OpenCV Line Detection - c++

I am trying to find the edges of the centered box in this image:
I have tried using a HoughLines using dRho=img_width/1000, dTheta=pi/180, and threshold=250
It works great on this image, scaled to 1/3 of the size, but on the full size image it just gets lines everywhere in every direction...
What can I do to tune this to be more accurate?

The code to achieve the result below is a slight modification of the one presented in this answer: how to detect a square:
The original program can be found inside OpenCV, it's called squares.cpp. The code below was modified to search squares only in the first color plane, but as it still detects many squares, at the end of the program I discard all of them except the first, and then call draw_squares() to show what was detected. You can change this easilly to draw all of them and see everything that was detected.
You can do all sorts of thing from now own, including setting a (ROI) region of interest to extract the area that's inside the square (ignore everything else around it).
You can see that the detected rectangle is not perfectly aligned with the lines in the image. You should perform some pre-processing (erode?) operations in the image to decrease the thickness of lines and improve the detection. But from here on it's all on you:
#include <cv.h>
#include <highgui.h>
using namespace cv;
double angle( cv::Point pt1, cv::Point pt2, cv::Point pt0 ) {
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
void find_squares(Mat& image, vector<vector<Point> >& squares)
{
// TODO: pre-processing
// blur will enhance edge detection
Mat blurred(image);
medianBlur(image, blurred, 9);
Mat gray0(blurred.size(), CV_8U), gray;
vector<vector<Point> > contours;
// find squares in the first color plane.
for (int c = 0; c < 1; c++)
{
int ch[] = {c, 0};
mixChannels(&blurred, 1, &gray0, 1, ch, 1);
// try several threshold levels
const int threshold_level = 2;
for (int l = 0; l < threshold_level; l++)
{
// Use Canny instead of zero threshold level!
// Canny helps to catch squares with gradient shading
if (l == 0)
{
Canny(gray0, gray, 10, 20, 3); //
// Dilate helps to remove potential holes between edge segments
dilate(gray, gray, Mat(), Point(-1,-1));
}
else
{
gray = gray0 >= (l+1) * 255 / threshold_level;
}
// Find contours and store them in a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
// Test contours
vector<Point> approx;
for (size_t i = 0; i < contours.size(); i++)
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if (approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)))
{
double maxCosine = 0;
for (int j = 2; j < 5; j++)
{
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
if (maxCosine < 0.3)
squares.push_back(approx);
}
}
}
}
}
void draw_squares(Mat& img, vector<vector<Point> > squares)
{
for (int i = 0; i < squares.size(); i++)
{
for (int j = 0; j < squares[i].size(); j++)
{
cv::line(img, squares[i][j], squares[i][(j+1) % 4], cv::Scalar(0, 255, 0), 1, CV_AA);
}
}
}
int main(int argc, char* argv[])
{
Mat img = imread(argv[1]);
vector<vector<Point> > squares;
find_squares(img, squares);
std::cout << "* " << squares.size() << " squares were found." << std::endl;
// Ignore all the detected squares and draw just the first found
vector<vector<Point> > tmp;
if (squares.size() > 0)
{
tmp.push_back(squares[0]);
draw_squares(img, tmp);
}
//imshow("squares", img);
//cvWaitKey(0);
imwrite("out.png", img);
return 0;
}

when resizing the image, the image is normally first blurred with a filter, e.g. Gaussian, in order to get rid of high frequencies. The fact that resized one works better is likely because your original image is somehow noisy.
Try blur the image first, e.g. with cv::GaussianBlur(src, target, Size(0,0), 1.5), then it should be equivalent to resizing. (It forgot the theory, if it does not work, try 3 and 6 as well)

Try using a preprocessing pass with the erosion filter. It will give you the same effect as the downscaling - the lines will become thinner and will not disappear at the same time.
The "Blur" filter is also a good idea, as chaiy says.
This way (with blur) it will become something like http://www.ic.uff.br/~laffernandes/projects/kht/index.html (Kernel Based Hough Transform)

