Unwanted C Preprocessor Macro Expansion - c++

I'm using a unit test framework that relies on a REQUIRE macro for performing assertions.
Simplified, the macro works like this:
#define REQUIRE( expr ) INTERNAL_REQUIRE( expr, "REQUIRE" )
Which is defined similar to this:
#define INTERNAL_REQUIRE( expr, macroName ) \
PerformAssertion( macroName, #expr, expr );
PerformAssertion's first two parameters are of the type: const char*. The reason for the second parameter (#expr) is so the exact expression that was asserted can be logged. This is where the issue lies. The preprocessor expands the expression before it is passed as a const char *, so it's not the same expression that was originally asserted.
For instance:
REQUIRE( foo != NULL );
Would result in this call:
PerformAssertion( "REQUIRE", "foo != 0", foo != 0 );
As you can see, the expression is partially expanded, e.g. the expression foo != NULL appears in the log as foo != 0. The NULL (which is a macro defined to be 0) was expanded by the C preprocessor before building the assertions message text. Is there a way I can ignore or bypass the expansion for the message text?
EDIT: Here's the solution, for anyone curious:
#define REQUIRE( expr ) INTERNAL_REQUIRE( expr, #expr, "REQUIRE" )
#define INTERNAL_REQUIRE( expr, exprString, macroName ) \
PerformAssertion( macroName, exprString, expr );

Try making the stringifying before the call to the internal require. Your problem is that it is passed to internal require in the second expansion which expands NULL. If you make the stringifying happen before that, e.g. In the require macro, it will not expand the NULL.

Here is what's going on: since you macro where the "stringization" operator # is applied is second-level, the sequence of operations works as follows:
Preprocessor identifies the arguments of REQUIRE(NULL) and performs argument substitution as per C 6.10.3.1. At this point, the replacement looks like INTERNAL_REQUIRE( 0, "REQUIRE" ), because NULL is expanded as 0.
Preprocessor continues expanding the macro chain with INTERNAL_REQUIRE; at this point, the fact that the macro has been called with NULL is lost: as far as the preprocessor is concerned, the expression passed to INTERNAL_REQUIRE is 0.
A key to solving this problem is in this paragraph from the standard:
A parameter in the replacement list, unless preceded by a # or ## preprocessing token or followed by a ## preprocessing token (see below), is replaced by the corresponding argument after all macros contained therein have been expanded.
This means that if you would like to capture the exact expression, you need to do it in the very first level of the macro expansion.

Related

c++ macro recognizing tokens as arguments

So, it's been a while since I have written anything in C++ and now I'm working on a project using C++11 and macros.
I know that by using the stringify operator I can do this:
#define TEXT(a) #a //expands to "a"
How am I supposed to use the preprocessor for recognizing the tokens like + and * to do this:
#define TEXT(a)+ ??? //want to expand to "a+"
#define TEXT(a)* ??? //want to expand to "a*"
when the input has to be in that syntax?
I have tried doing that:
#define + "+"
but of course it doesn't work. How can I make the preprocessor recognize those tokens?
NOTE:
This is actually part of a project for a small language that defines and uses regular expressions, where the resulting string of the macros is to be used in a regex. The syntax is given and we have to use it as it is without making any changes to it.
eg
TEXT(a)+ is to be used to make the regular expression: std::regex("a+")
without changing the fact that TEXT(a) expands to "a"
First,
#define TEXT(a) #a
doesn't “convert to "a"”. a is just a name for a parameter. The macro expands to a string that contains whatever TEXT was called with. So TEXT(42 + rand()) will expand to "42 + rand()". Note that, if you pass a macro as parameter, the macro will not be expanded. TEXT(EXIT_SUCCESS) will expand to "EXIT_SUCCESS", not "0". If you want full expansion, add an additional layer of indirection and pass the argument to TEXT to another macro TEXT_R that does the stringification.
#define TEXT_R(STUFF) # STUFF
#define TEXT(STUFF) TEXT_R(STUFF)
Second, I'm not quite sure what you mean with TEXT(a)+ and TEXT(a)*. Do you want, say, TEXT(foo) to expand to "foo+"? I think the simplest solution in this case would be to use the implicit string literal concatenation.
#define TEXT_PLUS(STUFF) # STUFF "+"
#define TEXT_STAR(STUFF) # STUFF "*"
Or, if you want full expansion.
#define TEXT_R(STUFF) # STUFF
#define TEXT_PLUS(STUFF) TEXT_R(STUFF+)
#define TEXT_STAR(STUFF) TEXT_R(STUFF*)
Your assignment is impossible to solve in C++. You either misunderstood something or there’s an error in the project specification. At any rate, we’ve got a problem here:
TEXT(a)+ is to be used to make the regular expression: std::regex("a+") without changing the fact that TEXT(a) expands to "a" [my emphasis]
TEXT(a) expands to "a" — meaning, we can just replace TEXT(a) everywhere in your example; after all, that’s exactly what the preprocessor does. In other words, you want the compiler to transform this C++ code
"a"+
into
std::regex("a+")
And that’s simply impossible, because the C++ preprocess does not allow expanding the + token.
The best we can do in C++ is use operator overloading to generate the desired code. However, there are two obstacles:
You can only overload operators on custom types, and "a" isn’t a custom type; its type is char const[2] (why 2? Null termination!).
Postfix-+ is not a valid C++ operator and cannot be overloaded.
If your assignment had just been a little different, it would work. In fact, if your assignment had said that TEXT(a)++ should produce the desired result, and that you are allowed to change the definition of TEXT to output something other than "a", then we’d be in business:
#include <string>
#include <regex>
#define TEXT(a) my_regex_token(#a)
struct my_regex_token {
std::string value;
my_regex_token(std::string value) : value{value} {}
// Implicit conversion to `std::regex` — to be handled with care.
operator std::regex() const {
return std::regex{value};
}
// Operators
my_regex_token operator ++(int) const {
return my_regex_token{value + "+"};
}
// more operators …
};
int main() {
std::regex x = TEXT(a)++;
}
You don't want to jab characters onto the end of macros.
Maybe you simply want something like this:
#define TEXT(a, b) #a #b
that way TEXT(a, +) gets expanded to "a" "+" and TEXT(a, *) to "a" "*"
If you need that exact syntax, then use a helper macro, like:
#define TEXT(a) #a
#define ADDTEXT(x, y) TEXT(x ## y)
that way, ADDTEXT(a, +) gets expanded to "a+" and ADDTEXT(a, *) gets expanded to "a*"
You can do it this way too:
#define TEXT(a) "+" // "a" "+" -> "a+"
#define TEXT(a) "*" // "a" "*" -> "a*"
Two string literals in C/C++ will be joined into single literal by specification.

