Segfault when pushing to member vector - c++

Here's a relatively small but segfaulting project. I've searched quite a few posts doing similar things and while many seemed to be having the same problem, none solved my problem.
The basic issue is this: I have an object (myGraph) with a member vector, and a few methods. A method inside another class invokes one of myGraph's methods, which in turn invokes another one. Inside that function, a push is made to a vector of ints in myGraph. However, this push results in a segfault.
In a somewhat extreme measure, I've been commenting out large portions of code (on a fresh branch of course) and have reduced my code down to a sparse few items. (other posts seemed to indicate that this kind of thing might be caused by bad code elsewhere) yet I am still getting a segfault.
What follow are the watered-down files, composed of the few things remaining uncommented. I say "watered-down" because a lot of declarations (of now-empty functions and such) have been removed. If you need additional information (for instance, if it's important - somehow - that I'm using a virtual function somewhere... as a radical example) just let me know.
in Dispatcher.h:
class myGraph;
class CDispatcher
{
public:
CDispatcher(void);
~CDispatcher(void);
void ProcessCall(string buf);
myGraph* mymap;
};
in Dispatcher.cpp:
void CDispatcher::ProcessCall(string buf)
{
mymap->getDistance(0,1);
};
in mygraph.cpp:
int myGraph::getDistance(int start, int end) {
Dijkstras(start,end);
// This is just to return something
return 5;
};
vector<int> myGraph::Dijkstras(int startVert,int endVert) {
vertices_i.push_back(2); // This line results in a segfault
cout << "push successful" << endl;
// This is just to return something
vector<int> unvisited;
return unvisited;
};
mygraph.h:
typedef struct edge
{
int endVert;
int weight;
} edge;
typedef struct vertex
{
long dist;
bool visited;
int prev;
vector<edge> edges;
} vertex;
class myGraph
{
public:
myGraph(int initSize);
~myGraph(void);
int getDistance(int start, int end);
vector<int> Dijkstras(int startVert,int endVert);
//vector<vertex> vertices; // The original vector that was segfaulting
vector<int> vertices_i; // Simpler vector, of just ints. Still segfaults
};

The unavoidable conclusion is that the member pointer myGraph* mymap is pointing to garbage; you've apparently neglected to initialize it to point to a myGraph object. You need to create an object for it to refer to in the CDispatcher constructor -- i.e.,
CDispatcher(void) : mymap(new myGraph(1)) {}

Related

Passing a map between classes

This is in relation to an earlier question I had. I haven't managed to solve the problem there but for now I'm just trying to get better acquainted with the code to figure out how to deal with that problem.
Towards that goal, I've got around to trying out the suggestions given in that question and I'm a little stumped as to why the following isn't working.
in the header I have
class A {
public:
typedef std::multimap<int, double> intdoublemap_t;
const intdoublemap_t& getMap() const;
void setkey(int k);
void setvalue(double v);
void insertIntoMap();
intdoublemap_t mMapA;
private:
int key;
double value;
};
class B {
public:
typedef std::multimap<int, double> intdoublemap_t;
void mapValues(const A& a);
private:
intdoublemap_t mMapB;
};
in the implementation I have
const A::intdoublemap_t& A::getMap() const { return mMapA; }
void A::setkey(int k) { key = k; }
void A::setvalue(double v) { value = v; }
void A::insertIntoMap(){mMapA.insert(std::make_pair(key, value));}
void B::mapValues(const A & a){ const A::intdoublemap_t& mref = a.getMap();
mMapB = mref; }
and in main()
A a;
a.setkey(10);
a.setvalue(1232.2);
a.insertIntoMap();
B b;
b.mapValues(a);
The code compiles fine and everything to do with a works as expected but the map is not passing to b at all. It stays empty
Can anyone tell me why?
edit: I took another look at this and saw how to do it. I knew it was something stupidly basic. I just had to set mref in the function to a map in B and then could call a function to work on that map within B.
As #FrancoisAndrieux notes, your getMap() only sets a reference local to the function - not the class' intdoublemap_t mref. If you want the latter to be a reference to a map elsewhere, you have three options:
Make it intdoublemap_t& mref, initialize it on construction of the B instance.
Make it std::reference_wrapper<intdoublemap_t> mref, set it whenever you want (e.g. in mapValues().
Make it intdoublemap_t* (or std::shared_ptr<intdoublemap_t> in both A and B), set it whenever you like.
Note: As #FrancoisAndrieux says in a comment, with the second and third option (and without std::shared_ptr) you will have to be careful not to allow the reference to be used after the original object's lifetime has expired.
Having said all the above - I must also say that your design seems rather off to me. You should really not be doing any of these things and I'm 99% sure you're approaching your task the wrong way.

