "General");
Ogre::SubMesh* sub = msh->createSubMesh();
const size_t nVertices = mapSize*mapSize;
const size_t vbufCount = 3*2*nVertices;
float vertices[vbufCount];
size_t vBufCounter = 0;
for(int z = 0; z < mapSize; z++) {
for(int x = 0; x < mapSize; x++) {
//Position
vertices[vBufCounter] = x;
vertices[vBufCounter+1] = 0;
vertices[vBufCounter+2] = z;
//Normal
vertices[vBufCounter+3] = 0;
vertices[vBufCounter+4] = 1;
vertices[vBufCounter+5] = 0;
vBufCounter += 6;
}
}
Ogre::RenderSystem* rs = Ogre::Root::getSingleton().getRenderSystem();
Ogre::RGBA colours[nVertices];
Ogre::RGBA *pColour = colours;
//Create triangles
const size_t ibufCount = 6*(mapSize - 1)*(mapSize - 1);
unsigned int faces[ibufCount];
size_t iBufCounter = 0;
for(int x=0; x <= mapSize -2; x++) {
for(int y=0; y <= mapSize -2; y++) {
faces[iBufCounter] = vertices[(y*mapSize) + x];
faces[iBufCounter+1] = vertices[((y+1)*mapSize) + x];
faces[iBufCounter+2] = vertices[((y+1)*mapSize) + (x+1)];
faces[iBufCounter+3] = vertices[(y*mapSize) + x];
faces[iBufCounter+4] = vertices[((y+1)*mapSize) + (x+1)];
faces[iBufCounter+5] = vertices[(y*mapSize) + (x+1)];
iBufCounter += 6;
}
}
/// Create vertex data structure for n*n vertices shared between submeshes
msh->sharedVertexData = new Ogre::VertexData();
msh->sharedVertexData->vertexCount = nVertices;
/// Create declaration (memory format) of vertex data
Ogre::VertexDeclaration* decl = msh->sharedVertexData->vertexDeclaration;
size_t offset = 0;
// 1st buffer
decl->addElement(0, offset, Ogre::VET_FLOAT3, Ogre::VES_POSITION);
offset += Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3);
decl->addElement(0, offset, Ogre::VET_FLOAT3, Ogre::VES_NORMAL);
offset += Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3);
/// Allocate vertex buffer of the requested number of vertices (vertexCount)
/// and bytes per vertex (offset)
Ogre::HardwareVertexBufferSharedPtr vbuf =
Ogre::HardwareBufferManager::getSingleton().createVertexBuffer(
offset, msh->sharedVertexData->vertexCount, Ogre::HardwareBuffer::HBU_STATIC_WRITE_ONLY);
/// Upload the vertex data to the card
vbuf->writeData(0, vbuf->getSizeInBytes(), vertices, true);
/// Set vertex buffer binding so buffer 0 is bound to our vertex buffer
Ogre::VertexBufferBinding* bind = msh->sharedVertexData->vertexBufferBinding;
bind->setBinding(0, vbuf);
/// Allocate index buffer of the requested number of vertices (ibufCount)
Ogre::HardwareIndexBufferSharedPtr ibuf = Ogre::HardwareBufferManager::getSingleton().
createIndexBuffer(
Ogre::HardwareIndexBuffer::IT_16BIT,
ibufCount,
Ogre::HardwareBuffer::HBU_STATIC_WRITE_ONLY);
/// Upload the index data to the card
ibuf->writeData(0, ibuf->getSizeInBytes(), faces, true);
/// Set parameters of the submesh
sub->useSharedVertices = true;
sub->indexData->indexBuffer = ibuf;
sub->indexData->indexCount = ibufCount;
sub->indexData->indexStart = 0;
/// Set bounding information (for culling)
msh->_setBounds(Ogre::AxisAlignedBox(-5000,-5000,-5000,5000,5000,5000));
//msh->_setBoundingSphereRadius(Ogre::Math::Sqrt(3*100*100));
/// Notify -Mesh object that it has been loaded
msh->load();
}
I initialise the mesh and load it as follows
Ogre::Entity* thisEntity = mSceneMgr->createEntity("cc", "TerrainTest", "General");
thisEntity->setMaterialName("Examples/Rockwall");
Ogre::SceneNode* thisSceneNode = mSceneMgr->getRootSceneNode()->createChildSceneNode();
thisSceneNode->setPosition(0, 0, 0);
thisSceneNode->attachObject(thisEntity);
Any insight would be greatly appreciated.
