There are many ways to access class members as you all know, my problem now is. if the class constructor/deconstructor if public, the 'new' usage is allowed and also 'extern', if it is private, i can make 'GetInstance' only class which wouldn't allow 'new' usage, which is good for class that should have 1 pointing instance to them only (such as a server which counts current logged in users), and 'new' is good for classe that point to many objects (such as a class that points to a new objects, for example a new player logged int, it would create a new pointer to each on of them ), and a map would store a pointer to a 'new' of that object. The problem is, shouldnt 'extern' be allowed to access from a global object private constructors? since 'new' usage isnt allowed? Take a look at the example below:
#include <windows.h>
#include <cstdlib>
#include <iostream>
#include <map>
using namespace std;
//CMover.h-------------------------------------
#define MAX_MOVER_NAME 32
class CMover
{
private:
BOOL m_bInitialized;
BOOL m_bIsWalking;
unsigned m_uMetersPercused;
TCHAR m_szName[MAX_MOVER_NAME+1];
//CMover( LPCTSTR szMoverName, BOOL bInitialized = TRUE, BOOL bWalking = TRUE, unsigned uMeters = 0 );
public:
CMover() { };
virtual ~CMover(){};
};
//---------------------------------------------
//CMover.cpp---------------
CMover g_Mover; //CMover was created in order to have many 'new' usage, so each 'new' object points to a new player
// Making a global object of it is a big failure
//---------------------------
//CServer.h---------------
class CConnectedUsers
{
private:
CConnectedUsers() {}; //ok, new cannot access, this class should be used as 1 object only
virtual ~CConnectedUsers() {}; //to count up connected users, 'new' should never be used
public:
map<u_long,CMover*>m_UserMng;
//I Could use GetInstance, that any pointers craeted (CConnectedUsers *pCUser = CConnectedUsers::GetInstance() ) would
//point to it
static CConnectedUsers* GetInstance( void )
{
static CConnectedUsers mObj;
return &mObj;
}
};
//------------------------
//CServer.cpp ------
//Or in this case i would like to make a global object, so on CWhatever.cpp that included CServer.h i could use
//(extern CConnectedUsers g_Users;) which is also 1 object-only so no GetInstance would be needed and I would use
//(g_Users.m_UserMng...) directly after external declared
//PROBLEM is, making constructor private regulates the class to be 1 object only, but it doesn't allow external usage
//why is that???
CConnectedUsers g_Users;
//-----------------
//Main.cpp ...etcc
int main( int argc, char *argv[] )
{
CMover *pMover = new CMover;
cout << pMover << endl << &pMover << endl; //points to a new object, pointer stored in a region
CMover *pMov2 = new CMover;
cout << pMov2 << endl << &pMov2 << endl << endl; //points to a new object, pointer stored in another region
CConnectedUsers *pCUser = CConnectedUsers::GetInstance();
CConnectedUsers *pCUser2 = CConnectedUsers::GetInstance();
cout << pCUser << endl << &pCUser << endl; //points to CConnectedUsers, pointer stored in a region
cout << pCUser2 << endl << &pCUser2 << endl; //points to same CConnectedUsers, pointer stored in another region
//also another question is, do I need to check these pointers integrity by doing:
if( pCUser )
{
//??
}
system("pause>nul");
return EXIT_SUCCESS;
}
The problem isn't extern. A declaration with extern doesn't create an object, and doesn't need access to a constructor.
However, an extern reference has to find an object defined somewhere, and the one definition (not merely declaration) doesn't have access to the constructor, since it's a namespace member, not a class member.
This is completely expected and consistent. Expressions evaluated at namespace scope are outside the class and therefore have no special privilege wrt private members.
You can instead use a "lock-and-key" system to make a public constructor unusable from any other file. For example:
// header file
class Once
{
public:
struct Forward;
Once(Forward);
};
extern Once g_singleton;
// implementation file
#include "Once"
namespace { struct Local {}; }
struct Once::Forward : Local {};
Once g_singleton(Once::Forward());
It is impossible to instantiate the class from any other compilation unit, since no other compilation unit has the definition of Once::Forward, which must be passed by value to the constructor. And any attempt to define Once::Forward in any other compilation unit will be an ODR violation.
