Simulating black hole / whirpool behaviour for sprites - cocos2d-iphone

One of the powerups in my game is a vortex that attracts all coins. I know I have any cocos2d's moveto/bezierto methods available, but I don't know how to make them have tangential and radial speed.
The extra difficulty is that the vortex center can change in every step, so all movement has to be readjusted.

One way to achieve this without a physics engine is to use the rotation around point algorithm.
That covers the rotation around the vortex center. Once an object is rotation around the vortex, all you need to do is to reduce that object's distance from the center by a certain amount every frame. That way it will continue to move inwards.
The only tricky part then is to get the object from its initial position being "sucked into" the vortex. There's going to be a lot of tweaking needed. With a physics engine, that part would come natural from the physics itself and it would always look right.
This is not guaranteed for the manual solution and definitely not for actions, which aren't designed to track moving targets. For example, if you change a move action every frame by replacing the existing one with a new one, your object won't move at all. Every time you do that, there's a 1-frame delay before the new action does its work.

Related

Collision resolution issues with circles

I have a small application I have built where there are a few balls on a blank background. They all start flying through the air and use the physics I wrote to bounce accurately and have realistic collision responses. I am satisfied with how it looks except I have an issue where when my balls land directly on top of each other, the attach together and float directly up.
Here are the functions involved
https://gist.github.com/anonymous/899d6fb255a85d8f2102
Basically if the Collision function returns true, I use the ResolveCollision to change their velocities accordingly.
I believe the issue is from the slight re-positioning I do in ResolveCollision(). If they collide I bring them a frame or so backwards in location so that they are not intersecting still the next frame. However, when they are directly on top they bounce off eachother at such small bounces that eventually stepping back a frame isn't enough to unhook them.
I'm unsure if this is the problem and if it is, then what to do about it.
Any help would be awesome!
The trick is to ignore the collision if the circles are moving away from each other. This works so long as your timestep is small enough relative to their velocities (i.e. the circles can't pass through each other in a single frame).
When the circles first collide, you will adjust their velocity vectors so their relative velocity vector pushes them apart (because a collision will do that). After that, any further collisions are spurious because the circles will be moving apart, and will eventually separate completely. So, just ignore collisions between objects that are moving apart, and you should be fine.
(I've implemented such an algorithm in a 3D screensaver I wrote, but the algorithm is entirely dimension-agnostic and so would work fine for 2D circles).