Ok so I got an answer off the Ogre3d forums from a very helpful person called bstone.
It turns out that when creating my index list to create the faces I was mistakenly passing coordinates from the vertex list rather than indexes of the vertices.
faces[iBufCounter] = vertices[(y*mapSize) + x];
faces[iBufCounter+1] = vertices[((y+1)*mapSize) + x];
faces[iBufCounter+2] = vertices[((y+1)*mapSize) + (x+1)];
faces[iBufCounter+3] = vertices[(y*mapSize) + x];
faces[iBufCounter+4] = vertices[((y+1)*mapSize) + (x+1)];
faces[iBufCounter+5] = vertices[(y*mapSize) + (x+1)];
Should have been
faces[iBufCounter] = (y*mapSize) + x;
faces[iBufCounter+1] = ((y+1)*mapSize) + x;
faces[iBufCounter+2] = ((y+1)*mapSize) + (x+1);
faces[iBufCounter+3] = (y*mapSize) + x;
faces[iBufCounter+4] = ((y+1)*mapSize) + (x+1);
faces[iBufCounter+5] = (y*mapSize) + (x+1);
However I still have a problem in my code somewhere, although from what others have said it probably isn't in this code that i've posted.
Another user also proposed that I create the terrain ina much simpler way and posted the following code
int mapSize = 16;
Ogre::ManualObject *man = m_sceneManager->createManualObject("TerrainTest");
man->begin("Examples/Rockwall",Ogre::RenderOperation::OT_TRIANGLE_LIST);
for(int z = 0; z < mapSize; ++z)
{
for(int x = 0; x < mapSize; ++x)
{
man->position(x,0,z);
man->normal(0,1,0);
man->textureCoord(x,z);
}
}
for(int z = 0; z < mapSize-1; ++z)
{
for(int x = 0; x < mapSize-1; ++x)
{
man->quad((x) + (z) * mapSize, (x) + (z + 1) * mapSize, (x + 1) + (z + 1) * mapSize, (x + 1) + (z) * mapSize);
}
}
man->end();
m_sceneManager->getRootSceneNode()->attachObject(man);
Related
I'm trying to render a terrain using directx 11 and applying a heightmap to it.
I load the heightmap then I copy it to a integer vector, then for each vertex position I assign the Y position of that vertex to the heightmap value, but the terrain is completely destroyed and distorted. When I remove the calculation on the Y axis, I get a flat grid and no problem.
bool cGrid::readRawFile(std::string fileName, int m, int n)
{
// A height for each vertex
std::vector<BYTE> in(m*n);
std::ifstream inFile(fileName.c_str(), std::ios_base::binary);
if (!inFile)
return false;
inFile.read(
(char*)&in[0], // buffer
in.size());// number of bytes to read into buffer
inFile.close();
// copy BYTE vector to int vector
m_heightmap.resize(n*m);
for (int i = 0; i < in.size(); i++)
m_heightmap[i] = in[i];
return true;
}
for (size_t i = 0; i<m_Mesh.m_Vertices.size(); ++i)
{
XMFLOAT3 p = m_Mesh.m_Vertices[i].Position;
p.y = (float)m_heightmap[i]*0.5f;
m_Mesh.m_Vertices[i].Position = p;
}
here is a video of the problem
https://www.youtube.com/watch?v=lnlIz3DjebM&feature=youtu.be
HRESULT cGrid::CreateGrid(float width, float depth, UINT n, UINT m)
{
HRESULT hr;
int vertexCount = m*n;
UINT faceCount = (m - 1)*(n - 1) * 2; // each quad consists of two triangles
float halfWidth = 0.5f*width;
float halfDepth = 0.5f*depth;
// project the grid into xz plane
float dx = width / (n - 1);
float dz = depth / (m - 1);
float du = 1.0f / (n - 1); // texture co-ordinates
float dv = 1.0f / (m - 1);
m_Mesh.m_Vertices.resize(vertexCount);
// build the vertices of the grid, including the normals and the tangent,
//you can build then the bitanget by cross product for normal maps -_-
for (UINT i = 0; i < m; ++i)
{
float z = halfDepth - i*dz; // reset for the next cell
for (UINT j = 0; j < n; ++j)
{
float x = -halfWidth + j*dx;
float y = (float)m_heightmap[j + i*m];
m_Mesh.m_Vertices[i*n + j].Position = XMFLOAT3(x, y, z);
// m_Mesh.m_Vertices[i*n + j].Normal = XMFLOAT3(0.0f, 1.0f, 0.0f);
// m_Mesh.m_Vertices[i*n + j].TangentU = XMFLOAT3(1.0f, 0.0f, 0.0f);
// Stretch texture over grid.
m_Mesh.m_Vertices[i*n + j].TextureCords.x = j*du;
m_Mesh.m_Vertices[i*n + j].TextureCords.y = i*dv;
}
}
m_Mesh.m_Indices.resize(faceCount * 3); // 3 indices per face
// Iterate over each quad and compute indices.