Save reference to void pointer in a vector during loop iteration

Guys I have a function like this (this is given and should not be modified).
void readData(int &ID, void*&data, bool &mybool) {
if(mybool)
{
std::string a = "bla";
std::string* ptrToString = &a;
data = ptrToString;
}
else
{
int b = 9;
int* ptrToint = &b;
data = ptrToint;
}
}
So I want to use this function in a loop and save the returned function parameters in a vector (for each iteration).
To do so, I wrote the following struct:
template<typename T>
struct dataStruct {
int id;
T** data; //I first has void** data, but would not be better to
// have the type? instead of converting myData back
// to void* ?
bool mybool;
};
my main.cpp then look like this:
int main()
{
void* myData = nullptr;
std::vector<dataStruct> vec; // this line also doesn't compile. it need the typename
bool bb = false;
for(int id = 1 ; id < 5; id++) {
if (id%2) { bb = true; }
readData(id, myData, bb); //after this line myData point to a string
vec.push_back(id, &myData<?>); //how can I set the template param to be the type myData point to?
}
}
Or is there a better way to do that without template? I used c++11 (I can't use c++14)
The function that you say cannot be modified, i.e. readData() is the one that should alert you!
It causes Undefined Behavior, since the pointers are set to local variables, which means that when the function terminates, then these pointers will be dangling pointers.
Let us leave aside the shenanigans of the readData function for now under the assumption that it was just for the sake of the example (and does not produce UB in your real use case).
You cannot directly store values with different (static) types in a std::vector. Notably, dataStruct<int> and dataStruct<std::string> are completely unrelated types, you cannot store them in the same vector as-is.
Your problem boils down to "I have data that is given to me in a type-unsafe manner and want to eventually get type-safe access to it". The solution to this is to create a data structure that your type-unsafe data is parsed into. For example, it seems that you inteded for your example data to have structure in the sense that there are pairs of int and std::string (note that your id%2 is not doing that because the else is missing and the bool is never set to false again, but I guess you wanted it to alternate).
So let's turn that bunch of void* into structured data:
std::pair<int, std::string> readPair(int pairIndex)
{
void* ptr;
std::pair<int, std::string> ret;
// Copying data here.
readData(2 * pairIndex + 1, ptr, false);
ret.first = *reinterpret_cast<int*>(ptr);
readData(2 * pairIndex + 2, ptr, true);
ret.second = *reinterpret_cast<std::string*>(ptr);
}
void main()
{
std::vector<std::pair<int, std::string>> parsedData;
parsedData.push_back(readPair(0));
parsedData.push_back(readPair(1));
}
Demo
(I removed the references from the readData() signature for brevity - you get the same effect by storing the temporary expressions in variables.)
Generally speaking: Whatever relation between id and the expected data type is should just be turned into the data structure - otherwise you can only reason about the type of your data entries when you know both the current ID and this relation, which is exactly something you should encapsulate in a data structure.
Your readData isn't a useful function. Any attempt at using what it produces gives undefined behavior.
Yes, it's possible to do roughly what you're asking for without a template. To do it meaningfully, you have a couple of choices. The "old school" way would be to store the data in a tagged union:
struct tagged_data {
enum { T_INT, T_STR } tag;
union {
int x;
char *y;
} data;
};
This lets you store either a string or an int, and you set the tag to tell you which one a particular tagged_data item contains. Then (crucially) when you store a string into it, you dynamically allocate the data it points at, so it will remain valid until you explicitly free the data.
Unfortunately, (at least if memory serves) C++11 doesn't support storing non-POD types in a union, so if you went this route, you'd have to use a char * as above, not an actual std::string.
One way to remove (most of) those limitations is to use an inheritance-based model:
class Data {
public:
virtual ~Data() { }
};
class StringData : public Data {
std::string content;
public:
StringData(std::string const &init) : content(init) {}
};
class IntData : public Data {
int content;
public:
IntData(std::string const &init) : content(init) {}
};
This is somewhat incomplete, but I think probably enough to give the general idea--you'd have an array (or vector) of pointers to the base class. To insert data, you'd create a StringData or IntData object (allocating it dynamically) and then store its address into the collection of Data *. When you need to get one back, you use dynamic_cast (among other things) to figure out which one it started as, and get back to that type safely. All somewhat ugly, but it does work.
Even with C++11, you can use a template-based solution. For example, Boost::variant, can do this job quite nicely. This will provide an overloaded constructor and value semantics, so you could do something like:
boost::variant<int, std::string> some_object("input string");
In other words, it's pretty what you'd get if you spent the time and effort necessary to finish the inheritance-based code outlined above--except that it's dramatically cleaner, since it gets rid of the requirement to store a pointer to the base class, use dynamic_cast to retrieve an object of the correct type, and so on. In short, it's the right solution to the problem (until/unless you can upgrade to a newer compiler, and use std::variant instead).
Apart from the problem in given code described in comments/replies.
I am trying to answer your question
vec.push_back(id, &myData<?>); //how can I set the template param to be the type myData point to?
Before that you need to modify vec definition as following
vector<dataStruct<void>> vec;
Now you can simple push element in vector
vec.push_back({id, &mydata, bb});
i have tried to modify your code so that it can work
#include<iostream>
#include<vector>
using namespace std;
template<typename T>
struct dataStruct
{
int id;
T** data;
bool mybool;
};
void readData(int &ID, void*& data, bool& mybool)
{
if (mybool)
{
data = new string("bla");
}
else
{
int b = 0;
data = &b;
}
}
int main ()
{
void* mydata = nullptr;
vector<dataStruct<void>> vec;
bool bb = false;
for (int id = 0; id < 5; id++)
{
if (id%2) bb = true;
readData(id, mydata, bb);
vec.push_back({id, &mydata, bb});
}
}