Keeping Velocity Constant and Player in Position - Sidescrolling

I'm working on a Little Mobile Game with Cocos2D-X and Box2D.
The Point where I got stuck is the movement of a box2d-body (the main actor) and the according Sprite. Now I want to :
move this Body with a constant velocity along the x-axis, no matter if it's rolling (it's a circleshape) upwards or downwards
keep the body nearly sticking to the ground on which it's rolling
keep the Body and the according Sprite in the Center of the Screen.
What I tried :
in the update()- method I used body->SetLinearVelocity(b2Vec2(x,y)) to higher/lower values, if the Body was passing a constant value for his velocity
I used to set very high y-Values in body->SetLinearVelocity(b2Vec2(x,y))
First tried to use CCFollow with my playerSprite, which was also Scrolling along the y-axis, as i only need to scroll along the x-axis, so I decided to move the whole layer which is containing the ambience (platforms etc.) to the left of my Screen and my Player Body & Player sprite to the right of the Screen, adjusting the speed values to Keep the Player in the Center of the Screen.
Well...
...didn't work as i wanted it to, because each time i set the velocity manually (I also tried to use body->applyLinearImpulse(...) when the Body is moving upwards just as playing around with the value of velocityIterations in world->Step(...)) there's a small delay, which pushes the player Body more or less further of the Center of the Screen.
... didn't also work as I expected it to, because I needed to adjust the x-Values, when the Body was moving upwards to Keep it not getting slowed down, this made my Body even less sticky to the ground....
... CCFollow did a good Job, except that I didn't want to scroll along the y-axis also and it Forces the overgiven sprite to start in the Center of the Screen. Moving the whole Layer even brought no good results, I have tried a Long time to adjust values of the movement Speed of the layer and the Body to Keep it negating each other, that the player stays nearly in the Center of the Screen....
So my question is :
Does anyone of you have any Kind of new Approach for me to solve this cohesive bunch of Problems ?
Cheers,
Seb
To make it easy to control the body, the main figure to which the force is applied should be round. This should be done because of the processing mechanism of collisions. More details in this article: Why does the character get stuck?.
For processing collisions with the present contour of the body you can use the additional fixtures and sensors with an id or using category and mask bits. For of constant velocity is often better to use SetLinearVelocity, because even when using impulse velocity gets lost at sharp uphill or when jumping. If you want to use the implulse to change the position of the body, then you need to use the code for the type of this:
b2Vec2 vel = m_pB2Body->GetLinearVelocity();
float desiredVel = mMoveSpeed.x; //set there your speed x value
float velChange = desiredVel - vel.x;
float impulse = m_pB2Body->GetMass() * velChange;
m_pB2Body->ApplyLinearImpulse( b2Vec2(impulse, mMoveSpeed.y), m_pB2Body->GetWorldCenter());
This will allow maintain a constant speed most of the time. Do not forget that these functions must be called every time in your game loop. You can combine these forces, depending on the situation. For example, if the at the beginning you need to make a small acceleration, it is possible to use ApplyForce to the body, and when a desired speed is to use ApplyLinearImpulse or SetLinearVelocity. How correctly to use it is described here: Moving at constant speed
If you use world with the normal gravity(b2Vec2(0, -9.81)), then it should not be a problem.
I answer for this question here: Cocos2D-x - Issues when with using CCFollow. I use this code, it may be useful to you:
CCPoint position = ccpClamp(playerPosition, mLeftBounds, mRightBounds);
CCPoint diff = ccpSub(mWorldScrollBound, mGameNode->convertToWorldSpace(position));
CCPoint newGameNodePosition = ccpAdd(mGameNode->getPosition(), mGameNode->getParent()->convertToNodeSpace(diff));
mGameNode->setPosition(newGameNodePosition);
P.S. If you are new to box2d, it is advisable to read all the articles iforce2d(tuts), they are among the best in the network, as well as his Box2D Editor - RUBE. At one time they really helped me.
I do not know if this is possible but I have an idea:
Keep the circle at a fixed position and move the background relatively. For example, during the course of the game, if the circle has a velocity of 5 towards left then keep circle fixed and move screen with velocity 5 towards right. If circle has 5 velocity towards left and screen has 3 velocity towards right, then keep circle fixed and move screen with 8 velocity towards left and so on. This should allow you to fix the circle at the center of the screen.
Another method would be to translate the entire screen along with the ball. Make everything on the screen an object that can have a velocity. And the x-component of the velocity of the ball (circle) should be the velocity of all other objects. This way, whenever the circle moves, all the other objects will try and keep up with it.

Prevent collisions applying impulse in Bullet physics

I am developing third-person shooting game using Bullet and Ogre. When the character model collides with an object in the world, such as a power-up, the collision applies a force to the character and causes them to spin. How can I prevent the collision applying a force to the character?
I have set a method for btDynamicsWorld::setInternalTickCallback and so I know which bodies are colliding and the btManifoldPoint.
Note that I applyTorque to the body in order to rotate them smoothly so I cannot simply prevent rotation.
Thanks for your help.
I am unfamiliar with the physics engines you mentioned, but I know a thing or two about real physics...
Basically if you draw a free body diagram and arrows that represent the forces, you can determine the net effect. Or if you know the desired net effect, you can figure out where you need to add forces or remove forces.
You could add an equal and opposite force/torque at the time of impact. This would make the net forces on your object zero.
Or you could take the elements that are causing the forces and make them massless. Force = mass * acceleration. If the mass is zero and your physics engine is based on real world physics, then it shouldn't cause any net forces on collision.
Hope that helps.

