The problem
I am trying to build SRI's Language Modeling tool, srilm version 1.6.0 on my mac, and coming across some fairly strange compilation problems ("strange" in that a few hours of Google-fu did not help), so I am turning to you to see if anyone sees how I can fix this.
I have already checked that I have the required dependencies and followed the install instructions as well as gone through the build troubleshooting section of the FAQ.
System Specifications
I have a pretty vanilla install of OS X, with some packages installed through homebrew. XCode 4.3.2 (latest version) is installed. Here are the other relevant system details.
OS version
Mac OS X 10.7.4
gcc -v printout
$ gcc -v
Using built-in specs.
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/local/libexec/gcc/x86_64-apple-darwin11.0.0/4.6.1/lto-wrapper
Target: x86_64-apple-darwin11.0.0
Configured with: ../gcc-4.6.1/configure --enable-languages=fortran,c++
Thread model: posix
gcc version 4.6.1 (GCC)
g++ -v printout
$ gcc -v
Using built-in specs.
COLLECT_GCC=g++
COLLECT_LTO_WRAPPER=/usr/local/libexec/gcc/x86_64-apple-darwin11.0.0/4.6.1/lto-wrapper
Target: x86_64-apple-darwin11.0.0
Configured with: ../gcc-4.6.1/configure --enable-languages=fortran,c++
Thread model: posix
gcc version 4.6.1 (GCC)
uname -a printout
$ uname -a
Darwin MacBook-Air.local 11.4.0 Darwin Kernel Version 11.4.0: Mon Apr 9 19:32:15 PDT 2012; root:xnu-1699.26.8~1/RELEASE_X86_64 x86_64
The error itself
The following is the end of the output produced by running make World from the srlim top-level directory. Everything up until this point compiles fine in any of the following circumstances:
I run make World on its own.
I run make World MACHINE_TYPE=macosx
I run make World MACHINE_TYPE=macosx-m64 (specific makefile for 64bit processors)
I run make World MACHINE_TYPE=macosx-m32 (specific makefile for 32bit processors)
And the error that pops up is always the same (shown below).
stderr printout
$ make World
(...) # a bunch of stuff compiles with no errors or warnings
c++ -Wreturn-type -Wimplicit -DINSTANTIATE_TEMPLATES -DHAVE_ZOPEN -I/usr/include -I. -I../../include -DHAVE_ZOPEN -c -g -O2 -fno-common -o ../obj/macosx/LatticeIndex.o LatticeIndex.cc
LatticeIndex.cc:78:6: error: variable length array of non-POD element type
'NBestWordInfo'
makeArray(NBestWordInfo, roundedNgram, len + 1);
^
../../include/Array.h:93:33: note: expanded from macro 'makeArray'
# define makeArray(T, A, n) T A[n]
^
LatticeIndex.cc:126:4: warning: data argument not used by format string
[-Wformat-extra-args]
(float)ngram[0].start);
^
LatticeIndex.cc:128:4: warning: data argument not used by format string
[-Wformat-extra-args]
(float)(ngram[len-1].start + ngram[len-1].duration));
^
2 warnings and 1 error generated.
make[2]: *** [../obj/macosx/LatticeIndex.o] Error 1
make[1]: *** [release-libraries] Error 1
make: *** [World] Error 2
Any idea what could be going wrong? It seems to compile fine on some other people's macs in my department, and I've checked their makefiles for differences, but nothing popped up. No one here has any idea why the build fails, but we'd really appreciate it if you can help us out. Thanks in advance for any help you can provide me with! :-)
The problem is due to Apple using llvm-gcc/clang, which does not support variable length arrays. This problem can actually be addressed by modifying $SRILM/dstruct/src/Array.h, and has been noted and addressed in the upcoming release of srilm.
For the time being, on a mac, build srilm using g++ 4.2 instead, using the following command:
$ make MACHINE_TYPE=macosx-m64 CXX=g++-4.2 World
This builds srilm without problem on all my macs.