VBO of std::vector<MyClass*> and correct strides

I'm wondering how to get the maximum data locality and performance for the following problem without data copy.
I've a std::vector< MyClass* > where MyClass is something like
class MyClass
{
public:
MyClass(int n,double px,double py,double pz)
{
someField=n;
x=px;
y=py;
z=pz;
anotherField=100;
anotherUnusefulField=-10.0;
}
int someField;
int anotherField;
double x;
double y;
double z;
double anotherUnusefulField;
};
std::vector<MyClass*> myClassVector;
// add some values and set x,y,z
for (std::vector<MyClass*>::iterator iter = myClassVector.begin(); iter!=myClassVector.end();++iter)
{
MyClass *tmp = *iter;
tmp->x+=1.0;
tmp->y+=2.0;
tmp->z+=3.0;
}
I'm iterating frequently on these data and I also would like to enforce data locality. The data contained in the pointer to MyClass should be sent to a OpenGL vertex array, where the vertices are ONLY determined by x,y,z variables. As you may imagine is difficult to correctly set the strides, so I'm here to ask if there are other (portable) solution to this problem.
(p.s. I've already read the post VBOs with std::vector but my case is basically different because I have pointers and I also have other variables inside the class.)
I have pointers
Those pointers are useless to OpenGL, as they're in client address space. Also OpenGL doesn't dereference second level pointers.
and I also have other variables inside the class.
Well, then don't do this. If you passed those class instances to OpenGL you'd copy a lot of useless data. I recommend you just store a index into a tightly packed std::vector or array in your class members, and a reference to the vector/array itself. You can use getter/setter/referencer member functions to abstract away the access to the vector, i.e.
class …
{
// …
std::vector<v_t> *v;
size_t index_v;
x_t getX() const { return (*v)[index_v]; }
x_t setX(x_t x) { return (*v)[index_v] = x;}
x_t &x() { return (*v)[index_v]; }
};