Related
I am new to C++, and was wondering what I am doing wrong.
I am trying to create a text-based adventure game that keeps track of player stats using an add or remove function. Currently, my function does not add five points to trust and I am trying to get it to.
#include "function.h"
using namespace std;
int main() {
double trust=100;
editPlayer user(100);
//asks user choice
cin >> firstChoice;
if (firstChoice == 1) {
user.addTrust(trust);
cout << trust;
Here is my function.cpp only using trust as an example:
#include "function.h"
editPlayer::editPlayer(double trust) {
}
void editPlayer::addTrust(double trust){
trust +=5;
}
void editPlayer::removeTrust(double trust){
trust -=5;
}
And here is my function.h:
#include<iostream>
#include<string>
using namespace std;
class editPlayer{
public:
editPlayer(double trust);
void addTrust(double);
void removeTrust(double);
};
Lets take your addTrust function:
void editPlayer::addTrust(double trust) {
trust += 5;
}
This will modify the local variable trust, and then the function will end. When the function ends, the life-time of the local variable trust also ends, and the modifications you made to it will be lost.
If you truly want to modify the argument, you need to either pass it by reference:
void editPlayer::addTrust(double& trust) {
trust += 5;
}
Or return the new value:
double editPlayer::addTrust(double trust) {
return trust + 5;
}
If you return the new value, you need to assign to it when calling the function:
trust = user.addTrust(trust);
With the above said, the code and the editPlayer class doesn't make much sense. There's just no need for a class editUser really. Possibly addTrust could be a non-member function, or maybe not a function at all.
The class name doesn't make sense, since it doesn't "edit" anything. And passing an argument to the constructor also doesn't make sense since the objects doesn't have any internal state (the value passed to the constructor is just discarded).
Currently you're not storing anything specific on behalf of user object (an object of the editPlayer class.
The cout << trust; statement just prints a value of the trust local variable which you declared at the beginning: double trust=100;. Because this variable hasn't been changed anyhow since that initialization it is still equal to 100 and this is what you see.
In order to track any editPlayer-specific information the best idea is to store that information as a data member of the class editPlayer. You can declare a data member representing the trust of an object like this:
class editPlayer{
public:
editPlayer(double trust);
void addTrust(double);
void removeTrust(double);
double getTrust() const; // add also this one, will be useful
private:
double m_trust {0}; // <---- here - a data member, aka. a class field
};
Now you must refine you constructor to let it utilize the parameter which it takes and assign its value to this new data member (because currently the constructor does nothing):
editPlayer::editPlayer(double trust) {
m_trust = trust;
}
Now in the member functions that you already have just rename the variable so that it reflects the trust data member (and not the parameter) which effectively will allow to update its value:
void editPlayer::addTrust(double trust) {
m_trust += 5;
}
void editPlayer::removeTrust(double trust) {
m_trust -= 5;
}
double editPlayer::getTrust() const { // add definition of our "getter"
return m_trust;
}
Finally you can replace that cout << trust; which we already discussed (still prints the local variable's value) with an invokation of the getter which yields m_trust's value:
cout << user.getTrust();
and see the actual effect of performing the addTrust() operation as well as get delighted with your legitimate object-oriented program.
In general the code you are asking can be covered by classes, member declarations and also a pinch of object oriented programming.
The internet has lots of good (and less than good) tutorials if you search for it.
I would try my luck with some of the following searches
CPP + classes
CPP + member declarations
CPP + dynamic vs. static memory allocation (pointers and stuff)
object oriented programming (OOP)
The examples on this site provide good (and short :D) examples of alot of basic concepts imho.
https://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm
Some of the topics also apply to other languages.
The first block with my comments:
#include "function.h"
using namespace std; // dont get into the habbit of using namespace std;
// the above can potentially open up for bugs
int main()
{
double trust=100; // This variable is declared in this scope({ ... })
// and will get deallocated once the scope ends with the character '}'
editPlayer user(100); // instance of editPlayer named 'user' is constructed
//asks user choice
cin >> firstChoice;
if (firstChoice == 1) {
user.addTrust(trust); // calling function on user object
cout << trust;
}
Now looking at the .h file i would advocate against including headers that you dont use in the header.