Related
I'm trying to use packages that require Rcpp in R on my M1 Mac, which I was never able to get up and running after purchasing this computer. I updated it to Monterey in the hope that this would fix some installation issues but it hasn't. I tried running the Rcpp check from this page but I get the following error:
> Rcpp::sourceCpp("~/github/helloworld.cpp")
ld: warning: directory not found for option '-L/opt/R/arm64/gfortran/lib/gcc/aarch64-apple-darwin20.2.0/11.0.0'
ld: warning: directory not found for option '-L/opt/R/arm64/gfortran/lib'
ld: library not found for -lgfortran
clang: error: linker command failed with exit code 1 (use -v to see invocation)
make: *** [sourceCpp_4.so] Error 1
clang++ -arch arm64 -std=gnu++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I../inst/include -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/Rcpp/include" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/RcppArmadillo/include" -I"/Users/afredston/github" -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c helloworld.cpp -o helloworld.o
clang++ -arch arm64 -std=gnu++14 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -single_module -multiply_defined suppress -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o sourceCpp_4.so helloworld.o -L/Library/Frameworks/R.framework/Resources/lib -lRlapack -L/Library/Frameworks/R.framework/Resources/lib -lRblas -L/opt/R/arm64/gfortran/lib/gcc/aarch64-apple-darwin20.2.0/11.0.0 -L/opt/R/arm64/gfortran/lib -lgfortran -lemutls_w -lm -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation
Error in Rcpp::sourceCpp("~/github/helloworld.cpp") :
Error 1 occurred building shared library.
I get that it can't "find" gfortran. I installed this release of gfortran for Monterey. When I type which gfortran into Terminal, it returns /opt/homebrew/bin/gfortran. (Maybe this version of gfortran requires Xcode tools that are too new—it says something about 13.2 and when I run clang --version it says 13.0—but I don't see another release of gfortran for Monterey?)
I also appended /opt/homebrew/bin: to PATH in R so it looks like this now:
> Sys.getenv("PATH")
[1] "/opt/homebrew/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/Library/TeX/texbin:/Applications/RStudio.app/Contents/MacOS/postback"
Other things I checked:
Xcode command line tools is installed (which clang returns /usr/bin/clang).
Files ~/.R/Makevars and ~/.Renviron don't exist.
Here's my session info:
R version 4.1.1 (2021-08-10)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Monterey 12.1
Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] compiler_4.1.1 tools_4.1.1 RcppArmadillo_0.10.7.5.0
[4] Rcpp_1.0.7
Background
Currently (2023-02-20), CRAN builds R 4.2 binaries for Apple silicon using Apple Clang from Command Line Tools for Xcode 13.1 and using an experimental fork of GNU Fortran 12.
If you obtain R from CRAN (i.e., here), then you need to replicate CRAN's compiler setup on your system before building R packages that contain C/C++/Fortran code from their sources (and before using Rcpp, etc.). This requirement ensures that your package builds are compatible with R itself.
A further complication is the fact that Apple Clang doesn't support OpenMP, so you need to do even more work to compile programs that make use of multithreading. You could circumvent the issue by building R itself, all R packages, and all external libraries from sources with LLVM Clang, which does support OpenMP, but that approach is onerous and "for experts only".
There is another approach that has been tested by a few people, including Simon Urbanek, the maintainer of R for macOS. It is experimental and also "for experts only", but it works on my machine and is much simpler than learning to build R and other libraries yourself.
Instructions for obtaining a working toolchain
Warning: These come with no warranty and could break at any time. Some level of familiarity with C/C++/Fortran program compilation, Makefile syntax, and Unix shells is assumed. Everyone is encouraged to consult official documentation, which is more likely to be maintained than answers on SO. As usual, sudo at your own risk.
I will try to address compilers and OpenMP support at the same time. I am going to assume that you are starting from nothing. Feel free to skip steps you've already taken, though you might find a fresh start helpful.
I've tested these instructions on a machine running Big Sur, but they should also work on Monterey and Ventura.
Download an R 4.2 binary from CRAN here and install. Be sure to select the binary built for Apple silicon.
Run
$ sudo xcode-select --install
in Terminal to install the latest release version of Apple's Command Line Tools for Xcode, which includes Apple Clang. You can obtain earlier versions from your browser here. However, the version that you install should not be older than the one that CRAN used to build your R binary.