How to make a moving object "stick" to a stationary object in box2D

I have been experimenting with the box2D sample project within cocos2D for the iPhone and am wondering if box2D is the appropriate engine to use to make a moving object "stick" to a stationary object when the moving object is finished moving in a certain direction.
Here is a simplification of what I am trying to achieve: I have MovingObject, a dynamic rigid body, that moves vertically against gravity when enough force is applied to it. As MovingObject moves, it may overlap a static object, StationaryObject. When gravity diminishes MovingObject's velocity to zero such that it is no longer moving, I would like to have MovingObject remain where it is ONLY if it overlaps StationaryObject. If the object's do not overlap, MovingObject should start to move back down towards the ground per the force of gravity. During that descent, if MovingObject at any time overlaps StationaryObject, it should stop its descent and remain in that location as if it is stuck on StationaryObject.
I am able to get MovingObject to move per the forces I am applying to it, but not really sure how to make it stop and stay there once it reaches the top of its ascent, assuming it is overlapping StationaryObject.
Currently, I am experimenting with simple square/box objects but eventually both MovingObject StationaryObject will be defined as very different complex polygon shapes.
Thanks in advance for any insights and/or suggestions for achieving this.
Sounds like you'll want to change the type of fixture used for "MovingObject" while it "ascending" and then change it when it is "descending" so that it reacts differently (to overlaps).
by "overlap" it sounds like you want to achieve something similar to "one sided platforms" in a platform game (ie; Mario Bros.) - I would recommend looking into the solutions for one-sided platforms for starters.

Simulating a car moving along a track

For Operating Systems class I'm going to write a scheduling simulator entitled "Jurrasic Park".
The ultimate goal is for me to have a series of cars following a set path and passengers waiting in line at a set location for those cars to return to so they can be picked up and be taken on the tour. This will be a simple 2d, top-down view of the track and the cars moving along it.
While I can code this easily without having to visually display anything I'm not quite sure what the best way would be to implement a car moving along a fixed track.
To start out, I'm going to simply use OpenGL to draw my cars as rectangles but I'm still a little confused about how to approach updating the car's position and ensuring it is moving along the set path for the simulated theme park.
Should I store vertices of the track in a list and have each call to update() move the cars a step closer to the next vertex?
If you want curved track, you can use splines, which are mathematically defined curves specified by two vector endpoints. You plop down the endpoints, and then solve for a nice curve between them. A search should reveal source code or math that you can derive into source code. The nice thing about this is that you can solve for the heading of your vehicle exactly, as well as get the next location on your path by doing a percentage calculation. The difficult thing is that you have to do a curve length calculation if you don't want the same number of steps between each set of endpoints.
An alternate approach is to use a hidden bitmap with the path drawn on it as a single pixel wide curve. You can find the next location in the path by matching the pixels surrounding your current location to a direction-of-travel vector, and then updating the vector with a delta function at each step. We used this approach for a path traveling prototype where a "vehicle" was being "driven" along various paths using a joystick, and it works okay until you have some intersections that confuse your vector calculations. But if it's a unidirectional closed loop, this would work just fine, and it's dead simple to implement. You can smooth out the heading angle of your vehicle by averaging the last few deltas. Also, each pixel becomes one "step", so your velocity control is easy.
In the former case, you can have specially tagged endpoints for start/stop locations or points of interest. In the latter, just use a different color pixel on the path for special nodes. In either case, what you display will probably not be the underlying path data, but some prettied up representation of your "park".
Just pick whatever is easiest, and write a tick() function that steps to the next path location and updates your vehicle heading whenever the car is in motion. If you're really clever, you can do some radius based collision handling so that cars will automatically stop when a car in front of them on the track has halted.
I would keep it simple:
Run a timer (every 100msec), and on each timer draw each ones of the cars in the new location. The location is read from a file, which contains the 2D coordinates of the car (each car?).
If you design the road to be very long (lets say, 30 seconds) writing 30*10 points would be... hard. So how about storing at the file the location at every full second? Then between those 2 intervals you will have 9 blind spots, just move the car in constant speed (x += dx/9, y+= dy/9).
I would like to hear a better approach :)
Well you could use some path as you describe, ether a fixed point path or spline. Then move as a fixed 'velocity' on this path. This may look stiff, if the car moves at the same spend on the straight as cornering.
So you could then have speeds for each path section, but you would need many speed set points, or blend the speeds, otherwise you'll get jerky speed changes.
Or you could go for full car simulation, and use an A* to build the optimal path. That's over kill but very cool.
If there is only going forward and backward, and you know that you want to go forward, you could just look at the cells around you, find the ones that are the color of the road and move so you stay in the center of the road.
If you assume that you won't have abrupt curves then you can assume that the road is directly in front of you and just scan to the left and right to see if the road curves a bit, to stay in the center, to cut down on processing.
There are other approaches that could work, but this one is simple, IMO, and allows you to have gentle curves in your road.
Another approach is just to have it be tile-based, so you just look at the tile before you, and have different tiles for changes in road direction an so you know how to turn the car to stay on the tile.
This wouldn't be as smooth but is also easy to do.