UINT k = 0;
for (UINT i = 0; i < m - 1; ++i)
{
for (UINT j = 0; j < n - 1; ++j)
{
m_Mesh.m_Indices[k] = i*n + j;
m_Mesh.m_Indices[k + 1] = i*n + j + 1;
m_Mesh.m_Indices[k + 2] = (i + 1)*n + j;
m_Mesh.m_Indices[k + 3] = (i + 1)*n + j;
m_Mesh.m_Indices[k + 4] = i*n + j + 1;
m_Mesh.m_Indices[k + 5] = (i + 1)*n + j + 1;
k += 6; // next quad
}
}
m_IndicesSize = m_Mesh.m_Indices.size();
// Pack all the vertices into vertex buffer
D3D11_BUFFER_DESC vbd;
vbd.Usage = D3D11_USAGE_IMMUTABLE;
vbd.ByteWidth = sizeof(MeshVertex)* vertexCount;
vbd.BindFlags = D3D11_BIND_VERTEX_BUFFER;
vbd.CPUAccessFlags = 0;
vbd.MiscFlags = 0;
D3D11_SUBRESOURCE_DATA vinitData;
vinitData.pSysMem = &(m_Mesh.m_Vertices[0]);
m_pGraphics->getDevice()->CreateBuffer(&vbd, &vinitData, &mVB);
// Pack the indices of all the meshes into one index buffer.
D3D11_BUFFER_DESC ibd;
ibd.Usage = D3D11_USAGE_DEFAULT;
ibd.ByteWidth = sizeof(UINT)* m_IndicesSize;
ibd.BindFlags = D3D11_BIND_INDEX_BUFFER;
ibd.CPUAccessFlags = 0;
ibd.MiscFlags = 0;
D3D11_SUBRESOURCE_DATA iinitData;
iinitData.pSysMem = &m_Mesh.m_Indices[0];
m_pGraphics->getDevice()->CreateBuffer(&ibd, &iinitData, &mIB);
// Create the constant buffer
ibd.Usage = D3D11_USAGE_DEFAULT;
ibd.ByteWidth = sizeof(ConstantBuffer);
ibd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
ibd.CPUAccessFlags = 0;
hr = m_pGraphics->getDevice()->CreateBuffer(&ibd, nullptr, &m_pConstantBuffer);
if (FAILED(hr))
return hr;
return hr;
}
I would use unsigned char instead of BYTE when defining std::vector<BYTE> in(m*n) since it isn't a part of the C standard library so it is system dependent.
Also use a cast on this line
in.size());// number of bytes to read into buffer
to the actual parameter type of ifstream::read which is std::streamsize.
Like this:
(std::streamsize)in.size());// number of bytes to read into buffer
Since you're working with an 8-bit height map you should perhaps not just copy the value from the RAW file into your height map like this:
for (int i = 0; i < in.size(); i++)
m_heightmap[i] = in[i];
Since each height map value is represented by an 8-bit integer you could try dividing the height map value as well as multiply it with some scale modifier. This would make it more convenient if you want to test your way to some good values. Purely for visual purposes...