Download the GNU Fortran binary provided here and install by unpacking to root:
$ curl -LO https://mac.r-project.org/tools/gfortran-12.0.1-20220312-is-darwin20-arm64.tar.xz
$ sudo tar xvf gfortran-12.0.1-20220312-is-darwin20-arm64.tar.xz -C /
$ sudo ln -sfn $(xcrun --show-sdk-path) /opt/R/arm64/gfortran/SDK
The last command updates a symlink inside of the installation so that it points to the SDK inside of your Command Line Tools installation.
Download an OpenMP runtime suitable for your Apple Clang version here and install by unpacking to root. You can query your Apple Clang version with clang --version. For example, I have version 1300.0.29.3, so I did:
$ curl -LO https://mac.r-project.org/openmp/openmp-12.0.1-darwin20-Release.tar.gz
$ sudo tar xvf openmp-12.0.1-darwin20-Release.tar.gz -C /
After unpacking, you should find these files on your system:
/usr/local/lib/libomp.dylib
/usr/local/include/ompt.h
/usr/local/include/omp.h
/usr/local/include/omp-tools.h
Add the following lines to $(HOME)/.R/Makevars, creating the file if necessary.
CPPFLAGS += -I/usr/local/include -Xclang -fopenmp
LDFLAGS += -L/usr/local/lib -lomp
Test that you are able to use R to compile a C or C++ program with OpenMP support while linking relevant libraries from the GNU Fortran installation (indicated by the -l flags in the output of R CMD CONFIG FLIBS).
The most transparent approach is to use R CMD SHLIB directly. In a temporary directory, create an empty source file omp_test.c and add the following lines:
#ifdef _OPENMP
# include <omp.h>
#endif
#include <Rinternals.h>
SEXP omp_test(void)
{
#ifdef _OPENMP
Rprintf("OpenMP threads available: %d\n", omp_get_max_threads());
#else
Rprintf("OpenMP not supported\n");
#endif
return R_NilValue;
}
Compile it:
$ R CMD SHLIB omp_test.c $(R CMD CONFIG FLIBS)
Then call the compiled C function from R:
$ R -e 'dyn.load("omp_test.so"); invisible(.Call("omp_test"))'
OpenMP threads available: 8
If the compiler or linker throws an error, or if you find that OpenMP is still not supported, then one of us has made a mistake. Please report any issues.
Note that you can implement the same test using Rcpp, if you don't mind installing it:
library(Rcpp)
registerPlugin("flibs", Rcpp.plugin.maker(libs = "$(FLIBS)"))
sourceCpp(code = '
#ifdef _OPENMP
# include <omp.h>
#endif
#include <Rcpp.h>
// [[Rcpp::plugins(flibs)]]
// [[Rcpp::export]]
void omp_test()
{
#ifdef _OPENMP
Rprintf("OpenMP threads available: %d\\n", omp_get_max_threads());
#else
Rprintf("OpenMP not supported\\n");
#endif
return;
}
')
omp_test()
OpenMP threads available: 8
References
Everything is a bit scattered:
R Installation and Administration manual [link]
Writing R Extensions manual [link]
R for macOS Developers web page [link]
I resolved this issue by adding a path to the homebrew installation of gfortran to my ~/.R/Makevars following these instructions: https://pat-s.me/transitioning-from-x86-to-arm64-on-macos-experiences-of-an-r-user/#gfortran
I just avoided the issue until MacOS had things working more smoothly. so I either Windows Developer Virtual Machine (VM) or run my code development in another environment. I'm not too impressed with the updated and "faster" chipset, but that it doesn't work with much. Slow to implement and work-a-rounds often are a must.
Tested the following process for making multithread data.table work in a M2 MacBook Pro (macOS Monterey)
Steps are mostly the same with this answer by the user inferator.
Download and install R from CRAN
Download and install RStudio with developer tools
Run the following commands in terminal to install OpenMP
curl -O https://mac.r-project.org/openmp/openmp-12.0.1-darwin20-Release.tar.gz
sudo tar fvxz openmp-12.0.1-darwin20-Release.tar.gz -C /
Add compiler flags to connect clan w/ OpenMP. In terminal, write the following:
cd ~
mkdir .R
nano .R/Makevars
Inside the opened Makevars file paste the following lines. Once finished, hit command+O and then Enter to save. Do a command+X to close the editor.