How to remove the enclosing parentheses with macro?

No comma is allowed in a macro argument because it will be treated as more than one arguments and the preprocessing will be wrong. However, we can parenthesize the argument to let preprocessor treat it as one argument. Is there a macro or other techniques which can remove the enclosing parentheses?
For example, if I define a macro like
#define MY_MACRO(a, b) ...
and use it like
MY_MACRO( A<int, double>, text );
will be wrong. use it like
MY_MACRO( (A<int, double>), text)
with a macro or technique to remove the parentheses will be fine. Boost provides BOOST_IDENTITY_TYPE macro for only types but not general cases
#define ESC(...) __VA_ARGS__
then
MY_MACRO( ESC(A<int, double>), text );
might do what you want.
This macro trick is similar to Yakk's solution but removes the need to explicitly pass in another macro as a parameter.
#include <stdio.h>
#define _Args(...) __VA_ARGS__
#define STRIP_PARENS(X) X
#define PASS_PARAMETERS(X) STRIP_PARENS( _Args X )
int main()
{
printf("without macro %d %d %d %d %d %d\n", (5,6,7,8,9,10) ); // This actually compiles, but it's WRONG
printf("with macro %d %d %d %d %d %d\n", PASS_PARAMETERS((5,6,7,8,9,10)) ); //Parameter "pack" enclosed in parenthesis
return 0;
}
Of course you could get creative by making the PASS_PARAMETERS macro into a variadic macro and pass in multiple parameter packs.
Only maybe removing parentheses:
If you need to strip one layer of parenthesis, but only if there are parenthesis to strip, this longer set of macros does the trick:
#define DEPAREN(X) ESC(ISH X)
#define ISH(...) ISH __VA_ARGS__
#define ESC(...) ESC_(__VA_ARGS__)
#define ESC_(...) VAN ## __VA_ARGS__
#define VANISH
This may be needed if you want to use MY_MACRO for different sets of datatypes:
#define MY_MACRO(a, b) DEPAREN(a), b
MY_MACRO( ({x, y, z}), text )
//> {x,y,z}, text
MY_MACRO( singlearg, text )
//> singlearg, text
How it works:
We start with DEPAREN(X) ESC(ISH X). If X has parenthesis, we get ESC(ISH(X)). If X does not have parenthesis, we get ESC(ISH X).
We then expand ESC(...) into ESC_(__VA_ARGS__), which expands the interior.
ISH(...) turns into ISH __VA_ARGS__, which strips one layer of parentheses from X. Now, regardless of whether or not X originally had parenthesis, we have ESC_(ISH X).
We now need to get rid of ISH. However, because we already defined ISH(...), we can't also define it as #define ISH . That's why we concatenate it with another token (VAN) to get VANISH X.
VANISH is defined as , so we are finally left with X, sans parentheses.
A simple hack could be to use variadic macros:
#define MY_MACRO(a, b...) ...
Then you can use it like:
MY_MACRO(text, A<int, double>)
The comma in the second argument is still interpreted as the argument separator (meaning the macro is actually called with three arguments), but it's expanded inside the macro, making the behavior the same. The variadic argument has to be last in the macro, however.