for (int i = 0; i < in.size(); i++)
m_heightmap[i] = (float)( in[i] / 255.0f ) * scaleModifier;
For an embedded design I am attempting to implement sobel's edge detection on a board without the use of a buffer. i.e. I am reading and writing directly from the screen. I can however, store about one or two imge width full of data to be referenced later. This is due to limitations set forth by the board. However I have fallen into some issue. All that I recieve is noise regardless if I attempt to do sobel or another edge detection algorithm. The code is below, does anyone have any suggestions
Version 1
void sobelEdgeDetection2() {
int GX[3][3];
int GY[3][3];
int sumX[3];
int sumY[3];
int SUM[3];
int piX = 0;
int piY = 0;
//uint8_t R, G, B = 0;
int I, J = 0;
//UnpackedColour pixVal;
uint16_t *buffer;
// allocate space for even scan lines and odd scan lines
buffer = new uint16_t[_gl->getWidth()];
//buffer for previous line
uint16_t *bufT;
// allocate space for even scan lines and odd scan lines
bufT = new uint16_t[_gl->getWidth()];
// Masks //////////////////////////////////////
//X//
GX[0][0] = -1;
GX[0][1] = 0;
GX[0][2] = 1;
GX[1][0] = -2;
GX[1][1] = 0;
GX[1][2] = 2;
GX[2][0] = -1;
GX[2][1] = 0;
GX[2][2] = 1;
//Y//
GY[0][0] = 1;
GY[0][1] = 2;
GY[0][2] = 1;
GY[1][0] = 0;
GY[1][1] = 0;
GY[1][2] = 0;
GY[2][0] = -1;
GY[2][1] = -2;
GY[2][2] = -1;
for (int Y = 0; Y < _gl->getHeight(); Y++) {
for (int X = 0; X < _gl->getWidth(); X++) {
sumX[0] = sumX[1] = sumX[2] = 0;
sumY[0] = sumY[1] = sumY[2] = 0;
if (Y == 0 || Y == _gl->getHeight() - 1) {
SUM[0] = SUM[1] = SUM[2] = 0;
} else if (X == 0 || X == _gl->getWidth() - 1) {
SUM[0] = SUM[1] = SUM[2] = 0;
} else {
for (I = -1; I <= 1; I++) {
for (J = -1; J <= 1; J++) {
piX = J + X;
piY = I + Y;
pixel16 pix = getPixel(piX, piY);
uint8_t Red = pix.Red;
uint8_t Green = pix.Green;
uint8_t Blue = pix.Blue;
sumX[0] += (Red) * GX[J + 1][I + 1];
sumX[1] += (Green) * GX[J + 1][I + 1];
sumX[2] += (Blue) * GX[J + 1][I + 1];
sumY[0] += (Red) * GY[J + 1][I + 1];
sumY[1] += (Green) * GY[J + 1][I + 1];
sumY[2] += (Blue) * GY[J + 1][I + 1];
}
}
SUM[0] = abs(sumX[0]) + abs(sumY[0]);
SUM[1] = abs(sumX[1]) + abs(sumY[1]);
SUM[2] = abs(sumX[2]) + abs(sumY[2]);
}
if (SUM[0] > 255)
SUM[0] = 255;
if (SUM[0] < 0)
SUM[0] = 0;
if (SUM[1] > 255)
SUM[1] = 255;
if (SUM[1] < 0)
SUM[1] = 0;
if (SUM[2] > 255)
SUM[2] = 255;
if (SUM[2] < 0)
SUM[2] = 0;
int newPixel[3];
newPixel[0] = (255 - ((unsigned char) (SUM[0])));
newPixel[1] = (255 - ((unsigned char) (SUM[1])));
newPixel[2] = (255 - ((unsigned char) (SUM[2])));
pixel16 pix(newPixel[0], newPixel[1], newPixel[2]);
buffer[X] = packColour(pix).packed565;
}
//Need to move cursor back
// draw it
this->paintRow(Point(0, Y), buffer, _gl->getWidth());
}
delete[] buffer;
}
Version2
/**
* https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/image-processing/edge_detection.html
* 1 Iterate over every pixel in the image
* 2 Apply the x gradient kernel
* 3 Apply the y gradient kernel
* 4 Find the length of the gradient using pythagoras' theorem
* 5 Normalise the gradient length to the range 0-255
* 6 Set the pixels to the new values
*/
void sobelEdgeDetection4() {
UnpackedColour colour;
for (int x = 1; x < _gl->getWidth() - 1; x++) {
for (int y = 1; y < _gl->getHeight() - 1; y++) {
// initialise Gx and Gy to 0
int Gx = 0;
int Gy = 0;
unsigned int intensity = 0;
// Left column
pixel16 pixel = this->getPixel(x - 1, y - 1);
intensity = pixel.Red + pixel.Green + pixel.Blue;
Gx += -intensity;
Gy += -intensity;
pixel = this->getPixel(x - 1, y);
intensity = pixel.Red + pixel.Green + pixel.Blue;
Gx += -2 * intensity;
pixel = this->getPixel(x - 1, y + 1);
intensity = pixel.Red + pixel.Green + pixel.Blue;
Gx += -intensity;
Gy += +intensity;