For small projects it does not matter at all - but for big projects of thousands lines of code removing unused includes can speed up things.
Some would prefer forward declarations - which you can look into once you are more comfortable with the basics of cpp.
#include<iostream> // not used here
#include<string> // not used
using namespace std; // disaster waiting to happen
class editPlayer{
public:
editPlayer(double trust);
void addTrust(double);
void removeTrust(double);
};
The .cpp file
#include "function.h"
editPlayer::editPlayer(double trust) {}
// function implementation with argument - but argument is not used - change to void fun(double) -> fun(void) OR fun()
void editPlayer::addTrust(double trust) { trust +=5; }
void editPlayer::removeTrust(double trust) { trust -=5; }
I did an example with class declaration and member variables.
#include <iostream>
#include <string>
// this is a class declaration
class Player
{
protected: // protected member variables
double _trust;
public: // public interface
Player(double trust);
void addTrust(double);
void removeTrust(double);
double getTrust() const;
};
// Implementation of public interface
// notice _trust is the member defined in the class
Player::Player(double trust) : _trust(trust) {} // constructor
// example of default parameters (do note that only definition or declaration can have them)
// This means that calling the function without arguments will become 5
void Player::addTrust(double trust = 5) { _trust += trust; }
void Player::removeTrust(double trust = 5) { _trust -= trust; }
double Player::getTrust() const {return _trust; }
int main()
{
Player player(100); // this will invoke the constructor - and the player object will get initialised with the given state
std::cout << player.getTrust() << std::endl;
// variable to buffer input data into - assuming type int wrt. following if
int firstChoice;
//asks user choice
std::cin >> firstChoice;
if (firstChoice == 1)
{
player.addTrust(25);
player.addTrust();
}
std::cout << player.getTrust();
}
Happy coding !
Problem
I am currently working on a plugin-library, where one should be able to not only import C-Linkage symbols, but all imported things.
Thus far it works, though the problem is, that gcc screws member-function calls up.
If I export the following:
static member_function(Class* c)
{ c->method();}
it works fine an I can access the class-members. But if I do the following:
void (Class ::*p)() = import("Class::method");
(x.*p)();
i get the right pointer and also am able to call the function and the passed arguments, but the this pointer is pointing into nirvana. I think gcc is taking it from the wrong position of the stack or something like that.
It works just fine with MSVC.
I am using mingw-w64 5.1.
Does anyone have an idea what the error could be?
Simple example:
plugin.cpp
#include <iostream>
namespace space {
class __declspec(dllexport) SomeExportThingy
{
int i = 42;
public:
virtual void __declspec(dllexport) Method(int*) const
{
using namespace std;
cout << "Calling Method" << endl;
cout << pi << endl;
cout << *pi << endl;
cout << this << endl;
cout << this->i << endl;
}
}
}
loader.cpp
namespace space {
class SomeExportThingy
{
///dummy to have some data in the address
int dummy[20];
};
int main()
{
auto h = LoadLibrary("plugin.dll");
auto p = GetProcAddress(h, "_ZNK5space16SomeExportThingy6MethodEPi");
typedef void (space::SomeExportThingy::*mptr)(int*) const;
///used because posix passed void*
auto fp = *reinterpret_cast<mptr*>(&p);
space::SomeExportThingy st;
int value = 22;
cout << "ValueLoc: " << &value << endl;
cout << "StLoc: " << &st << endl;
(st.*fp)(&value);
}
Results
Now what happens is, that the function is called and the pointer to pi is passed correctly. However, the this pointer is completly screwed up.
Again: it works with MSVC, which get's the this pointer correctly, but gcc get's this wrong.
I have no idea why this happens, and removing the virtual from the method doesn't change that either.
I have no idea what causes this, so maybe someone has an idea what the ABI is doing here.
