Find the closest point out of a vector of points - c++

I have vector of pointers to a very simple Point class:
class Point{
public:
float x;
float y;
float z;
};
How do I find the closest object to a referent point using STL?
Do I need first sort the vector first or is there a more efficient way?

Sorting takes O(n*log(N)), so it's not very efficient. You can do it in O(n) by just iterating through the elements and memorizing the best match.
Using for_each from <algorithm>, you can define a function that keeps track of the closest elements and completes in O(n).
Or, you can probably even use min_element, also from <algorithm>.

The basic question here is how often you'll be doing queries against a single set of points.
If you're going to find one nearest point in the set one time, then #Lucian is right: you might as well leave the points un-sorted, and do a linear search to find the right point.
If you'll do a relatively large number of queries against the same set of points, it's worthwhile to organize the point data to improve query speed. #izomorphius has already mentioned a k-d tree, and that's definitely a good suggestion. Another possibility (admittedly, quite similar) is an oct-tree. Between the two, I find an oct-tree quite a bit easier to understand. In theory, a k-d tree should be slightly more efficient (on average), but I've never seen much difference -- though perhaps with different data the difference would become significant.
Note, however, that building something like a k-d tree or oct-tree isn't terribly slow, so you don't need to do an awful lot of queries against a set of points to justify building one. One query clearly doesn't justify it, and two probably won't either -- but contrary to what Luchian implies, O(N log N) (just for example) isn't really very slow. Roughly speaking, log(N) is the number of digits in the number N, so O(N log N) isn't really a whole lot slower than O(N). That, in turn, means you don't need a particularly large number of queries to justify organizing the data to speed up each one.

You can not go faster then a linear comparison if you only know that there are points in a vector. However if you have additional knowledge a lot can be improved. For instance if you know all the points are ordered and lie on the same line there is a logarithmic solution.
Also there are better data structures to solve your problem for instance a k-d tree. It is not part of the STL - you will have to implement it yourself but it is THE data structure to use to solve the problem you have.

you can try to use Quadtree
http://en.wikipedia.org/wiki/Quadtree
or something similar.

Related

How can I remove too close points in a list

I have a list of points with x,y coordinates:
List_coord=[(462, 435), (491, 953), (617, 285),(657, 378)]
This list lenght (4 element here) can be very large from few hundred up to 35000 elements.
I want to remove too close points by threshold in this list.
note:Points are never at the exact same position.
My current code for that:
while iteration<5:
for pt in List_coord:
for PT in List_coord:
if (abs(pt[0]-PT[0])+abs(pt[1]-PT[1]))!=0 and abs(pt[0]-PT[0])<threshold and abs(pt[1]-PT[1])<threshold:
List_coord.remove(PT)
iteration=iteration+1
Explication of my terrible code :) :
I check if the very distance is 0 then it means that i am comparing
the same point
then i check the distance in x and in y..
Iteration:
I need few iterations to avoid missing one remove because the list change inside the loop itself...
This code is working but it is a very low process!
I am sure there is another method much easier but i wasn't able to find even if some allready answered questions are close to mine..
note:I would like to avoid using extra library for that code if it is possible
Python will be a bit slow at this ;-)
The solution you will probably want is called quad-trees, but I'll mention a simpler approach first, in case it's preferable.
The usual approach is to group the points so that you can easily reject points that are clearly far away from each other.
One approach might be to sort the list twice, once by x once by y. You can prove that if two points are too-close, they must be close in one dimension or the other. Thus your inner loop can break out early. If it sees a point that is too far away from the outer point in the sorted direction, it can know for a fact that all future points in that list are also too far away. Thus it doesn't have to look any further. Do this in X and Y and you're set!
This approach is going to tend to be dominated by the O(n log n) sort times. However, if all of your points share a single x value, you'll end up doing the same slow O(n^2) iteration that you're doing right now because you never terminate the inner loop early.
The more robust solution is to use quadtrees. Quadtrees are designed to solve the kind of problem you are looking at. The idea is to build a tree such that you can rapidly exclude large numbers of points. I'd recommend this.
If your number of points gets too large, I'd recommend getting a clustering library. Efficient clustering is a very difficult task, and often done in C++ or another fast language.

Eigen: Efficient equivalent to MATLAB's changem()?