Related

OpenCV Finding square center c++

To begin, I am a complete novice in OpenCV and am beginner/reasonable in c++ code.
But OpenCV is new to me and I try to learn by doing projects and stuff.
Now for my new project I am trying to find the centre of square in a picture.
In my case there is only 1 square in picture.
I would like to build further upon the square.cpp example of OpenCV.
For my project there are 2 things I need some help with,
1: The edge of the window is detected as a square, I do not want this. Example
2: How could I get the centre of 1 square from the squares array?
This is the code from the example "square.cpp"
// The "Square Detector" program.
// It loads several images sequentially and tries to find squares in
// each image
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;
static void help(const char* programName)
{
cout <<
"\nA program using pyramid scaling, Canny, contours and contour simplification\n"
"to find squares in a list of images (pic1-6.png)\n"
"Returns sequence of squares detected on the image.\n"
"Call:\n"
"./" << programName << " [file_name (optional)]\n"
"Using OpenCV version " << CV_VERSION << "\n" << endl;
}
int thresh = 50, N = 11;
const char* wndname = "Square Detection Demo";
// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
static double angle(Point pt1, Point pt2, Point pt0)
{
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1 * dx2 + dy1 * dy2) / sqrt((dx1 * dx1 + dy1 * dy1) * (dx2 * dx2 + dy2 * dy2) + 1e-10);
}
// returns sequence of squares detected on the image.
static void findSquares(const Mat& image, vector<vector<Point> >& squares)
{
squares.clear();
Mat pyr, timg, gray0(image.size(), CV_8U), gray;
// down-scale and upscale the image to filter out the noise
pyrDown(image, pyr, Size(image.cols / 2, image.rows / 2));
pyrUp(pyr, timg, image.size());
vector<vector<Point> > contours;
// find squares in every color plane of the image
for (int c = 0; c < 3; c++)
{
int ch[] = { c, 0 };
mixChannels(&timg, 1, &gray0, 1, ch, 1);
// try several threshold levels
for (int l = 0; l < N; l++)
{
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if (l == 0)
{
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
Canny(gray0, gray, 0, thresh, 5);
// dilate canny output to remove potential
// holes between edge segments
dilate(gray, gray, Mat(), Point(-1, -1));
}
else
{
// apply threshold if l!=0:
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
gray = gray0 >= (l + 1) * 255 / N;
}
// find contours and store them all as a list
findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);
vector<Point> approx;
// test each contour
for (size_t i = 0; i < contours.size(); i++)
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(contours[i], approx, arcLength(contours[i], true) * 0.02, true);
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if (approx.size() == 4 &&
fabs(contourArea(approx)) > 1000 &&
isContourConvex(approx))
{
double maxCosine = 0;
for (int j = 2; j < 5; j++)
{
// find the maximum cosine of the angle between joint edges
double cosine = fabs(angle(approx[j % 4], approx[j - 2], approx[j - 1]));
maxCosine = MAX(maxCosine, cosine);
}
// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if (maxCosine < 0.3)
squares.push_back(approx);
}
}
}
}
}
int main(int argc, char** argv)
{
static const char* names[] = { "testimg.jpg", 0 };
help(argv[0]);
if (argc > 1)
{
names[0] = argv[1];
names[1] = "0";
}
for (int i = 0; names[i] != 0; i++)
{
string filename = samples::findFile(names[i]);
Mat image = imread(filename, IMREAD_COLOR);
if (image.empty())
{
cout << "Couldn't load " << filename << endl;
continue;
}
vector<vector<Point> > squares;
findSquares(image, squares);
polylines(image, squares, true, Scalar(0, 0, 255), 3, LINE_AA);
imshow(wndname, image);
int c = waitKey();
if (c == 27)
break;
}
return 0;
}
I would like some help to start off.
How could I get some information from 1 of the squares out of the array called "squares" (I am having a difficult time understand what exactly is in the array as well; is it an array of points?)
If something is not clear please let me know and I will try to re-explain.
Thank you in advance
Firstly, you are talking about squares but you are actually detecting rectangles. I provided a shorter code to be able to better answer your questions.
I read the image, apply a Canny filter for binarization and detect all contours. After that I iterate through the contours and find the ones which can be approximated by exactly four points and are convex:
int main(int argc, char** argv)
{
// Reading the images
cv::Mat img = cv::imread("squares_image.jpg", cv::IMREAD_GRAYSCALE);
cv::Mat edge_img;
std::vector <std::vector<cv::Point>> contours;
// Convert the image into a binary image using Canny filter - threshold could be automatically determined using OTSU method
cv::Canny(img, edge_img, 30, 100);
// Find all contours in the Canny image
findContours(edge_img, contours, cv::RETR_LIST, cv::CHAIN_APPROX_SIMPLE);
// Iterate through the contours and test if contours are square
std::vector<std::vector<cv::Point>> all_rectangles;
std::vector<cv::Point> single_rectangle;
for (size_t i = 0; i < contours.size(); i++)
{
// 1. Contours should be approximateable as a polygon
approxPolyDP(contours[i], single_rectangle, arcLength(contours[i], true) * 0.01, true);
// 2. Contours should have exactly 4 vertices and be convex
if (single_rectangle.size() == 4 && cv::isContourConvex(single_rectangle))
{
// 3. Determine if the polygon is really a square/rectangle using its properties (parallelity, angles etc.)
// Not necessary for the provided image
// Push the four points into your vector of squares (could be also std::vector<cv::Rect>)
all_rectangles.push_back(single_rectangle);
}
}
for (size_t num_contour = 0; num_contour < all_rectangles.size(); ++num_contour) {
cv::drawContours(img, all_rectangles, num_contour, cv::Scalar::all(-1));
}
cv::imshow("Detected rectangles", img);
cv::waitKey(0);
return 0;
}
1: The edge of the window is detected as a square, I do not want this.
There are several options depending on your applications. You can filter the outer boundary already using the Canny thresholds, using a different contour retrieval method for finding contours in findContours or by filtering single_rectangle using the area of the found contour (e.g. cv::contourArea(single_rectangle) < 1000).
2: How could I get the centre of 1 square from the squares array?
Since the code is already detecting the four corner points you could e.g. find the intersection of the diagonals. If you know that there are only rectangles in your image you could also try to detect all centroids of the detected contours using the Hu moments.
I am having a difficult time understand what exactly is in the array as well; is it an array of points?
One contour in OpenCV is always represented as a vector of single points. If you are adding multiple contours you are using a vector of vector of points. In the example you provided squares is a vector of a vector of exactly 4 points. You could also use a vector of cv::Rect in this case.