Here are the pointers I am getting:
0x00400000 == GetModuleHandleA(NULL)
0x61840000 == GetModuleHandleA("plugin.dll")
0x0029fcc4 == _&st
0x00ddcd60 == this
I wasn't able to find any relation between the values
This is not going to work with GCC:
typedef void (space::SomeExportThingy::*mptr)(int*) const;
///used because posix passed void*
auto fp = *reinterpret_cast<mptr*>(&p);
The representation of a pointer-to-member is twice the size of a normal function pointer (or a void*) so you are reading two words from a memory location that only contains one word. The second word (which tells the compiler how to adjust the this pointer for the call) is garbage, it is just whatever happens to be after p on the stack.
See https://gcc.gnu.org/onlinedocs/gcc/Bound-member-functions.html:
In C++, pointer to member functions (PMFs) are implemented using a wide pointer of sorts to handle all the possible call mechanisms; the PMF needs to store information about how to adjust the ‘this’ pointer,
p is a void* so it's a memory location on the stack that occupies sizeof(void*) bytes.
&p is a pointer to that memory location.
reinterpret_cast<mptr*>(&p) is a pointer to 2*sizeof(void*) bytes at the same address.
*reinterpret_cast<mptr*>(&p) reads 2*sizeof(void*) bytes from a memory location that is only sizeof(void*) bytes in size.
Bad things happen.
For linux, the functions for dynamic function loading are: dlopen(), dlsym(), and dlclose(). Please reference: dlopen() man page.
Consider that C++ method names are 'mangled' and and they have an invisible '*this' parameter passed before all the others. Together both issues makes trying to directly access C++ objects not trivial when using dynamic linking.
The easiest solution I've found is to use 'C' function(s) that expose access to the C++ object instance.
Secondly, memory management of C++ objects is not trivial when the code to instantiate is within an .so library object, though the referencing code is from the user's app.
For the long answer as to why avoiding Pointer to C++ Member Methods is difficult, please reference: ISO CPP Reference, Pointers to Methods.
/** File: MyClass.h **/
// Explicitly ensure 'MyClassLoaderFunc' is NOT name mangled.
extern 'C' MyClass* MyClassLoaderFunc(p1, p2 ,p3, etc );
extern 'C' MyClass* MyClassDestroyerFunc(MyClass* p);
// Create function pointer typedef named 'LoaderFuncPtr'
typedef MyClass*(MyClassLoaderFunc* LoaderFuncPtr)(p1,p2,p3,etc);
// Define MyClass
class MyClass
{
/** methods & members for the class go here **/
char dummy[25];
int method( const char *data);
};
/** File: MyClass.cpp **/
#include "MyClass.h"
MyClass* MyLoaderFunc(p1, p2 ,p3, etc) {
MyClass* newInstance = new MyClass::CreateInstance( p1, p2, p3, etc);
/** Do something with newInstance **/
return newInstance;
}
MyClass::method(const char* data)
{
}
/** File: MyProgram.cpp **/
#include "MyClass.h"
main()
{
// Dynamically load in the library containing the object's code.
void *myClassLibrary = dlopen("path/to/MyClass.so",RTLD_LOCAL);
// Dynamically resolve the unmangled 'C' function name that
// provides the bootstrap access to the MyClass*
LoaderFuncPtr loaderPtr = dlsym(myClassLibrary,"MyClassLoaderFunc");
DestroyFuncPtr destroyerPtr = dlsym(myClassLibrary,"MyClassDestroyerFunc");
// Use dynamic function to retrieve an instance of MyClass.
MyClass* myClassPtr = loadPtr(p1,p2,p3,etc);
// Do something with MyClass
myClassPtr->method();
// Cleanup of object should happen within original .cpp file
destroyPtr(myClassPtr);
myClassPtr = NULL;
// Release resources
dlclose(myClassLibrary);
return 0;
}
Hope this helps..
I also suggest a factory paradigm as an more robust solution, that I'll leave to the reader to explore.
As Jonathan pointed out, pointer-to-members are bigger than normal function pointers.