Getting around Boost Multi-Index container's constant elements

I have some data class which is expensive to copy, but must be mutable, as it is frequently updated according to events. I also need a multi-index container to hold many such classes. I'm trying to set it up using boost::multi_index. For example:
struct MutableAndExpensiveToCopy {
int some_value;
std::map<int, std::string> some_huge_map;
std::map<int, std::string> an_even_bigger_map;
}
struct CanBeMultiIndexed
{
// "Payload" - its fields will never be used as indices
MutableAndExpensiveToCopy data;
// Indexes
int id;
std::string label;
}
typedef multi_index_container<
CanBeMultiIndexed,
indexed_by<
ordered_unique<member<CanBeMultiIndexed, int, &CanBeMultiIndexed::id>>,
ordered_non_unique<member<CanBeMultiIndexed,std::string,&CanBeMultiIndexed::label>>
>
> MyDataContainer;
My problem is that multi_index treats elements in the container as constants (in order to keep the integrity of all of the indices). For example, the following won't compile:
void main() {
// put some data in the container
MyDataContainer container;
CanBeMultiIndexed e1(1, "one"); // conto'r not shown in class definition for brevity
CanBeMultiIndexed e2(2, "two");
container.insert(e1);
container.insert(e2);
// try to modify data
MyDataContainer::nth_index<1>::type::iterator iter = container.get<1>().find(1);
iter->data.some_value = 5; // constness violation
}
I cannot use the replace() method, as it is expensive to copy the payload class.
I'm aware of the modify() method, but using it seems cumbersome, since in my real program, the "payload" class may contain numerous fields, and writing a functor for each and every one it out of the question.
Any suggestions?
EDIT: After some playing around, I've tried replacing the data element with a shared_ptr to MutableAndExpensiveToCopy:
struct CanBeMultiIndexed
{
// "Payload" - its fields will never be used as indices
boost::shared_ptr<MutableAndExpensiveToCopy> data;
// Indexes
int id;
std::string label;
}
This worked, and I was able to compile my main() including the data-modifying code:
void main() {
...
iter->data->some_value = 5; // this works
...
}
This pretty much gives me what I wanted, but I'm not sure why this works, so:
Does this code does what I intended, or is there some caveat I'm missing?
How come this works? Does the constness of the shared_ptr does not apply to its -> operator?
First of all, ImMutableAndExpensiveToCopy seems precisely to be the opposite --mutable, since you're trying to change its contents in the example. Try simply this:
struct CanBeMultiIndexed
{
mutable ImMutableAndExpensiveToCopy data;
int id;
std::string label;
}
(and possibly change the name ImMutableAndExpensiveToCopy for consistency.)