Find Squares in opencv : access violation reading location

I try to run squares.cpp that is in opencv direction in C++ sample , everything fine but when program reach to this point : approxPolyDP(Mat(contours[i]),approx,arcLength(Mat(contours[i]), true)*0.02, true);
I get the exception that say :
Unhandled exception at 0x61163C77 (opencv_imgproc244d.dll) in FindRectangle.exe: 0xC0000005: Access violation reading location 0x030F9000.
I do any thing to solve this problem but I can't.
I run it in visual studio 2012 with 32 bit processing.please help!!!!!!!!!!
static double angle( Point pt1, Point pt2, Point pt0 )
{
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
static void findSquares( const Mat& image, vector<vector<Point> >& squares )
{
squares.clear();
Mat pyr, timg, gray0(image.size(), CV_8U), gray;
// down-scale and upscale the image to filter out the noise
pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
pyrUp(pyr, timg, image.size());
vector<vector<Point> > contours;
// find squares in every color plane of the image
for( int c = 0; c < 3; c++ )
{
int ch[] = {c, 0};
mixChannels(&timg, 1, &gray0, 1, ch, 1);
// try several threshold levels
for( int l = 0; l < N; l++ )
{
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if( l == 0 )
{
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
Canny(gray0, gray, 0, thresh, 5);
// dilate canny output to remove potential
// holes between edge segments
dilate(gray, gray, Mat(), Point(-1,-1));
}
else
{
// apply threshold if l!=0:
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
gray = gray0 >= (l+1)*255/N;
}
// find contours and store them all as a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
vector<Point> approx ;
// test each contour
for( size_t i = 0; i < contours.size(); i++ )
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if( approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)) )
{
double maxCosine = 0;
for( int j = 2; j < 5; j++ )
{
// find the maximum cosine of the angle between joint edges
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if( maxCosine < 0.3 )
squares.push_back(approx);
}
else{
approx.clear();
}
}
}
}
// the function draws all the squares in the image
static void drawSquares( Mat& image, const vector<vector<Point> >& squares )
{
for( size_t i = 0; i < squares.size(); i++ )
{
const Point* p = &squares[i][0];
int n = (int)squares[i].size();
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA);
}
imshow(wndname, image);
}
The usage need to update like below:
//Extract the contours so that
vector<vector<Point> > contours0;
findContours( img, contours0, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);
contours.resize(contours0.size());
for( size_t k = 0; k < contours0.size(); k++ )
approxPolyDP(Mat(contours0[k]), contours[k], 3, true);
Link for documentation

