C++ linking boost library - c++

First I built the Boost libraries that require building by going to /usr/local/boost_1_49_0/ and running the bootstrap.sh. This went off alright.
Step (1) created all the .so and .a files in /usr/local/boost_1_49_0/stage/lib
I tested linking against a library, say lboost_regex and #include <boost/regex> in my source code. This also went off alright.
Finally trying out the example on asio, I tried:
g++ -I/usr/local/boost_1_49_0 MAIN.cpp -o MAIN -L/usr/local/boost_1_49_0/stage/lib -lboost_thread -lboost_system -lpthread
(4) compiled alright. But when I run the program with ./MAIN, I get the following error:
./MAIN: error while loading shared libraries: libboost_system.so.1.49.0: cannot open shared object file: No such file or directory

The -L option only sets a compile-time library search path; if you want a shared library to be found at runtime then its directory must be known at runtime.
One way to set this with g++ is to pass -rpath to the linker, via the compiler; in your case you could say -Wl,-rpath -Wl,/usr/local/boost_1_49_0/stage/lib. (This embeds the directory in the executable.)
Another way is to install the libraries in a place that the linker searches by default (e.g. /usr/local/lib might be such a place, depending on how the system is configured).
Yet another way is to set an environment variable such as LD_LIBRARY_PATH (Linux or Solaris) or DYLD_LIBRARY_PATH (Mac OS X), to tell the linker where to search when launching executables from the shell where the variable is set.

Are you sure the shared library is in a place where the loader can find it? Either put it in a system wide directory or the same directory as the executable.
Here's a link with more information about the loader.

Related

Telling omake to use static version of a c library

I'm using omake to build a native binary executable. After it links and i try to run it, it fails to run giving the following error:
error while loading shared libraries: libprotobuf-c.so.1: cannot open shared object file: No such file or directory
Is there a way, at compile time, to tell the executable to pick up the static version: libprotobuf-c.a and not the shared on?
I'm not familiar with omake but I believe flag to ocamlc you are looking for is dllpath:
-dllpath dir
Adds the directory dir to the run-time search path for shared C libraries. At link-
time, shared libraries are searched in the standard search path (the one corresponding
to the -I option). The -dllpath option simply stores dir in the produced executable
file, where ocamlrun(1) can find it and use it.
If you can configure omake to pass the appropriate -dllpath argument to ocamlc, you should be good to go.
Under the hood I believe this is using the rpath feature (runtime library search path) of ld, the GNU linker. See https://linux.die.net/man/1/ld . There is also a chrpath utility to change the rpath of an already-built executable.
Another option is running your executable with LD_LIBRARY_PATH set so that the shared library is on the load path. You could also install the shared library system wide if appropriate. A final option is to load the library manually when your application boots using dlopen.
The correct choice depends on how you will distribute this and to who you will distribute this, if at all. Keep in mind if you use rpath/dllpath the end user is unlikely to have protobuf installed in the same location you do.
There doesn't seem to be a global flag that can be passed to ld, the linker, that enforces the linker prefer static libraries to dynamic ones when available. In my case, I set the library name explicitly like so:
OCAML_LINK_FLAGS += -cclib -l:libprotobuf-c.a

Linux executable can't find shared library in same folder

I am relatively new to Linux development, having been using Windows for a while now. Anyway, I am compiling a C++ game using g++ on both Windows and Linux (using mingw32 when needed), and am linking against SDL2 and SDL2_mixer. On Windows, one would only need to put the DLL files in the same folder as the executable and everything would run fine. On Linux however, although the code compiled just fine with not even a single warning, I get this at runtime :
./nKaruga: error while loading shared libraries: libSDL2_mixer-2.0.so.0: cannot open shared object file: No such file or directory
although said shared lib is in the same folder. I looked up several similar cases on Stack Overflow, all of them involving the use of LD_LIBRARY_PATH, and tried it but to no avail.
% LD_LIBRARY_PATH=pwd
% export LD_LIBRARY_PATH
% ./nKaruga
./nKaruga: error while loading shared libraries: libSDL2_mixer-2.0.so.0: cannot open shared object file: No such file or directory
I want to distribute this program on systems that do not necessarily have admin rights to install dependencies, hence why I am putting the SO in the same folder as the executable.
Thanks by advance !
LD_LIBRARY_PATH is a quick ad-hoc hack to specify alternate library loading search paths. A more permanent and cleaner solution is to specify the specific sets of paths in which libraries shall be searched specific for your particular binary. This is called the rpath (Wikipedia article on it: https://en.wikipedia.org/wiki/Rpath). There are a number of "variables" that can be specified in the binary rpath that get substituted. In your case the rpath variable ${ORIGIN} would be the most interesting for you. ${ORIGIN} tells the dynamic linker to look for libraries within the very same directory in which also the binary resides.
The rpath can be set at link time with the -rpath linker option, i.e. when invoked through GCC the option would be -Wl,-rpath='${ORIGIN}', i.e.
gcc -o program_binary -Wl,-rpath='${ORIGIN}' -lSDL2_mixer a.o b.o …
For an existing binary the rpath can be set post-hoc using the chrpath or patchelf tools; it's better to set it at link time proper, though.