I am needing to perform an operation on an Eigen VectorXi, which is equivalent to MATLAB's changem():
http://www.mathworks.com/help/map/ref/changem.html
At the moment, the way I am doing this is looping over the values in the array and performing the remapping with a switch/case block. I am guessing this is not particularly efficient.
Is there a fast way to do this with Eigen? Speed is critical for my application.
Switch / case will be particularly slow and inflexible.
changem takes a matrix and two vectors of values, new and old. If an entry is found in the old list, it is replaced by the corresponding entry in the new list. So it's inherently going to be rather slow, you need to pass over the entire matrix, search the old list, and if, and entry is found, replace with the new list.
How can you speed it up? First, don't hardcode as a switch / case. A modern compiler will possibly optimise to a loop rather than lots of jumps, but I wouldn't guarantee it. And the approach is inflexible.
Secondly, you can sort the "old" vector and use a binary search rather than a linear one. That will only help significantly if the old vector is long.
Thirdly, you can take advantage of what you know about the matrix. Are the old values constrained to lie in certain regions? Is there one value which is overwhelmingly likely and can be tested for first? Can you quickly exclude some values as not allowed in the old list (Too big, too small, not integral).
Are the old values integers and can you use indexing? Or generalise that to hashing. That would be even faster than a binary search, though with more overhead for hashing.
Can you solve the problem another way and keep an index of matrix xy co-ordinates by value?
There are lots of approaches. But simply implement the Matlab function naively in C as the first step. It might well be fast enough.

3D-Grid of bins: nested std::vector vs std::unordered_map

pros, I need some performance-opinions with the following:
1st Question:
I want to store objects in a 3D-Grid-Structure, overall it will be ~33% filled, i.e. 2 out of 3 gridpoints will be empty.
Short image to illustrate:
Maybe Option A)
vector<vector<vector<deque<Obj>> grid;// (SizeX, SizeY, SizeZ);
grid[x][y][z].push_back(someObj);
This way I'd have a lot of empty deques, but accessing one of them would be fast, wouldn't it?
The Other Option B) would be
std::unordered_map<Pos3D, deque<Obj>, Pos3DHash, Pos3DEqual> Pos3DMap;
where I add&delete deques when data is added/deleted. Probably less memory used, but maybe less fast? What do you think?
2nd Question (follow up)
What if I had multiple containers at each position? Say 3 buckets for 3 different entities, say object types ObjA, ObjB, ObjC per grid point, then my data essentially becomes 4D?
Another illustration:
Using Option 1B I could just extend Pos3D to include the bucket number to account for even more sparse data.
Possible queries I want to optimize for:
Give me all Objects out of ObjA-buckets from the entire structure
Give me all Objects out of ObjB-buckets for a set of
grid-positions
Which is the nearest non-empty ObjC-bucket to
position x,y,z?
PS:
I had also thought about a tree based data-structure before, reading about nearest neighbour approaches. Since my data is so regular I had thought I'd save all the tree-building dividing of the cells into smaller pieces and just make a static 3D-grid of the final leafs. Thats how I came to ask about the best way to store this grid here.
Question associated with this, if I have a map<int, Obj> is there a fast way to ask for "all objects with keys between 780 and 790"? Or is the fastest way the building of the above mentioned tree?
EDIT
I ended up going with a 3D boost::multi_array that has fortran-ordering. It's a little bit like the chunks games like minecraft use. Which is a little like using a kd-tree with fixed leaf-size and fixed amount of leaves? Works pretty fast now so I'm happy with this approach.
Answer to 1st question
As #Joachim pointed out, this depends on whether you prefer fast access or small data. Roughly, this corresponds to your options A and B.
A) If you want fast access, go with a multidimensional std::vector or an array if you will. std::vector brings easier maintenance at a minimal overhead, so I'd prefer that. In terms of space it consumes O(N^3) space, where N is the number of grid points along one dimension. In order to get the best performance when iterating over the data, remember to resolve the indices in the reverse order as you defined it: innermost first, outermost last.
B) If you instead wish to keep things as small as possible, use a hash map, and use one which is optimized for space. That would result in space O(N), with N being the number of elements. Here is a benchmark comparing several hash maps. I made good experiences with google::sparse_hash_map, which has the smallest constant overhead I have seen so far. Plus, it is easy to add it to your build system.
If you need a mixture of speed and small data or don't know the size of each dimension in advance, use a hash map as well.
Answer to 2nd question
I'd say you data is 4D if you have a variable number of elements a long the 4th dimension, or a fixed large number of elements. With option 1B) you'd indeed add the bucket index, for 1A) you'd add another vector.
Which is the nearest non-empty ObjC-bucket to position x,y,z?
This operation is commonly called nearest neighbor search. You want a KDTree for that. There is libkdtree++, if you prefer small libraries. Otherwise, FLANN might be an option. It is a part of the Point Cloud Library which accomplishes a lot of tasks on multidimensional data and could be worth a look as well.