// middle column
pixel = this->getPixel(x, y - 1);
intensity = pixel.Red + pixel.Green + pixel.Blue;
Gy += -2 * intensity;
pixel = this->getPixel(x, y + 1);
intensity = pixel.Red + pixel.Green + pixel.Blue;
Gy += +2 * intensity;
// right column
pixel = this->getPixel(x + 1, y - 1);
intensity = pixel.Red + pixel.Green + pixel.Blue;
Gx += +intensity;
Gy += -intensity;
pixel = this->getPixel(x + 1, y);
intensity = pixel.Red + pixel.Green + pixel.Blue;
Gx += +2 * intensity;
pixel = this->getPixel(x + 1, y + 1);
intensity = pixel.Red + pixel.Green + pixel.Blue;
Gx += +intensity;
Gy += +intensity;
// calculate the gradient length
unsigned int length = (unsigned int) sqrt(
(float) (Gx * Gx) + (float) (Gy * Gy));
// normalise the length to 0 to 255
length = length / 17;
// draw the pixel on the edge image
pixel16 pixel2(length,length,length);
this->setPixel(x, y, pixel2);
}
}
}
Version 3
// sobel map for the x axis
const double _SOBEL_Gx[3][3] = { { -1.0, +0.0, +1.0 }, { -2.0, +0.0, +2.0 },
{ -1.0, +0.0, +1.0 } };
// sobel map for the y axis
const double _SOBEL_Gy[3][3] = { { +1.0, +2.0, +1.0 }, { +0.0, +0.0, +0.0 },
{ -1.0, -2.0, -1.0 } };
double get_sobel_gradient(int width, int height, int x, int y) {
double sobel_gradient_x = 0, sobel_gradient_y = 0;
int mx = 0, my = 0, sx = 0, sy = 0;
for (mx = x; mx < x + 3; mx++) {
sy = 0;
for (my = y; my < y + 3; my++) {
if (mx < width && my < height) {
//int r, g, b, idx;
int idx = (mx + width * my) * 3;
pixel16 pixVal = this->getPixel(idx);
//r = pixVal.Red;
//g = pixVal.Green;
//b = pixVal.Blue;
UnpackedColour col = this->packColour(pixVal);
sobel_gradient_x += col.packed565 * _SOBEL_Gx[sx][sy];
sobel_gradient_y += col.packed565 * _SOBEL_Gy[sx][sy];
}
sy++;
}
sx++;
}
return abs(sobel_gradient_x) + abs(sobel_gradient_y);
}
void sobelEdgeDetection3() {
double threshold = 50000.0;
UnpackedColour colour;
for (int y = 0; y < _gl->getHeight(); y++) {
for (int x = 0; x < _gl->getWidth(); x++) {
if (get_sobel_gradient(_gl->getWidth(), _gl->getHeight(), x, y)
>= threshold) {
colour.packed565 = 0x0000; //set white
} else {
colour.packed565 = 0xFFFF; //set black
}
this->setPixel(x, y, colour);
}
}
}
For Version 1, after you allocate 2 buffers (just use buffer and bufT), create 2 pointers to point to the current and previous rows, like this:
uint16_t *currentRow = buffer;
uint16_t *prevRow = bufT;
Inside the row loop, write to currentRow instead of buffer:
pixel16 pix(newPixel[0], newPixel[1], newPixel[2]);
currentRow[X] = packColour(pix).packed565;
Because the Sobel filter reads from the previous row, you can't overwrite a row until after you have finished calculating the filtered values for the row after it. So at the end of the loop, where you are currently calling paintRow(), draw the previous row (if one exists), and then swap the buffers so that the current becomes the previous, and the previous becomes the new current row (to be overwritten on the next pass through the loop). On the last row the current row is also drawn, because otherwise it won't be since the outer loop is about to terminate.
if(Y > 0) // draw the previous row if this is not the first row:
this->paintRow(Point(0, Y-1), prevRow, _gl->getWidth());
if(Y == _gl->getHeight()-1) // draw the current row if it is the last:
this->paintRow(Point(0, Y), currentRow, _gl->getWidth());
// swap row pointers:
uint16_t *temp = prevRow;
prevRow = currentRow;
currentRow = temp;
The same strategy should work for the other versions.
The TMX map is loading correctly but it seems to be positioning my tiles incorrectly.
I'm using the TMX Parser from here: https://code.google.com/p/tmx-parser/
It loads the TMX fine, with no errors. But it's only positioning the tiles according to the their location in the spritesheet.