For identical static_assert messages, should I rely on MACROS?

static_assert has the following syntax, which states that a string literal is required.
static_assert ( bool_constexpr , string literal );
Since an instance of a string CAN'T be observed at compile time, the following code is invalid:
const std::string ERROR_MESSAGE{"I assert that you CAN NOT do this."};
static_assert(/* boolean expression */ ,ERROR_MESSAGE);
I have static asserts all over my code, which say the same error message.
Since a string literal is required, would it be best to replace all the repetitive string literals with a MACRO, or is there a better way?
// Is this method ok?
// Should I hand type them all instead?
// Is there a better way?
#define _ERROR_MESSAGE_ "danger"
static_assert(/* boolean expression 1*/ ,_ERROR_MESSAGE_);
//... code ...
static_assert(/* boolean expression 2*/ ,_ERROR_MESSAGE_);
//... code ...
static_assert(/* boolean expression 3*/ ,_ERROR_MESSAGE_);
In C++ you should not define a constant as a macro. Define it as a constant. That's what constants are for.
Also, names beginning with underscore followed by uppercase letter, such as your _ERROR_MESSAGE_, are reserved to the implementation.
That said, yes, it's good idea to use a macro for static asserts, both to ensure a correct string argument and to support compilers that possibly don't have static_assert, but this macro is not C style constant: it takes the expression as argument, and provides that expression as the string message.
Here is my current <static_assert.h>:
#pragma once
// Copyright (c) 2013 Alf P. Steinbach
// The "..." arguments permit template instantiations with "<" and ">".
#define CPPX_STATIC_ASSERT__IMPL( message_literal, ... ) \
static_assert( __VA_ARGS__, "CPPX_STATIC_ASSERT: " message_literal )
#define CPPX_STATIC_ASSERT( ... ) \
CPPX_STATIC_ASSERT__IMPL( #__VA_ARGS__, __VA_ARGS__ )
// For arguments like std::integral_constant
#define CPPX_STATIC_ASSERT_YES( ... ) \
CPPX_STATIC_ASSERT__IMPL( #__VA_ARGS__, __VA_ARGS__::value )
As you can see there are some subtleties involved even when the compiler does have static_assert.