CPPFLAGS += -Xclang -fopenmp
LDFLAGS += -lomp
Download and run the installer for gfortran by downloading gfortran-ARM-12.1-Monterey.dmg from the respective GitHub repo
This concludes the steps regarding enabling OpenMP and (hopefully) Rcpp in R under a M2 chip system.
Now, for testing that everything works with data.table I did the following
Open RStudio and run
install.packages("data.table", type = "source")
If everything is done correctly, the package should compile without any errors and return the following when running getDTthreads(verbose = TRUE):
OpenMP version (_OPENMP) 201811
omp_get_num_procs() 8
R_DATATABLE_NUM_PROCS_PERCENT unset (default 50)
R_DATATABLE_NUM_THREADS unset
R_DATATABLE_THROTTLE unset (default 1024)
omp_get_thread_limit() 2147483647
omp_get_max_threads() 8
OMP_THREAD_LIMIT unset
OMP_NUM_THREADS unset
RestoreAfterFork true
data.table is using 4 threads with throttle==1024. See ?setDTthreads.
[1] 4
I struggle with Caffe compilation. Unfortunately I failed to compile it.
Steps I followed:
git clone https://github.com/BVLC/caffe.git
cd caffe
mkdir build
cd build
cmake ..
make all
Running make all fails with the following error message:
[ 2%] Building NVCC (Device) object src/caffe/CMakeFiles/cuda_compile.dir/util/cuda_compile_generated_im2col.cu.o
In file included from /usr/include/cuda_runtime.h:59:0,
from <command-line>:0:
/usr/include/host_config.h:82:2: error: #error -- unsupported GNU version! gcc 4.9 and up are not supported!
#error -- unsupported GNU version! gcc 4.9 and up are not supported!
^
CMake Error at cuda_compile_generated_im2col.cu.o.cmake:207 (message):
Error generating /mydir/caffe/build/src/caffe/CMakeFiles/cuda_compile.dir/util/./cuda_compile_generated_im2col.cu.o
Software version:
OS: Debian.
gcc version: 5.3.1.
nvcc version: 6.5.12.
cat /proc/driver/nvidia/version result:
NVRM version: NVIDIA UNIX x86_64 Kernel Module 352.63 Sat Nov 7 21:25:42 PST 2015
GCC version: gcc version 4.8.5 (Debian 4.8.5-3)
Attempts to solve the problem
1st try
Simple solutions are often best ones, so (as suggested here) I tried to comment out macro checking gcc version from /usr/include/host_config.h (line 82). Unfortunately it doesn't work and compilation fails badly:
1 catastrophic error detected in the compilation of "/tmp/tmpxft_000069c2_00000000-4_im2col.cpp4.ii".
2nd try
I tried to run:
cmake -D CMAKE_CXX_COMPILER=g++-4.8 ..
make
but it fails with exactly the same error message (even though g++-4.8 should be accepted).
3rd try
I've found similar problem (though not related to Caffe) and I tried to solve it as suggested in the accepted answer.
What I did:
I've ran grep -iR "find_package(CUDA" caffe command and found Cuda.cmake file which has find_package(CUDA 5.5 QUIET) in line 225.
I added set(CUDA_HOST_COMPILER /usr/bin/gcc-4.8) to Cuda.cmake, line before line: find_package(CUDA 5.5 QUIET).
I removed everything from build directory and ran cmake and make again - with and without -D CMAKE_CXX_COMPILER=g++-4.8.
Unfortunately result is exactly the same. Caffe probably overwrites it somehow - I didn't figure it out how.
make VERBOSE=1 2>&1 | grep -i compiler-bindir returns nothing.