The simplest solution is to reserve and initialize the extra space.
typedef void (space::SomeExportThingy::*mptr)(int*) const;
union {
mptr fp;
struct {
FARPROC function;
size_t offset;
};
} combFp;
combFp.function = p;
combFp.offset = 0;
auto fp = combFp.fp;
It is possible in C++ to use a data member of a class without defining an object of that class, by defining that data member in the public section as a static variable, as in the code sample below. The question is, why/when would I want to do this? and how can I do it?
class ttime{
public:
ttime(int h=0, int m=0, int s=0):hour(h), minute(m), second(s){} //constructor with default intialization
int& warning(){return hour;}
void display()const{cout<<hour<<"\t";}
static int hello;
~ttime(){}
private:
int hour;
int minute;
int second;
};
main()
{
ttime:: hello=11310; //Is this the way to use hello without creating an object of the class?
cout << ttime:: hello;
ttime hi(9);
hi.display();
hi.warning()++;//the user is able to modify your class's private data, which is really bad! You should not be doing this!
hi.display();
}
Declaring a class member variable as static essentially makes it a singleton object that is shared by all of the instances of that class. This is useful for things like counters, semaphores and locks, and other types of data that need to be shared by the other class members.
Declaring it public makes it accessible to all users of that class. It's generally a bad idea to allow class variables to be modifiable by functions outside the class, though.
Declaring it const, on the other hand, is the usual way to provide publicly readable constants for the class.
Example
Your library class:
class Foo
{
public:
// Version number of this code
static const int VERSION = 1;
private:
// Counts the number of active Foo objects
static int counter = 0;
public:
// Constructor
Foo()
{
counter++; // Bump the instance counter
...
}
// Destructor
~Foo()
{
counter--; // Adjust the counter
...
}
};
Some client of your library:
class Bar
{
public:
// Constructor
Bar()
{
// Check the Foo library version
if (Foo::VERSION > 1)
std::cerr << "Wrong version of class Foo, need version 1";
...
}
};
In this example, VERSION is a static constant of the class, which in this case informs the outside world what version of the code is contained in the class. It's accessed by the syntax Foo::VERSION.
The static counter variable, on the other hand, is private to the class, so only member functions of Foo can access it. In this case, it's being used as a counter for the number of active Foo objects.
As cited before, static member variables work as 'global' variables, but within the class namespace.
So it is useful for counters or shared resources between objects.
In the case of 'public static' modifier, it is easy to see its use within libraries to provide access to constants and general-purpose functionality (static methods).
For example, an input library might have:
class KeyEvent
{
public:
static const int KEY_DOWN = 111;
static const int KEY_UP = 112;
...
}
//And then in your code
#include <KeyEvent>
void poolEvent(Key *key)
{
if(key->type() == KeyEvent::KEY_DOWN)
...
}
I am not familiar with the c++ syntax for statics at the moment. But in c++-cli (.net, Visual C++) the :: is correct.
For the purpose of statics:
There are many cases where it makes sense to use them. In general, when you want to store information that belong to the class itself (meaning to all objects of the class) and not to a single object/instance.
Even though not originally invented for this purpose, static constexpr data members of structs are a backbone of template meta-programming. Just check out the limits standard library header as a simple example.
For example, we can define a wrapper around the builtin sizeof operator. While rather useless in itself, it hopefully gives the right idea.
#include <iostream>
template<typename T>
struct Calipers
{
static constexpr auto size = sizeof(T);
};
int
main()
{
std::cout << "short: " << Calipers<short>::size << "\n";
std::cout << "int: " << Calipers<int>::size << "\n";
std::cout << "long: " << Calipers<long>::size << "\n";
std::cout << "float: " << Calipers<float>::size << "\n";
std::cout << "double: " << Calipers<double>::size << "\n";
}
Possible output:
short: 2
int: 4
long: 8
float: 4
double: 8
It is similar to a global variable, only that it is not defined at the global namespace.
You find it in C++ code that was written before namespaces were introduced, or in template meta programming were it is more useful.
In general, I would not recommend to use it as in your example and would prefer to avoid global state as much as possible. Otherwise, you end up with code that is difficult to test.
As a new C++ hobbyist, I am still wrestling with understanding scope for class object created using "new". I thought I read that by instantiating a dynamic object using "new", the class (and members) would be accessible by all parts of the program directly (for example, within other functions) since it is not created on the stack.