Here is the code sample:
void Game::DrawMap()
{
SDL_Rect rect_CurTile;
SDL_Rect pos;
int DrawX;
int DrawY;
for (int i = 0; i < map->GetNumLayers(); ++i)
{
// Get a layer.
currLayer = map->GetLayer(i);
for (int x = 0; x < currLayer->GetWidth(); ++x)
{
for (int y = 0; y < currLayer->GetHeight(); ++y)
{
int CurTile = currLayer->GetTileId(x, y);
int Num_Of_Cols = 8;
int tileset_col = (CurTile % Num_Of_Cols);
tileset_col++;
int tileset_row = (CurTile / Num_Of_Cols);
rect_CurTile.x = (1 + (32 + 1) * tileset_col);
rect_CurTile.y = (1 + (32 + 1) * tileset_row);
rect_CurTile.w = 32;
rect_CurTile.h = 32;
DrawX = (x * 32);
DrawY = (y * 32);
pos.x = DrawX;
pos.y = DrawY;
pos.w = 32;
pos.h = 32;
apply_surfaceClip(DrawX,DrawY, surfaceTileset, destSurface, &rect_CurTile);
sprTexture = SDL_CreateTextureFromSurface(mRenderer,destSurface);
SDL_RenderCopy(mRenderer,sprTexture,&rect_CurTile,&pos);
}
}
}
void apply_surfaceClip( int x, int y, SDL_Surface* source, SDL_Surface* destination, SDL_Rect* clip = NULL )
{
//Holds offsets
SDL_Rect offset;
//Get offsets
offset.x = x;
offset.y = y;
//Blit
SDL_BlitSurface( source, clip, destination, &offset );
}
I fixed the issue the problem was when using two layers it was drawing zeros here is the finished sample
for (int i = 0; i < map->GetNumLayers(); ++i)
{
// Get a layer.
currLayer = map->GetLayer(i);
for (int x = 0; x < currLayer->GetWidth(); ++x)
{
for (int y = 0; y < currLayer->GetHeight(); ++y)
{
int CurTile = currLayer->GetTileId(x, y);
if(CurTile == 0)
{
continue;
}
int Num_Of_Cols = 8;
int tileset_col = (CurTile % Num_Of_Cols);
int tileset_row = (CurTile / Num_Of_Cols);
std::cout << CurTile << std::endl;
rect_CurTile.x = (1 + (32 + 1) * tileset_col);
rect_CurTile.y = (1 + (32 + 1) * tileset_row);
rect_CurTile.w = 32;
rect_CurTile.h = 32;
DrawX = (x * 32);
DrawY = (y * 32);
pos.x = DrawX;
pos.y = DrawY;
pos.w = 32;
pos.h = 32;
apply_surfaceClip(DrawX,DrawY, surfaceTileset, destSurface, &rect_CurTile);
sprTexture = SDL_CreateTextureFromSurface(mRenderer,destSurface);
SDL_RenderCopy(mRenderer,sprTexture,&rect_CurTile,&pos);
}
}
}
I am running for displaying RGB image from raw in C++ without any library. When I input the square image (e.g: 512x512), my program can display the image perfectly, but it does not in not_square size image (e.g: 350x225). I understand that I need padding for this case, then I tried to find the same case but it didn't make sense for me how people can pad their image.
If anyone can show me how to pad, I would be thanks for this. And below is what I have done for RGB from Raw.
void CImage_MyClass::Class_MakeRGB(void)
{
m_BMPheader.biHeight = m_uiHeight;
m_BMPheader.biWidth = m_uiWidth;
m_pcBMP = new UCHAR[m_uiHeight * m_uiWidth * 3];
//RGB Image
{
int ind = 0;
for (UINT y = 0; y < m_uiHeight; y++)
{
for (UINT x = 0; x < m_uiHeight*3; x+=3)
{
m_pcBMP[ind++] = m_pcIBuff[m_uiHeight - y -1][x+2];
m_pcBMP[ind++] = m_pcIBuff[m_uiHeight - y -1][x+1];
m_pcBMP[ind++] = m_pcIBuff[m_uiHeight - y -1][x];
}
}
}
}
You need to pad the number of bytes in each line out to a multiple of 4.