Perfect hash function for a set of integers with no updates

In one of the applications I work on, it is necessary to have a function like this:
bool IsInList(int iTest)
{
//Return if iTest appears in a set of numbers.
}
The number list is known at app load up (But are not always the same between two instances of the same application) and will not change (or added to) throughout the whole of the program. The integers themselves maybe large and have a large range so it is not efficient to have a vector<bool>. Performance is a issue as the function sits in a hot spot. I have heard about Perfect hashing but could not find out any good advice. Any pointers would be helpful. Thanks.
p.s. I'd ideally like if the solution isn't a third party library because I can't use them here. Something simple enough to be understood and manually implemented would be great if it were possible.
I would suggest using Bloom Filters in conjunction with a simple std::map.
Unfortunately the bloom filter is not part of the standard library, so you'll have to implement it yourself. However it turns out to be quite a simple structure!
A Bloom Filter is a data structure that is specialized in the question: Is this element part of the set, but does so with an incredibly tight memory requirement, and quite fast too.
The slight catch is that the answer is... special: Is this element part of the set ?
No
Maybe (with a given probability depending on the properties of the Bloom Filter)
This looks strange until you look at the implementation, and it may require some tuning (there are several properties) to lower the probability but...
What is really interesting for you, is that for all the cases it answers No, you have the guarantee that it isn't part of the set.
As such a Bloom Filter is ideal as a doorman for a Binary Tree or a Hash Map. Carefully tuned it will only let very few false positive pass. For example, gcc uses one.
What comes to my mind is gperf. However, it is based in strings and not in numbers. However, part of the calculation can be tweaked to use numbers as input for the hash generator.
integers, strings, doesn't matter
http://videolectures.net/mit6046jf05_leiserson_lec08/
After the intro, at 49:38, you'll learn how to do this. The Dot Product hash function is demonstrated since it has an elegant proof. Most hash functions are like voodoo black magic. Don't waste time here, find something that is FAST for your datatype and that offers some adjustable SEED for hashing. A good combo there is better than the alternative of growing the hash table.
#54:30 The Prof. draws picture of a standard way of doing perfect hash. The perfect minimal hash is beyond this lecture. (good luck!)
It really all depends on what you mod by.
Keep in mind, the analysis he shows can be further optimized by knowing the hardware you are running on.
The std::map you get very good performance in 99.9% scenarios. If your hot spot has the same iTest(s) multiple times, combine the map result with a temporary hash cache.
Int is one of the datatypes where it is possible to just do:
bool hash[UINT_MAX]; // stackoverflow ;)
And fill it up. If you don't care about negative numbers, then it's twice as easy.
A perfect hash function maps a set of inputs onto the integers with no collisions. Given that your input is a set of integers, the values themselves are a perfect hash function. That really has nothing to do with the problem at hand.
The most obvious and easy to implement solution for testing existence would be a sorted list or balanced binary tree. Then you could decide existence in log(N) time. I doubt it'll get much better than that.
For this problem I would use a binary search, assuming it's possible to keep the list of numbers sorted.
Wikipedia has example implementations that should be simple enough to translate to C++.
It's not necessary or practical to aim for mapping N distinct randomly dispersed integers to N contiguous buckets - i.e. a perfect minimal hash - the important thing is to identify an acceptable ratio. To do this at run-time, you can start by configuring a worst-acceptible ratio (say 1 to 20) and a no-point-being-better-than-this-ratio (say 1 to 4), then randomly vary (e.g. changing prime numbers used) a fast-to-calculate hash algorithm to see how easily you can meet increasingly difficult ratios. For worst-acceptible you don't time out, or you fall back on something slower but reliable (container or displacement lists to resolve collisions). Then, allow a second or ten (configurable) for each X% better until you can't succeed at that ratio or reach the no-pint-being-better ratio....
Just so everyone's clear, this works for inputs only known at run time with no useful patterns known beforehand, which is why different hash functions have to be trialed or actively derived at run time. It is not acceptible to simple say "integer inputs form a hash", because there are collisions when %-ed into any sane array size. But, you don't need to aim for a perfectly packed array either. Remember too that you can have a sparse array of pointers to a packed array, so there's little memory wasted for large objects.
Original Question
After working with it for a while, I came up with a number of hash functions that seemed to work reasonably well on strings, resulting in a unique - perfect hashing.
Let's say the values ranged from L to H in the array. This yields a Range R = H - L + 1.
Generally it was pretty big.
I then applied the modulus operator from H down to L + 1, looking for a mapping that keeps them unique, but has a smaller range.
In you case you are using integers. Technically, they are already hashed, but the range is large.
It may be that you can get what you want, simply by applying the modulus operator.
It may be that you need to put a hash function in front of it first.
It also may be that you can't find a perfect hash for it, in which case your container class should have a fall back position.... binary search, or map or something like that, so that
you can guarantee that the container will work in all cases.
A trie or perhaps a van Emde Boas tree might be a better bet for creating a space efficient set of integers with lookup time bring constant against the number of objects in the data structure, assuming that even std::bitset would be too large.