What's interesting, make VERBOSE=1 prints command that fails, which is:
/usr/bin/nvcc -M -D__CUDACC__ /mydir/caffe/src/caffe/util/im2col.cu -o /mydir/caffe/build/src/caffe/CMakeFiles/cuda_compile.dir/util/cuda_compile_generated_im2col.cu.o.NVCC-depend -ccbin /usr/bin/cc -m64 -DUSE_LMDB -DUSE_LEVELDB -DUSE_OPENCV -DWITH_PYTHON_LAYER -DGTEST_USE_OWN_TR1_TUPLE -Xcompiler ,\"-fPIC\",\"-Wall\",\"-Wno-sign-compare\",\"-Wno-uninitialized\",\"-O3\",\"-DNDEBUG\" -gencode arch=compute_20,code=sm_21 -Xcudafe --diag_suppress=cc_clobber_ignored -Xcudafe --diag_suppress=integer_sign_change -Xcudafe --diag_suppress=useless_using_declaration -Xcudafe --diag_suppress=set_but_not_used -Xcompiler -fPIC -DNVCC -I/usr/include -I/mydir/caffe/src -I/usr/include -I/mydir/caffe/build/include -I/usr/include/hdf5/serial -I/usr/include/opencv -I/usr/include/atlas -I/usr/include/python2.7 -I/usr/lib/python2.7/dist-packages/numpy/core/include -I/mydir/caffe/include -I/mydir/caffe/build
when I add --compiler-bindir /usr/bin/gcc-4.8 flag manually, it prints error:
nvcc fatal : redefinition of argument 'compiler-bindir'
which may be related to this bug report.
Edit: I didn't notice that --compiler-bindir and -ccbin are the same options, and the latter is already set in above command that failed. When I changed -ccbin /usr/bin/cc to -ccbin /usr/bin/gcc-4.8 in above command that failed, it completes successfully. Now I need to find option in Caffe's CMake file that overwrite -ccbin in all subsequent Caffe's CMakes. Looking at cmake/Cuda.cmake:252:list(APPEND CUDA_NVCC_FLAGS ${NVCC_FLAGS_EXTRA} seems to be good way to go.
How can I successfully complete my compilation? Any help is appreciated.
Related SO questions:
host_config.h:unsupported GNU version! gcc versions later than 4.9 are not supported.
CUDA 6.5 complains about not supporting gcc 4.9 - what to do?.
cmake -D CUDA_NVCC_FLAGS="-ccbin gcc-4.8" .. && make causes successful compilation.
Now another problem showed up: linking Google's libgflags or libprotobuf fails probably due to fact that it was compiled with newer gcc version but it's not related to asked question.
My machine runs Ubuntu 15.10, and my default compiler version is gcc 5.2.1 .
Commenting out the #error directive in line 115 of file
/usr/local/cuda-7.5/include/host_config.h
(or whatever the path on your system is) did the trick for me. Caffe compiled fine, all tests ran smoothly.
On the other hand, if one chooses to ignore this and proceed to compile part of the project with one compiler version, part of the project with another (for me it was gcc-4.8 and gcc-5.2.1), linking problems will arise. The linking problems of protobuf and libgflags another answer mentions are not unrelated to this.
I want to install xgboost using anaconda python. In this process, I am trying to install xgboost. While trying to "make" the xgboost i am getting the below error:
C:\GitRepository\xgboost>
g++ -m64 -c -Wall -O3 -msse2 -Wno-unknown-pragmas -funroll-loops -fopenmp -fPIC
-o updater.o src/tree/updater.cpp
src/tree/updater.cpp:1:0: warning: -fPIC ignored for target (all code is positio
n independent)
// Copyright 2014 by Contributors
^
src/tree/updater.cpp:1:0: sorry, unimplemented: 64-bit mode not compiled in
make: *** [updater.o] Error 1
I understood from the other Stack overflow posts that 32 bit gcc cannot go with the 64bit anaconda that i am using. However when i installed mingw-w64 i could see that it has g++ only for mingw32 and not for mingw-w64. Under the mingw-w64 package, g++ and other applications+folders are present only for mingw32 and not for 64. For mingw-64 only a batch file and a internet short cut is present.
Could you please guide me what is going wrong or guide me to an appropriate place from where i can download for mingw-64.
Thanks in advance.
If you are really using MSYS2, then you should not be downloading separate compilers. You should install 64-bit g++ using MSYS2's package manager, by running pacman -S mingw-w64-x86_64-toolchain. Then make sure that you start the MSYS2 shell using the shortcut that is named something like "MSYS2 Win64 Shell" in your start menu. Type which g++ in Bash and make sure it outputs /mingw64/bin/g++. Then you should be able to compile code for 64-bit Windows.