In the code below, I set the initial value of 'tesValue1' to "111" in the constructor, and then try to update it to "222" in the 'check_accessibility' function. This fails to compile with the error "myGeneralVars" not declared within this [the function call] scope.
Any assistance is greatly appreciated.
//main.cpp
#include <iostream>
using namespace std;
class generalVars
{
private:
public:
//data attributes
int testValue1;
//constructor
generalVars()
{
testValue1= 111;
}
~generalVars(void)
{
cout << "destructor code here" << endl;
};
};
void check_accessibility() {
myGeneralVars->testValue1= 222;
}
int main(int argc, char *argv[])
{
generalVars* myGeneralVars = new generalVars; //create on heap
cout << "Main testvalue1 = " << myGeneralVars->testValue1 << endl; //value set in constructor
check_accessibility(); //sets testValue to new value
cout << "Main testvalue1 = " << myGeneralVars->testValue1 << endl; //want "222"
delete myGeneralVars; //delete from heap
return 0;
}
It has the lifetime you decide.
C++ uses the concept of storage duration: The lifetime of an object depends on where and how its instantiated. There are three (Four) types of storage durations:
Static storage duration: The object will be initialized at program start and will be destructed at program finish. Global variables and static class attributtes have static storage duration.
Automatic storage duration: The lifetime of an object is defined by the lifetime of the scope the variable is declared in. So the lifetime of local variables starts when the function starts, and ends when the function ends. The same for non-static class data members: Its lifetime starts when the object's lifetime starts, and ends when the lifetime of the object ends.
Dynamic storage duration: The object is created on dynamic memory using new and delete, and the lifetime is determined by the user. When the user does new the lifetime starts, and when does deletethe lifetime ends.
See this documentation page for more information.
In your case, you instantiate an object with dynamic storage duration, using a pointer variable to hold its memory address (The location of the object). Since you never do a delete on that pointer, the lifetime of the object never ends: Thats a memory leak.
Also, you try to access a variable defined in one function (main) in other function (check_accessibility). Of course that variable is not visible out of main. But thats nothing to do with dynamic storage duration, its only a simple name lookup problem. Whoever tells you storage duration has something related or depending on name/variable accessibility was completely wrong.
Since you're a hobbyist and a beginner, let's get you on the right track early so that you get more pleasure and enjoyment from your hobby.
consider the changes I have made here employing principles that will make your program more elegant, robust and pleasing as it grows in complexity.
//main.cpp
#include <iostream>
#include <memory>
using namespace std;
class generalVars
{
private:
public:
//data attributes
int testValue1;
//constructor
generalVars()
: testValue1(111)
{
}
~generalVars(void)
{
// if the class is carefully written using std:: objects
// you will rarely need to define a destructor
cout << "destructor code here" << endl;
};
};
// pass a reference to a mutable object to ensure that logic
// is performed on the object and not on its lifetime
void check_accessibility(generalVars& gv) {
gv.testValue1= 222;
}
int main(int argc, char *argv[])
{
unique_ptr<generalVars> myGeneralVars(new generalVars); //create on heap *safely*
cout << "Main testvalue1 = " << myGeneralVars->testValue1 << endl; //value set in constructor
check_accessibility(*myGeneralVars); //sets testValue to new value
cout << "Main testvalue1 = " << myGeneralVars->testValue1 << endl; //want "222"
// no delete necessary - unique_ptr's destructor takes care of it
return 0;
}
output:
Compiling the source code....
$g++ -std=c++11 main.cpp -o demo -lm -pthread -lgmpxx -lgmp -lreadline 2>&1
Executing the program....