Bin packing implementation in C++ with STL

This is my first time using this site so sorry for any bad formatting or weird formulations, I'll try my best to conform to the rules on this site but I might do some misstakes in the beginning.
I'm right now working on an implementation of some different bin packing algorithms in C++ using the STL containers. In the current code I still have some logical faults that needs to be fixed but this question is more about the structure of the program. I would wan't some second opinion on how you should structure the program to minimize the number of logical faults and make it as easy to read as possible. In it's current state I just feel that this isn't the best way to do it but I don't really see any other way to write my code right now.
The problem is a dynamic online bin packing problem. It is dynamic in the sense that items have an arbitrary time before they will leave the bin they've been assigned to.
In short my questions are:
How would the structure of a Bin packing algorithm look in C++?
Is STL containers a good tool to make the implementation be able to handle inputs of arbitrary lenght?
How should I handle the containers in a good, easy to read and implement way?
Some thoughts about my own code:
Using classes to make a good distinction between handling the list of the different bins and the list of items in those bins.
Getting the implementation as effective as possible.
Being easy to run with a lot of different data lengths and files for benchmarking.
#include <iostream>
#include <fstream>
#include <list>
#include <queue>
#include <string>
#include <vector>
using namespace std;
struct type_item {
int size;
int life;
bool operator < (const type_item& input)
{
return size < input.size;
}
};
class Class_bin {
double load;
list<type_item> contents;
list<type_item>::iterator i;
public:
Class_bin ();
bool operator < (Class_bin);
bool full (type_item);
void push_bin (type_item);
double check_load ();
void check_dead ();
void print_bin ();
};
Class_bin::Class_bin () {
load=0.0;
}
bool Class_bin::operator < (Class_bin input){
return load < input.load;
}
bool Class_bin::full (type_item input) {
if (load+(1.0/(double) input.size)>1) {
return false;
}
else {
return true;
}
}
void Class_bin::push_bin (type_item input) {
int sum=0;
contents.push_back(input);
for (i=contents.begin(); i!=contents.end(); ++i) {
sum+=i->size;
}
load+=1.0/(double) sum;
}
double Class_bin::check_load () {
return load;
}
void Class_bin::check_dead () {
for (i=contents.begin(); i!=contents.end(); ++i) {
i->life--;
if (i->life==0) {
contents.erase(i);
}
}
}
void Class_bin::print_bin () {
for (i=contents.begin (); i!=contents.end (); ++i) {
cout << i->size << " ";
}
}
class Class_list_of_bins {
list<Class_bin> list_of_bins;
list<Class_bin>::iterator i;
public:
void push_list (type_item);
void sort_list ();
void check_dead ();
void print_list ();
private:
Class_bin new_bin (type_item);
bool comparator (type_item, type_item);
};
Class_bin Class_list_of_bins::new_bin (type_item input) {
Class_bin temp;
temp.push_bin (input);
return temp;
}
void Class_list_of_bins::push_list (type_item input) {
if (list_of_bins.empty ()) {
list_of_bins.push_front (new_bin(input));
return;
}
for (i=list_of_bins.begin (); i!=list_of_bins.end (); ++i) {
if (!i->full (input)) {
i->push_bin (input);
return;
}
}
list_of_bins.push_front (new_bin(input));
}
void Class_list_of_bins::sort_list () {
list_of_bins.sort();
}
void Class_list_of_bins::check_dead () {
for (i=list_of_bins.begin (); i !=list_of_bins.end (); ++i) {
i->check_dead ();
}
}
void Class_list_of_bins::print_list () {
for (i=list_of_bins.begin (); i!=list_of_bins.end (); ++i) {
i->print_bin ();
cout << "\n";
}
}
int main () {
int i, number_of_items;
type_item buffer;
Class_list_of_bins bins;
queue<type_item> input;
string filename;
fstream file;
cout << "Input file name: ";
cin >> filename;
cout << endl;
file.open (filename.c_str(), ios::in);
file >> number_of_items;
for (i=0; i<number_of_items; ++i) {
file >> buffer.size;
file >> buffer.life;
input.push (buffer);
}
file.close ();
while (!input.empty ()) {
buffer=input.front ();
input.pop ();
bins.push_list (buffer);
}
bins.print_list ();
return 0;
}
Note that this is just a snapshot of my code and is not yet running properly
Don't wan't to clutter this with unrelated chatter just want to thank the people who contributed, I will review my code and hopefully be able to structure my programming a bit better
How would the structure of a Bin packing algorithm look in C++?
Well, ideally you would have several bin-packing algorithms, separated into different functions, which differ only by the logic of the algorithm. That algorithm should be largely independent from the representation of your data, so you can change your algorithm with only a single function call.