Linking to SFML libraries without libsfml-dev

I currently have my Other Linker Options as:
Unfortunately, this means that I can only ever run the executable when libsfml-dev is installed, which is undesirable for game development. Whenever I even change the Other Linker Options or Search Directories>Linker will cause an error along the lines of:
error while loading shared libraries: libsfml-graphics.so.2.2.0: cannot open shared object file: No such file or directory. I assume this error happens because the libraries are relative, so it is completely portable.
EDIT:
I am using Code::Blocks (as you can see from the image), and I would like to know how I can link to the libraries relatively. They link fine when it is run from Code::Blocks, but when I run the executable I get the above error. My current Code::Blocks options are:
Linker Options:
(Other linker options is empty)
Search Directories:
Your first linker options would be the correct ones.
The Library libsfml-dev is only required on the compile machine.
There must also be another package which actually supplies the .so files. That one will also be required on the machine running the executable unless you package those .so files with your executable. In that case you probably need a script that sets LD_LIBRARY_PATH to the local directory containing the packaged .so files and then executes your program.

Code::Blocks and boost 1.55: static library is not used when dynamic library is present

I have built the boost 1.55 serialzation library with the following command:
b2 --build-dir=build toolset=gcc --with-serialization --layout=tagged link=static threading=multi stage
and got libboost_serialization-mt.a and libboost_wserialization-mt.a in my stage/lib directory - fine. Then I added boost_serialization to my C::B project's linker library list and compiled the boost serialization example and it ran fine from the command line. I then built the dynamic and single thread variants additionally using
b2 --build-dir=build toolset=gcc --with-serialization --layout=tagged link=static,shared threading=multi,single stage
and got more libraries in my stage/lib directory, as expected. What puzzles me is that there is a .so file for every library, even those that should be static. Why is it there? What is it needed for?
When I now compile the project, the executable complains:
error while loading shared libraries: libboost_serialization.so.1.55.0: cannot open shared object file: No such file or directory
The library is definitely there and I might just need to add the path to it to LD_LIBRARY_PATH, but I want to link statically for now. How can I do that?
I also don't quite understand the library naming: I have some libboost_wserialization... libraries in my lib folder and the w prefix to serialization is not described in the library naming section of the current boost getting started page.
Your answers gave me a better understanding of what was going on - now I know where the boost_wserialization libraries came from. I turned out that after doing the second build, all present libraries were shared, and the static libraries were overwritten. That's why I got confused by the "extra" .so files for those libraries which previously were indeed static.
Ok, first question:
Why is there a boost_serialization and boost_wserialization library?
the wserialization library is wchar_t oriented. Put into a separate library because it may not actually be needed.
Why are there multiple shared/static libraries?
The reason you're seeing all those extra shared libraries is because you're invoking b2 with link=static,shared, which instructs boost to build the shared libraries as well as the static libraries. Additionally, adding in the thread=multi causes the building of the mt libraries, which are libraries that should be used when linking to multi-threaded applications.
Why am I getting the run-time link error about libboost_serialization.so.1.55.0?
By default, most unix/linux systems will prefer the use of shared libraries over static libraries when linking, so when you try to link it will prefer to use the shared libraries over the static ones. If you want to force the link of the static library rather than the shared one, you tell the compile-time linker to do that, using:
-Wl,-Bstatic -lboost_serialization -Wl,-Bdynamic
This will cause the linker to look for the static variant of the boost_serialization library, rather than the dynamic one.
Now, because you're using code::blocks, I'd have to look up how to specify these flags on a case-by-case basis, but the most sensible thing to do is to clean the boost build using ./b2 clean and then rebuild, specifying only link=static, then you should end up with only .a files, which will produce stand-alone executables again.
If you want to specify this option for code::blocks, you would need to put them into the Build Settings -> Linker settings -> Other Linker Options field for the project. Simply specifying the library in the libraries field will not work for this case. Additionally, forgetting to pass in the -Wl,-Bdynamic option will cause it to try to link in static versions of some platform libraries, which can lead to build failure if the library in question is not present.
If you want to avoid having to set LD_LIBRARY_PATH to run the binary, you can add the option -Wl,-rpath,/path/to/boost/libraries, to the linker flags which will cause the compiled program to search that directory when trying to resolve the location of libraries.
What puzzles me is that there is a .so file for every library, even
those that should be static. Why is it there? What is it needed for?
You apparently are using someone else's make file. I wrote my own. My build command does not create a ".so" (shared object library). It only creates the ".a" (archive library). The linker knows how to use either.
See man ar. The utility ar builds archives.
See man ld. The utility ld can build shared objects.
You might look for these utility invocations in your build sequence, or ask someone where they are and comment out the use of ld, as you most likely do not need both (and building both will extend your build time unnecessarily). Alternatively, you might temporarily rename the ld command, and try your build. When it can not find the ld command, you might get a useful hint as to where the ld is invoked.
In my make file, the commands look like the following. The comment char is a # at beginning of line. (The string expansions $(AR) and $(LD) allow the use of non-standard utilities.)
$(TARGET_ARCHIVE): $(OBJ)
#echo R10: $(TARGET_ARCHIVE) :from: $(OBJ)
$(AR) crs $(TARGET_ARCHIVE) $(OBJ)
# $(TARGET_OLB) : $(OBJ)
# #echo R00: $(TARGET_OLB) :from: $(OBJ)
# $(LD) -o $(TARGET_OLB) -r $(OBJ)
The archive (.a), when used, is linked directly to and included in your executable. When the executable is loaded, all the referenced symbols of the .a are already in it. (un-referenced symbols and code are not linked in)
The shared object (.so) is not directly linked, but rather your executable gets a handle (or perhaps a file name) to the .so. It is my belief that when your executable is loaded, the .so is not immediately loaded. The .so does not load until the first time your executable references a symbol that is in the .so. At that loading, your app will experience a delay, but probably this late loading is reasonable for most applications.
It is also possible that the .so is already loaded in system memory before you activated your process. In that case, when your executable first references a symbol in the .so, some system code will 'map' the existing in-memory .so to your application -- probably faster than loading it, but I suppose the big benefit is that a .so that is used / referenced by many processes need only be loaded once, saving memory space. The loaded .so has all of its symbols, even if your app does not need all of them.
In either case, your executable will be smaller with .so's, bigger with .a's, but the .so's have some small performance hit for each .so that needs to be loaded or mapped in. With 4 GB in my desktop, the desktop has never felt 'crowded'. It's swap has never been used (afaik). So I generally use .a's.
NOTE: When the linker has access to both an archive (.a) and a shared object (.so) file, the linker will use the .so (and ignore the .a). Probably you can override that preference, but I have not tried. I find it easier to simply move the archive (.a) into a separate (from the .so's) directory, and inform the linker via the -L build option.