I'm not sure that this answer is complete. If you need more help with MSYS2, it would be good to post the exact commands you are running to download/extract the source code and build so that others can reproduce the error.
I am trying to compile a big solver using a makefile. When typing make, the following command gets executed:
mpif90 -O2 -fpp -I/somePath/ -c precision.F90
I get the following error:
gfortran: error: unrecognized command line option ‘-fpp’
I typed which mpif90 to see where it is pointing to:
/usr/local/intel14/impi/4.1.3.048/intel64/bin/mpif90
I tried to manually enter the command to make sure it did not have anything to do with the makefile and I got the same error. Why is gfortran being called? It must be some linking error but I can't figure it out.
The comments put me on the right track. I did not know mpif90 was just a wrapper.
$ /usr/local/inter14/impi/4.1.3.048/intel64/bin/mpif90 -v
mpif90 for the Intel(R) MPI Library 4.1 for Linux*
Copyright(C) 2003-2014, Intel Corporation. All rights reserved.
Using built-in specs.
COLLECT_GCC=gfortran
COLLECT_LTO_WRAPPER=/usr/local/gcc5.2/libexec/gcc/x86_64-unknown-linux-gnu/5.2.0/lto-wrapper
Target: x86_64-unknown-linux-gnu
Configured with: ./configure --prefix=/usr/local/gcc5.2 --disable-multilib
Thread model: posix
gcc version 5.2.0 (GCC)
I asked the code's author to do the same, the output pointed to an intel compiler. So what remains is to link ifort. This fixed it for me (bash shell):
export I_MPI_F90=ifort
You can just use the alternative
/usr/local/intel14/impi/4.1.3.048/intel64/bin/mpiifort
Ok, this is just a bit of a fun exercise, but it can't be too hard compiling programmes for some older linux systems, or can it?
I have access to a couple of ancient systems all running linux and maybe it'd be interesting to see how they perform under load. Say as an example we want to do some linear algebra using Eigen which is a nice header-only library. Any chance to compile it on the target system?
user#ancient:~ $ uname -a
Linux local 2.2.16 #5 Sat Jul 8 20:36:25 MEST 2000 i586 unknown
user#ancient:~ $ gcc --version
egcs-2.91.66
Maybe not... So let's compile it on a current system. Below are my attempts, mainly failed ones. Any more ideas very welcome.
Compile with -m32 -march=i386
user#ancient:~ $ ./a.out
BUG IN DYNAMIC LINKER ld.so: dynamic-link.h: 53: elf_get_dynamic_info: Assertion `! "bad dynamic tag"' failed!
Compile with -m32 -march=i386 -static: Runs on all fairly recent kernel versions but fails if they are slightly older with the well known error message
user#ancient:~ $ ./a.out
FATAL: kernel too old
Segmentation fault
This is a glibc error which has a minimum kernel version it supports, e.g. kernel 2.6.4 on my system:
$ file a.out
a.out: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
statically linked, for GNU/Linux 2.6.4, not stripped
Compile glibc myself with support for the oldest kernel possible. This post describes it in more detail but essentially it goes like this
wget ftp://ftp.gnu.org/gnu/glibc/glibc-2.14.tar.bz2
tar -xjf glibc-2.14.tar.bz2
cd glibc-2.14
mkdir build; cd build
../configure --prefix=/usr/local/glibc_32 \
--enable-kernel=2.0.0 \
--with-cpu=i486 --host=i486-linux-gnu \
CC="gcc -m32 -march=i486" CXX="g++ -m32 -march=i486"
make -j 4
make intall
Not sure if the --with-cpu and --host options do anything, most important is to force the use of compiler flags -m32 -march=i486 for 32-bit builds (unfortunately -march=i386 bails out with errors after a while) and --enable-kernel=2.0.0 to make the library compatible with older kernels. Incidentially, during configure I got the warning
WARNING: minimum kernel version reset to 2.0.10
which is still acceptable, I suppose. For a list of things which change with different kernels see ./sysdeps/unix/sysv/linux/kernel-features.h.