You can look at what the STL Algorithms have in common. Mainly, they operate on iterators instead of containers, but as I detail below, I wouldn't suggest this for you initially. You should get a feel for what algorithms are available and leverage them in your implementation.
Is STL containers a good tool to make the implementation be able to handle inputs of arbitrary length?
It usually works like this: create a container, fill the container, apply an algorithm to the container.
Judging from the description of your requirements, that is how you'll use this, so I think it'll be fine. There's one important difference between your bin packing algorithm and most STL algorithms.
The STL algorithms are either non-modifying or are inserting elements to a destination. bin-packing, on the other hand, is "here's a list of bins, use them or add a new bin". It's not impossible to do this with iterators, but probably not worth the effort. I'd start by operating on the container, get a working program, back it up, then see if you can make it work for only iterators.
How should I handle the containers in a good, easy to read and implement way?
I'd take this approach, characterize your inputs and outputs:
Input: Collection of items, arbitrary length, arbitrary order.
Output: Collection of bins determined by algorithm. Each bin contains a collection of items.
Then I'd worry about "what does my algorithm need to do?"
Constantly check bins for "does this item fit?"
Your Class_bin is a good encapsulation of what is needed.
Avoid cluttering your code with unrelated stuff like "print()" - use non-member help functions.
type_item
struct type_item {
int size;
int life;
bool operator < (const type_item& input)
{
return size < input.size;
}
};
It's unclear what life (or death) is used for. I can't imagine that concept being relevant to implementing a bin-packing algorithm. Maybe it should be left out?
This is personal preference, but I don't like giving operator< to my objects. Objects are usually non-trivial and have many meanings of less-than. For example, one algorithm might want all the alive items sorted before the dead items. I typically wrap that in another struct for clarity:
struct type_item {
int size;
int life;
struct SizeIsLess {
// Note this becomes a function object, which makes it easy to use with
// STL algorithms.
bool operator() (const type_item& lhs, const type_item& rhs)
{
return lhs.size < rhs.size;
}
}
};
vector<type_item> items;
std::sort(items.begin, items.end(), type_item::SizeIsLess);
Class_bin
class Class_bin {
double load;
list<type_item> contents;
list<type_item>::iterator i;
public:
Class_bin ();
bool operator < (Class_bin);
bool full (type_item);
void push_bin (type_item);
double check_load ();
void check_dead ();
void print_bin ();
};
I would skip the Class_ prefix on all your types - it's just a bit excessive, and it should be clear from the code. (This is a variant of hungarian notation. Programmers tend to be hostile towards it.)
You should not have a class member i (the iterator). It's not part of class state. If you need it in all the members, that's ok, just redeclare it there. If it's too long to type, use a typedef.
It's difficult to quantify "bin1 is less than bin2", so I'd suggest removing the operator<.
bool full(type_item) is a little misleading. I'd probably use bool can_hold(type_item). To me, bool full() would return true if there is zero space remaining.
check_load() would seem more clearly named load().
Again, it's unclear what check_dead() is supposed to accomplish.
I think you can remove print_bin and write that as a non-member function, to keep your objects cleaner.
Some people on StackOverflow would shoot me, but I'd consider just making this a struct, and leaving load and item list public. It doesn't seem like you care much about encapsulation here (you're only need to create this object so you don't need do recalculate load each time).
Class_list_of_bins
class Class_list_of_bins {
list<Class_bin> list_of_bins;
list<Class_bin>::iterator i;
public:
void push_list (type_item);
void sort_list ();
void check_dead ();
void print_list ();
private:
Class_bin new_bin (type_item);
bool comparator (type_item, type_item);
};
I think you can do without this class entirely.
Conceptually, it represents a container, so just use an STL container. You can implement the methods as non-member functions. Note that sort_list can be replaced with std::sort.
comparator is too generic a name, it gives no indication of what it compares or why, so consider being more clear.
Overall Comments