Macro metaprogramming horror

I am trying to do something like:
custommacro x;
which would expand into:
declareSomething; int x; declareOtherthing;
Is this even possible?
I already tricked it once with operator= to behave like that, but it can't be done with declarations.
You can elide the parentheses as long as you are willing to accept two additions:
the whole code needs to be wrapped in a block macro
there needs to be something following the echo directive
e.g. thusly:
#define LPAREN (
#define echo ECHO_MACRO LPAREN
#define done )
#define ECHO_MACRO(X) std::cout << (X) << "\n"
#define DSL(X) X
...
DSL(
echo "Look ma, no brains!" done;
)
...
Reasons for this:
There is no way to make a function-like macro expand without parentheses. This is just a basic requirement of the macro language; if you want something else investigate a different macro processor
Therefore, we need to insert the parentheses; in turn we need to have something after the directive, like a done macro, that will expand to a form containinf the necessary close paren
Unfortunately, because the echo ... done form didn't look like a macro invocation to the preprocessor, it wasn't marked for expansion when the preprocessor entered it, and whether we put parens in or not is irrelevant. Just using echo ... done will therefore dump an ECHO_MACRO call in the text
Text is re-scanned, marked for expansion, and expanded again when it is the argument to a function-like macro, so wrapping the entire block with a block macro (here it's DSL) will cause the call to ECHO_MACRO to be expanded on this rescan pass (DSL doesn't do anything with the result: it exists just to force the rescan)
We need to hide the ( in the expansion of echo behind the simple macro LPAREN, because otherwise the unmatched parenthesis in the macro body will confuse the preprocessor
If you wanted to create an entire domain-specific language for such commands, you could also reduce the number of done commands by making the core commands even more unwieldy:
#define LPAREN (
#define begin NO_OP LPAREN 0
#define done );
#define echo ); ECHO_MACRO LPAREN
#define write ); WRITE_MACRO LPAREN
#define add ); ADD_MACRO LPAREN
#define sub ); SUB_MACRO LPAREN
#define NO_OP(X)
#define ECHO_MACRO(X) std::cout << (X) << "\n"
#define WRITE_MACRO(X) std::cout << (X)
#define ADD_MACRO(D, L, R) (D) = (L) + (R)
#define SUB_MACRO(D, L, R) (D) = (L) - (R)
#define DSL(X) DSL_2 X
#define DSL_2(X) X
int main(void) {
int a, b;
DSL((
begin
add a, 42, 47
sub b, 64, 50
write "a is: "
echo a
write "b is: "
echo b
done
))
return 0;
}
In this form, each command is pre-designed to close the preceding command, so that only the last one needs a done; you need a begin line so that there's an open command for the first real operation to close, otherwise the parens will mismatch.
Messing about like this is much easier in C than in C++, as C's preprocessor is more powerful (it supports __VA_ARGS__ which are pretty much essential for complicated macro metaprogramming).
Oh yeah, and one other thing -
...please never do this in real code.
I understand what you're trying to do and it simply can't be done. A macro is only text replacement, it has no knowledge of what comes after it, so trying to do custommacro x will expand to whatever custommacro is, a space, and then x, which just won't work semantically.
Also, about your echo hack: this is actually very simple with the use of operators in C++:
#include <iostream>
#define echo std::cout <<
int main()
{
echo "Hello World!";
}
But you really shouldn't be writing code like this (that is, using macros and a psuedo-echo hack). You should write code that conforms to the syntax of the language and the semantics of what you're trying to do. If you want to write to standard output use std::cout. Moreover, if you want to use echo, make a function called echo that invokes std::cout internally, but don't hack the features of the language to create your own.
You could use for-loop and GnuC statement expression extension.
#define MY_MACRO\
FOR_MACRO(_uniq##__COUNTER__##name,{/*declareSomething*/ },{ /* declareOtherthing */ }) int
#define FOR_MACRO(NAME,FST_BLOCK,SND_BLOCK)\
for(int NAME = ({FST_BLOCK ;0;}); NAME<1 ; NAME++,(SND_BLOCK))
It's "practically hygienic", though this means that whatever you do inside those code blocks wont escape the for-loop scope.

Primitive #define understanding in C

I have a macro defined in C something like this:
#define SOME_FIELD(_A_,_B_,_C_) \
MyObj[ ## _A_ ## ].somePTR = \
(DWORD_PTR) (buff_ ## _C_ ## _C_ ## _ ## _B_ ## );
What i can understand that for index A we are getting some value for "somePTR". My question is, What is ## <name> ## notation for and with this how value of somePTR is calculated??
I am new to such a macro so a descriptive explanation would be very helpful.
That is called token concatenation. It allows you to glue arguments together.
For your example, SOME_FIELD(Param1,Param2,Param3); expands like this:
MyObj[Param1].somePTR = (DWORD_PTR) (buff_Param3Param3_Param2);
It's easy enough to try this out yourself by using your compiler's pre-processor. You don't generally need to go to the trouble of writing a fully-fledged C program—the pre-processor can generally be invoked by itself.
That's preprocessor token pasting
http://msdn.microsoft.com/en-us/library/09dwwt6y(v=vs.80).aspx
It will copy the actual parameter token as a string literal, so read it like
// preprocessor_token_pasting.cpp
#include <stdio.h>
#define paster( n ) printf_s( "token" #n " = %d", token##n )
int token9 = 9;
int main()
{
paster(9);
}
the ## is concatenation primitive, it's used to create nwe symbols.
It's useful to create names in macro:
#define GENERIC_GETTER(f,g) (g->member_ ## f )
GENERIC_GETTER(a,b) will create (b->member_a) (new symbol created). If you don't use sharp-sharp, it would create (b->member_ a) (not glued together)
Normally, the ## operator concatenates two tokens: it requires a legal
token on the left and a legal token on the right, and results in a new
token. In your case, the first line in the macro
(MyObj[ ## _A_ ## ].somePtr = \) is
illegal, and results in undefined behavior. Most implementations just
concatenate the strings, then retokenize once they've finished all of
the substitutions, so it will work, but it's not guaranteed. And as far
as I can tell here, it's not necessary. In the second line, on the
other hand, you are generating a new token. If you invoke the macro:
SOME_FIELD(x,y,z);
it will expand to:
MyObj[x].somePtr = (DWORD_PTR)(buff_zzy);
(I might add that the use of symbols like _A_, _B_ and _C_ is also
undefined behavior. A symbol starting with an underscore followed by a
capital letter is in the namespace of the implementation.)