void CImage_MyClass::Class_MakeRGB(void)
{
m_BMPheader.biHeight = m_uiHeight;
m_BMPheader.biWidth = m_uiWidth;
//Pad buffer width to next highest multiple of 4
const int bmStride = m_uiWidth * 3 + 3 & ~3;
m_pcBMP = new UCHAR[m_uiHeight * bmStride];
//Clear buffer so the padding bytes are 0
memset(m_pcBMP, 0, m_uiHeight * bmStride);
//RGB Image
{
for(UINT y = 0; y < m_uiHeight; y++)
{
for(UINT x = 0; x < m_uiWidth * 3; x += 3)
{
const int bmpPos = y * bmWidth + x;
m_pcBMP[bmpPos + 0] = m_pcIBuff[m_uiHeight - y - 1][x + 2];
m_pcBMP[bmpPos + 1] = m_pcIBuff[m_uiHeight - y - 1][x + 1];
m_pcBMP[bmpPos + 2] = m_pcIBuff[m_uiHeight - y - 1][x];
}
}
}
}
I also changed the inner for loop to use m_uiWidth instead of m_uiHeight.
#Retired Ninja, Thanks anyway for your answer... you showed me a simple way for this...
But by the way, I have fixed mine as well with different way.. here is it:
void CImage_MyClass::Class_MakeRGB(void)
{
m_BMPheader.biHeight = m_uiHeight;
m_BMPheader.biWidth = m_uiWidth;
int padding = 0;
int scanline = m_uiWidth * 3;
while ( ( scanline + padding ) % 4 != 0 )
{
padding++;
}
int psw = scanline + padding;
m_pcBMP = new UCHAR[m_uiHeight * m_uiWidth * 3 + m_uiHeight * padding];
//RGB Image
int ind = 0;
for (UINT y = 0; y < m_uiHeight; y++)
{
for (UINT x = 0; x < m_uiHeight*3; x+=3)
{
m_pcBMP[ind++] = m_pcIBuff[m_uiHeight - y -1][x+2];
m_pcBMP[ind++] = m_pcIBuff[m_uiHeight - y -1][x+1];
m_pcBMP[ind++] = m_pcIBuff[m_uiHeight - y -1][x];
}
for(int i = 0; i < padding; i++)
ind++;
}
}
What would be the best algorithm to generate a list of vertices to draw a plane using triangle strips?
I'm looking for a function which receives the plane's width and height and returns a float array containing correctly indexed vertices.
width represents the number of vertices per row.
height represents the number of vertices per column.
float* getVertices( int width, int height ) {
...
}
void render() {
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, getVertices(width,heigth));
glDrawArrays(GL_TRIANGLE_STRIP, 0, width*height);
glDisableClientState(GL_VERTEX_ARRAY);
}
Thanks you all. I've coded this. Is it correct? Or is the generated strip somehow wrong?
int width;
int height;
float* vertices = 0;
int* indices = 0;
int getVerticesCount( int width, int height ) {
return width * height * 3;
}
int getIndicesCount( int width, int height ) {
return (width*height) + (width-1)*(height-2);
}
float* getVertices( int width, int height ) {
if ( vertices ) return vertices;
vertices = new float[ getVerticesCount( width, height ) ];
int i = 0;
for ( int row=0; row<height; row++ ) {
for ( int col=0; col<width; col++ ) {
vertices[i++] = (float) col;
vertices[i++] = 0.0f;
vertices[i++] = (float) row;
}
}
return vertices;
}
int* getIndices( int width, int height ) {
if ( indices ) return indices;
indices = new int[ iSize ];
int i = 0;
for ( int row=0; row<height-1; row++ ) {
if ( (row&1)==0 ) { // even rows
for ( int col=0; col<width; col++ ) {
indices[i++] = col + row * width;
indices[i++] = col + (row+1) * width;
}
} else { // odd rows
for ( int col=width-1; col>0; col-- ) {
indices[i++] = col + (row+1) * width;
indices[i++] = col - 1 + + row * width;
}
}
}
if ( (mHeight&1) && mHeight>2 ) {
mpIndices[i++] = (mHeight-1) * mWidth;
}
return indices;
}
void render() {
glEnableClientState( GL_VERTEX_ARRAY );
glVertexPointer( 3, GL_FLOAT, 0, getVertices(width,height) );
glDrawElements( GL_TRIANGLE_STRIP, getIndicesCount(width,height), GL_UNSIGNED_INT, getIndices(width,height) );
glDisableClientState( GL_VERTEX_ARRAY );
}
With width=4 and height=4 this is what I got:
And here I'm modifying some vertex height:
Here is some code that does this (not tested, but you get the idea at least):
void make_plane(int rows, int columns, float *vertices, int *indices) {
// Set up vertices
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < columns; ++c) {
int index = r*columns + c;
vertices[3*index + 0] = (float) c;
vertices[3*index + 1] = (float) r;
vertices[3*index + 2] = 0.0f;
}
}
// Set up indices
int i = 0;
for (int r = 0; r < rows - 1; ++r) {
indices[i++] = r * columns;
for (int c = 0; c < columns; ++c) {
indices[i++] = r * columns + c;
indices[i++] = (r + 1) * columns + c;
}
indices[i++] = (r + 1) * columns + (columns - 1);
}
}
The first loop sets up the vertex array in a standard rectangular grid. There are R*C vertices.