Overall, I think the classes you've picked adequately model the space you're trying to represent, so you'll be fine.
I might structure my project like this:
struct bin {
double load; // sum of item sizes.
std::list<type_item> items;
bin() : load(0) { }
};
// Returns true if the bin can fit the item passed to the constructor.
struct bin_can_fit {
bin_can_fit(type_item &item) : item_(item) { }
bool operator()(const bin &b) {
return item_.size < b.free_space;
}
private:
type_item item_;
};
// ItemIter is an iterator over the items.
// BinOutputIter is an output iterator we can use to put bins.
template <ItemIter, BinOutputIter>
void bin_pack_first_fit(ItemIter curr, ItemIter end, BinOutputIter output_bins) {
std::vector<bin> bins; // Create a local bin container, to simplify life.
for (; curr != end; ++curr) {
// Use a helper predicate to check whether the bin can fit this item.
// This is untested, but just for an idea.
std::vector<bin>::iterator bin_it =
std::find_if(bins.begin(), bins.end(), bin_can_fit(*curr));
if (bin_it == bins.end()) {
// Did not find a bin with enough space, add a new bin.
bins.push_back(bin);
// push_back invalidates iterators, so reassign bin_it to the last item.
bin_it = std::advance(bins.begin(), bins.size() - 1);
}
// bin_it now points to the bin to put the item in.
bin_it->items.push_back(*curr);
bin_it->load += curr.size();
}
std::copy(bins.begin(), bins.end(), output_bins); // Apply our bins to the destination.
}
void main(int argc, char** argv) {
std::vector<type_item> items;
// ... fill items
std::vector<bin> bins;
bin_pack_first_fit(items.begin(), items.end(), std::back_inserter(bins));
}
Some thoughts:
Your names are kinda messed up in places.
You have a lot of parameters named input, thats just meaningless
I'd expect full() to check whether it is full, not whether it can fit something else
I don't think push_bin pushes a bin
check_dead modifies the object (I'd expect something named check_*, to just tell me something about the object)
Don't put things like Class and type in the names of classes and types.
class_list_of_bins seems to describe what's inside rather then what the object is.
push_list doesn't push a list
Don't append stuff like _list to every method in a list class, if its a list object, we already know its a list method
I'm confused given the parameters of life and load as to what you are doing. The bin packing problem I'm familiar with just has sizes. I'm guessing that overtime some of the objects are taken out of bins and thus go away?
Some further thoughts on your classes
Class_list_of_bins is exposing too much of itself to the outside world. Why would the outside world want to check_dead or sort_list? That's nobodies business but the object itself. The public method you should have on that class really should be something like
* Add an item to the collection of bins
* Print solution
* Step one timestep into the future
list<Class_bin>::iterator i;
Bad, bad, bad! Don't put member variables on your unless they are actually member states. You should define that iterator where it is used. If you want to save some typing add this: typedef list::iterator bin_iterator and then you use bin_iterator as the type instead.
EXPANDED ANSWER
Here is my psuedocode:
class Item
{
Item(Istream & input)
{
read input description of item
}
double size_needed() { return actual size required (out of 1) for this item)
bool alive() { return true if object is still alive}
void do_timestep() { decrement life }
void print() { print something }
}
class Bin
{
vector of Items
double remaining_space
bool can_add(Item item) { return true if we have enough space}
void add(Item item) {add item to vector of items, update remaining space}
void do_timestep() {call do_timestep() and all Items, remove all items which indicate they are dead, updating remaining_space as you go}
void print { print all the contents }
}
class BinCollection
{
void do_timestep { call do_timestep on all of the bins }
void add(item item) { find first bin for which can_add return true, then add it, create a new bin if neccessary }
void print() { print all the bins }
}
Some quick notes:
In your code, you converted the int size to a float repeatedly, that's not a good idea. In my design that is localized to one place
You'll note that the logic relating to a single item is now contained inside the item itself. Other objects only can see whats important to them, size_required and whether the object is still alive
I've not included anything about sorting stuff because I'm not clear what that is for in a first-fit algorithm.
This interview gives some great insight into the rationale behind the STL. This may give you some inspiration on how to implement your algorithms the STL-way.