Fast container for setting bits in a sparse domain, and iterating (C++)?

I need a fast container with only two operations. Inserting keys on from a very sparse domain (all 32bit integers, and approx. 100 are set at a given time), and iterating over the inserted keys. It should deal with a lot of insertions which hit the same entries (like, 500k, but only 100 different ones).
Currently, I'm using a std::set (only insert and the iterating interface), which is decent, but still not fast enough. std::unordered_set was twice as slow, same for the Google Hash Maps. I wonder what data structure is optimized for this case?
Depending on the distribution of the input, you might be able to get some improvement without changing the structure.
If you tend to get a lot of runs of a single value, then you can probably speed up insertions by keeping a record of the last value you inserted, and don't bother doing the insertion if it matches. It costs an extra comparison per input, but saves a lookup for each element in a run beyond the first. So it could improve things no matter what data structure you're using, depending on the frequency of repeats and the relative cost of comparison vs insertion.
If you don't get runs, but you tend to find that values aren't evenly distributed, then a splay tree makes accessing the most commonly-used elements cheaper. It works by creating a deliberately-unbalanced tree with the frequent elements near the top, like a Huffman code.
I'm not sure I understand "a lot of insertions which hit the same entries". Do you mean that there are only 100 values which are ever members, but 500k mostly-duplicate operations which insert one of those 100 values?
If so, then I'd guess that the fastest container would be to generate a collision-free hash over those 100 values, then maintain an array (or vector) of flags (int or bit, according to what works out fastest on your architecture).
I leave generating the hash as an exercise for the reader, since it's something that I'm aware exists as a technique, but I've never looked into it myself. The point is to get a fast hash over as small a range as possible, such that for each n, m in your 100 values, hash(n) != hash(m).
So insertion looks like array[hash(value)] = 1;, deletion looks like array[hash(value)] = 0; (although you don't need that), and to enumerate you run over the array, and for each set value at index n, inverse_hash(n) is in your collection. For a small range you can easily maintain a lookup table to perform the inverse hash, or instead of scanning the whole array looking for set flags, you can run over the 100 potentially-in values checking each in turn.
Sorry if I've misunderstood the situation and this is useless to you. And to be honest, it's not very much faster than a regular hashtable, since realistically for 100 values you can easily size the table such that there will be few or no collisions, without using so much memory as to blow your caches.
For an in-use set expected to be this small, a non-bucketed hash table might be OK. If you can live with an occasional expansion operation, grow it in powers of 2 if it gets more than 70% full. Cuckoo hashing has been discussed on Stackoverflow before and might also be a good approach for a set this small. If you really need to optimise for speed, you can implement the hashing function and lookup in assembler - on linear data structures this will be very simple so the coding and maintenance effort for an assembler implementation shouldn't be unduly hard to maintain.
You might want to consider implementing a HashTree using a base 10 hash function at each level instead of a binary hash function. You could either make it non-bucketed, in which case your performance would be deterministic (log10) or adjust your bucket size based on your expected distribution so that you only have a couple of keys/bucket.
A randomized data structure might be perfect for your job. Take a look at the skip list – though I don't know any decend C++ implementation of it. I intended to submit one to Boost but never got around to do it.
Maybe a set with a b-tree (instead of binary tree) as internal data structure. I found this article on codeproject which implements this.
Note that while inserting into a hash table is fast, iterating over it isn't particularly fast, since you need to iterate over the entire array.
Which operation is slow for you? Do you do more insertions or more iteration?
How much memory do you have? 32-bits take "only" 4GB/8 bytes, which comes to 512MB, not much for a high-end server. That would make your insertions O(1). But that could make the iteration slow. Although skipping all words with only zeroes would optimize away most iterations. If your 100 numbers are in a relatively small range, you can optimize even further by keeping the minimum and maximum around.
I know this is just brute force, but sometimes brute force is good enough.
Since no one has explicitly mentioned it, have you thought about memory locality? A really great data structure with an algorithm for insertion that causes a page fault will do you no good. In fact a data structure with an insert that merely causes a cache miss would likely be really bad for perf.
Have you made sure a naive unordered set of elements packed in a fixed array with a simple swap to front when an insert collisides is too slow? Its a simple experiment that might show you have memory locality issues rather than algorithmic issues.