The second loop sets up the indices. In general, there are two vertices per square in the grid. Each vertex will cause a new triangle to be drawn (with the previous two vertices), so each square is drawn with two triangles.
The first and last vertex at the start and end of each row is duplicated. This means there are two triangles of zero area (degenerate triangles) between each row. This allows us to draw the entire grid in one big triangle strip. This technique is called stitching.
none of the code above gives a correct mesh generation. A very good article about how to make a strip of triangles on a simple plane: http://www.learnopengles.com/android-lesson-eight-an-introduction-to-index-buffer-objects-ibos/
Here is my test code that actually tested and fully working:
int plane_width = 4; // amount of columns
int plane_height = 2; // amount of rows
int total_vertices = (plane_width + 1) * (plane_height + 1);
planeVert = new CIwFVec2[total_vertices];
memset(planeVert, 0, sizeof(CIwFVec2) * total_vertices);
int numIndPerRow = plane_width * 2 + 2;
int numIndDegensReq = (plane_height - 1) * 2;
int total_indices = numIndPerRow * plane_height + numIndDegensReq;
planeInd = new uint16[total_indices];
make_plane(plane_width, plane_height, planeVert, planeInd);
...
void make_plane(int width, int height, CIwFVec2 *vertices, uint16 *indices)
{
width++;
height++;
int size = sizeof(CIwFVec2);
// Set up vertices
for(int y = 0; y < height; y++)
{
int base = y * width;
for(int x = 0; x < width; x++)
{
int index = base + x;
CIwFVec2 *v = vertices + index;
v->x = (float) x;
v->y = (float) y;
Debug::PrintDebug("%d: %f, %f", index, v->x, v->y);
}
}
Debug::PrintDebug("-------------------------");
// Set up indices
int i = 0;
height--;
for(int y = 0; y < height; y++)
{
int base = y * width;
//indices[i++] = (uint16)base;
for(int x = 0; x < width; x++)
{
indices[i++] = (uint16)(base + x);
indices[i++] = (uint16)(base + width + x);
}
// add a degenerate triangle (except in a last row)
if(y < height - 1)
{
indices[i++] = (uint16)((y + 1) * width + (width - 1));
indices[i++] = (uint16)((y + 1) * width);
}
}
for(int ind=0; ind < i; ind++)
Debug::PrintDebug("%d ", indices[ind]);
}
I was doing something similar and using the first two answers I have come up with this (tested, C#, XNA)
// center x,z on origin
float offset = worldSize / 2.0f, scale = worldSize / (float)vSize;
// create local vertices
VertexPositionColor[] vertices = new VertexPositionColor[vSize * vSize];
for (uint z = 0; z < vSize; z++) {
for (uint x = 0; x < vSize; x++) {
uint index = x + (z * vSize);
vertices[index].Position = new Vector3((scale*(float)x) - offset,
heightValue,
(scale*(float)z) - offset);
vertices[index].Color = Color.White;
}
}
// create local indices
var indices = new System.Collections.Generic.List<IndexType>();
for (int z = 0; z < vSize - 1; z++) {
// degenerate index on non-first row
if (z != 0) indices.Add((IndexType)(z * vSize));
// main strip
for (int x = 0; x < vSize; x++) {
indices.Add((IndexType)(z * vSize + x));
indices.Add((IndexType)((z + 1) * vSize + x));
}
// degenerate index on non-last row
if (z != (vSize-2)) indices.Add((IndexType)((z + 1) * vSize + (vSize - 1)));
}
This is easily convertable to c++, just make indices an std::vector.
The notable features for my solution are that:
a) It doesn't need to change the winding order per substrip - adding two points creates two degenerate triangles, so the order is correct for the next substrip.
b) You should conditionally add the first and last dg triangle vertices.