$demo
Main testvalue1 = 111
Main testvalue1 = 222
destructor code here
myGeneralVars is not known by your function check_accessibility(), so you cannot access the variable. Instead, try to pass it as parameter.
void check_accessibility(generalVars* genVar) {
genVar->testValue1= 222;
}
int main(int argc, char *argv[])
{
generalVars* myGeneralVars = new generalVars; //create on heap
cout << "Main testvalue1 = " << myGeneralVars->testValue1 << endl; //value set in constructor
check_accessibility(myGeneralVars); //sets testValue to new value
cout << "Main testvalue1 = " << myGeneralVars->testValue1 << endl; //want "222"
delete myGeneralVars; //delete from heap
return 0;
}
myGeneralVar is valid only inside the main() scope, so check_accessibility() has no access to it. You have to declare it before, either in global scope (outside function definition) or by passing it as argument to check_accessibility() inside main(). Keep in mind that the main function is not the global scope, as you might think. main() is just a function like others and has its own scope.
In function check_accessibility you use name myGeneralVars that was not yet declared.
void check_accessibility() {
myGeneralVars->testValue1= 222;
}
So the compiler issues athe error.
Before using any name it has to be declared.
You could write the function the following way
void check_accessibility( generalVars* myGeneralVars ) {
myGeneralVars->testValue1= 222;
}
and call it as
check_accessibility( myGeneralVars );
Also, you can define the check_accessibility() function inside generalVars class and call it from main as
mygeneralVars->check_accessibility();
I have an object with a method that needs to mutate an outside instantiated object. I've been trying to reference the object in the parameter and that is clearly not working. This is what I have:
#include <iostream>
#include <cstdlib>
#include "Character.h"
using namespace std;
class TesterClass {
public:
void printStuff();
TesterClass(Character& userChar);
private:
Character& character;
};
TesterClass::TesterClass(Character& userChar)
{
character = userChar;
}
int main() {
Character userCharacter;
TesterClass tester(userCharacter);
return 0;
}
My question is how to can I use the instantiated tester class to edit the Character object via parameter passing. I'm very new at C++ and I've read every perceivable definition of reference and point passing, and it just doesn't seem to want to click.
Your constructor should be:
TesterClass::TesterClass(Character& userChar):character(userChar){}
Also see this question.
To address the comment, here's example code where the value is modified:
#include <iostream>
#include <cstdlib>
typedef char Character;
using namespace std;
class TesterClass {
public:
void printStuff();
TesterClass(Character& userChar);
private:
Character& character;
};
TesterClass::TesterClass(Character& userChar):character(userChar)
{
}
void TesterClass::printStuff() {
cout << character << endl;
cout << ++character << endl;
}
int main() {
Character userCharacter = 'a';
TesterClass tester(userCharacter);
tester.printStuff();
cout << userCharacter << endl;
++userCharacter;
cout << userCharacter << endl;
tester.printStuff();
return 0;
}
The output is
a
b
b
c
c
d
I agree with the previous answer/comments - You really should use an initialization list in your constructor. The thing is that your data-members are initialized through the initialization list (this happens BEFORE the body of the constructor is called). In your case, you have a Character& as a member. Since this is a reference, it HAS to be assigned something. I'm not sure which compiler you're using, but AFAIK that code shouldn't even compile.
What you're probably looking for is passing the reference in your main-method, like:
int main()
{
Character userCharacter;
// Notice the use of the &-operator
TesterClass tester(&userCharacter);
return 0;
}
At this point, you're no longer talking about a Character-instance, but of the memory address of the instance. So, since you're passing the mem-address, it's actually a pointer you need in your class, not a reference. (For instance, userCharacter.SomeMethod() is synonymous to (&userCharacter)->SomeMethod() where & references and -> dereferences).
Instead, you could write your TesterClass as:
class TesterClass
{
public:
void printStuff();
TesterClass(Character* userChar);
private:
Character* character;
};
TesterClass::TesterClass(Character* userChar)
: character(userChar) // <- Notice the init-list
{}
That way, in your TesterClass instance, you'll have a pointer that points to the same memory address where the userChar-instance resides.
As a sidenote: It can be good to notice though that userCharacter is a local variable, which means that it'll be destroyed when it runs out of scope. In this case it's not really a problem since tester is local as well. But if you're not used to working with pointers - Just a word of caution. Make sure you never pass the pointer (since you're storing the address in a class member) to a TesterClass-object that lives beyond the scope of the variable whose reference you're passing. That'll leave you with a dangling pointer.
I hope that helps you :)