add armadillo libraries to g++ compiler in linux

I am trying to install a C++ library (armadillo) in a unix cluster where I do not have root permissions.
I managed to compile the C++ libraries without user permissions by running the following make command:
make install DESTDIR=my_usr_dir
But then in the armadillo readme file it says:
where "my_usr_dir" is for storing C++ headers and library files. Make sure your C++ compiler is configured to use the sub-directories present within this directory.
The compiler the armadillo uses to install the libraries is gcc-4.8.1. I am not sure where the compiler was installed but it's loaded when I start my session in the unix cluster.
After installing armadillo I am trying to compile open source code that uses the armadillo libraries. This open source code also has a makefile.
However, when I go to the open source code and I type in:
make
it calls g++. How can I make sure g++ will recognize the armadillo libraries previously installed in my_usr_dir?
Currently I get the following error if I go to src and then type make:
opencode.cpp:28:21: fatal error: armadillo: No such file or directory
#include <armadillo>
^
compilation terminated.
make: *** [mmcollapse] Error 1
you can use
alias gcc="gcc -I./my_usr_dir/include -L./my_usr_dir/lib"
and so on in your .bashrc file. In that way, whenever you invoke gcc on the command line, the flags will be added before every other argument you enter on the command line
I think the readme file refers to the usage of the library headers and library files from applications. For those to be useful, the compiler/linker/loader (usually all driven by the "compiler") have to know where to find them. The compiler always looks in some default directories, such as /usr/include (for headers) and /usr/lib/ (for libraries), but they require root permission to write into. However, you can tell the compiler with the flag -Idirectory to search in directory directory for headers. For libraries use -l and -L (check the manual page of your compiler). You may also need to consider the LD_LIBRARY_PATH and LD_RUN_PATH environment variables, if you're using dynamic linking (shared object files).
This question looks similar to
How to specify non-default shared-library path in GCC Linux? Getting "error while loading shared libraries" when running
If you dont want to change the .bashrc
use -rpath as suggested in the post above.
gcc XXX.c -o xxx.out -Lmy_usr_dir -lXX -Wl,-rpath=my_usr_dir
-L is for static linking
-rpath for adding the directory to the linker search path
more on -rpath here
I don't understand -Wl,-rpath -Wl,
Dont bother to upvote the answer because this is really not an answer. I would have commented but i could not locate the add comment for your post.