Ok, so let's link against the newly compiled glibc library, slightly messy but here it goes:
$ export LIBC_PATH=/usr/local/glibc_32
$ export LIBC_FLAGS=-nostdlib -L${LIBC_PATH} \
${LIBC_PATH}/crt1.o ${LIBC_PATH}/crti.o \
-lm -lc -lgcc -lgcc_eh -lstdc++ -lc \
${LIBC_PATH}/crtn.o
$ g++ -m32 -static prog.o ${LIBC_FLAGS} -o prog
Since we're doing a static compile the link order is important and may well require some trial and error, but basically we learn from what options gcc gives to the linker:
$ g++ -m32 -static -Wl,-v file.o
Note, crtbeginT.o and crtend.o are also linked against which I didn't need for my programmes so I left them out. The output also includes a line like --start-group -lgcc -lgcc_eh -lc --end-group which indicates inter-dependence between the libraries, see this post. I just mentioned -lc twice in the gcc command line which also solves inter-dependence.
Right, the hard work has paid off and now I get
$ file ./prog
./prog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
statically linked, for GNU/Linux 2.0.10, not stripped
Brilliant I thought, now try it on the old system:
user#ancient:~ $ ./prog
set_thread_area failed when setting up thread-local storage
Segmentation fault
This, again, is a glibc error message from ./nptl/sysdeps/i386/tls.h. I fail to understand the details and give up.
Compile on the new system g++ -c -m32 -march=i386 and link on the old. Wow, that actually works for C and simple C++ programmes (not using C++ objects), at least for the few I've tested. This is not too surprising as all I need from libc is printf (and maybe some maths) of which the interface hasn't changed but the interface to libstdc++ is very different now.
Setup a virtual box with an old linux system and gcc version 2.95. Then compile gcc version 4.x.x ... sorry, but too lazy for that right now ...
???
Have found the reason for the error message:
user#ancient $ ./prog
set_thread_area failed when setting up thread-local storage
Segmentation fault
It's because glibc makes a system call to a function which is only available since kernel 2.4.20. In a way it can be seen as a bug of glibc as it wrongly claims to be compatible with kernel 2.0.10 when it requires at least kernel 2.4.20.
The details:
./glibc-2.14/nptl/sysdeps/i386/tls.h
[...]
/* Install the TLS. */ \
asm volatile (TLS_LOAD_EBX \
"int $0x80\n\t" \
TLS_LOAD_EBX \
: "=a" (_result), "=m" (_segdescr.desc.entry_number) \
: "0" (__NR_set_thread_area), \
TLS_EBX_ARG (&_segdescr.desc), "m" (_segdescr.desc)); \
[...]
_result == 0 ? NULL \
: "set_thread_area failed when setting up thread-local storage\n"; })
[...]
The main thing here is, it calls the assembly function int 0x80 which is a system call to the linux kernel which decides what to do based on the value of eax, which is set to
__NR_set_thread_area in this case and is defined in
$ grep __NR_set_thread_area /usr/src/linux-2.4.20/include/asm-i386/unistd.h
#define __NR_set_thread_area 243
but not in any earlier kernel versions.
So the good news is that point "3. Compiling glibc with --enable-kernel=2.0.0" will probably produce executables which run on all linux kernels >= 2.4.20.
The only chance to make this work with older kernels would be to disable tls (thread-local storage) but which is not possible with glibc 2.14, despite the fact it is offered as a configure option.
The reason you can't compile it on the original system likely has nothing to do with kernel version (it could, but 2.2 isn't generally old enough for that to be a stumbling block for most code). The problem is that the toolchain is ancient (at the very least, the compiler). However, nothing stops you from building a newer version of G++ with the egcs that is installed. You may also encounter problems with glibc once you've done that, but you should at least get that far.
What you should do will look something like this:
Build latest GCC with egcs
Rebuild latest GCC with the gcc you just built
Build latest binutils and ld with your new compiler
Now you have a well-built modern compiler and (most of a) toolchain with which to build your sample application. If luck is not on your side you may also need to build a newer version of glibc, but this is your problem - the toolchain - not the kernel.