detection square opencv and c ++

Hi I am working on computer vision project and trying to detect square by using openCV/C++ from camera. I had download the source code from openCV library but it seems like losing fps so hard. Does anybody have idea how to fix this problem? There is a video link about my testing below, check it out:
http://magicbookproject.blogspot.co.uk/2012/12/detect-paper-demo.html
Here is the code and just found on another post:
void find_squares(Mat& image, vector<vector<Point> >& squares)
{
// blur will enhance edge detection
Mat blurred(image);
medianBlur(image, blurred, 9);
Mat gray0(blurred.size(), CV_8U), gray;
vector<vector<Point> > contours;
// find squares in every color plane of the image
for (int c = 0; c < 3; c++)
{
int ch[] = {c, 0};
mixChannels(&blurred, 1, &gray0, 1, ch, 1);
// try several threshold levels
const int threshold_level = 2;
for (int l = 0; l < threshold_level; l++)
{
// Use Canny instead of zero threshold level!
// Canny helps to catch squares with gradient shading
if (l == 0)
{
Canny(gray0, gray, 10, 20, 3); //
// Dilate helps to remove potential holes between edge segments
dilate(gray, gray, Mat(), Point(-1,-1));
}
else
{
gray = gray0 >= (l+1) * 255 / threshold_level;
}
// Find contours and store them in a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
// Test contours
vector<Point> approx;
for (size_t i = 0; i < contours.size(); i++)
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if (approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)))
{
double maxCosine = 0;
for (int j = 2; j < 5; j++)
{
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
if (maxCosine < 0.3)
squares.push_back(approx);
}
}
}
}
}
You can speed it up if you don't mind losing accuracy. For example
// find squares in every color plane of the image
for (int c = 0; c < 3; c++)
You are looping through three color planes. Just examine one color (as if the image is grayscale), that should triple the speed.
Also try without Canny, which is quite slow. Set a use_canny parameter,
if (l == 0 && use_canny)
{
Canny(gray0, gray, 10, 20, 3); //
Compare with and without. I am getting acceptable results, considerably faster.
A good rule of thumb for computer vision is to convert your image to grayscale before doing any intensive processing. Only loop through color channels if you find it absolutely necessary. I recommend the following pattern for object recognition:
Convert image to grayscale
Filter grayscale image to a simpler format (canny, threshold, edge-detect)
Do heavy processing (detect square shapes)
Reconstruct original image with the processed values (draw/store your squares)
Remember that you are doing all these steps for each and every frame, so be sure to remove whatever you find is unnecessary. Since this code will run so often, you will see huge performance benefits from even a minor optimization, so it's worth spending some time optimizing.

OpenCV C++/Obj-C: Advanced square detection

A while ago I asked a question about square detection and karlphillip came up with a decent result.
Now I want to take this a step further and find squares which edge aren't fully visible. Take a look at this example:
Any ideas? I'm working with karlphillips code:
void find_squares(Mat& image, vector<vector<Point> >& squares)
{
// blur will enhance edge detection
Mat blurred(image);
medianBlur(image, blurred, 9);
Mat gray0(blurred.size(), CV_8U), gray;
vector<vector<Point> > contours;
// find squares in every color plane of the image
for (int c = 0; c < 3; c++)
{
int ch[] = {c, 0};
mixChannels(&blurred, 1, &gray0, 1, ch, 1);
// try several threshold levels
const int threshold_level = 2;
for (int l = 0; l < threshold_level; l++)
{
// Use Canny instead of zero threshold level!
// Canny helps to catch squares with gradient shading
if (l == 0)
{
Canny(gray0, gray, 10, 20, 3); //
// Dilate helps to remove potential holes between edge segments
dilate(gray, gray, Mat(), Point(-1,-1));
}
else
{
gray = gray0 >= (l+1) * 255 / threshold_level;
}
// Find contours and store them in a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
// Test contours
vector<Point> approx;
for (size_t i = 0; i < contours.size(); i++)
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if (approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)))
{
double maxCosine = 0;
for (int j = 2; j < 5; j++)
{
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
if (maxCosine < 0.3)
squares.push_back(approx);
}
}
}
}
}
You might try using HoughLines to detect the four sides of the square. Next, locate the four resulting line intersections to detect the corners. The Hough transform is fairly robust to noise and occlusions, so it could be useful here. Also, here is an interactive demo showing how the Hough transform works (I thought it was cool at least :). Here is one of my previous answers that detects a laser cross center showing most of the same math (except it just finds a single corner).
You will probably have multiple lines on each side, but locating the intersections should help to determine the inliers vs. outliers. Once you've located candidate corners, you can also filter these candidates by area or how "square-like" the polygon is.
EDIT : All these answers with code and images were making me think my answer was a bit lacking :) So, here is an implementation of how you could do this:
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <vector>
using namespace cv;
using namespace std;
Point2f computeIntersect(Vec2f line1, Vec2f line2);
vector<Point2f> lineToPointPair(Vec2f line);
bool acceptLinePair(Vec2f line1, Vec2f line2, float minTheta);
int main(int argc, char* argv[])
{
Mat occludedSquare = imread("Square.jpg");
resize(occludedSquare, occludedSquare, Size(0, 0), 0.25, 0.25);
Mat occludedSquare8u;
cvtColor(occludedSquare, occludedSquare8u, CV_BGR2GRAY);
Mat thresh;
threshold(occludedSquare8u, thresh, 200.0, 255.0, THRESH_BINARY);
GaussianBlur(thresh, thresh, Size(7, 7), 2.0, 2.0);
Mat edges;
Canny(thresh, edges, 66.0, 133.0, 3);
vector<Vec2f> lines;
HoughLines( edges, lines, 1, CV_PI/180, 50, 0, 0 );
cout << "Detected " << lines.size() << " lines." << endl;
// compute the intersection from the lines detected...
vector<Point2f> intersections;
for( size_t i = 0; i < lines.size(); i++ )
{
for(size_t j = 0; j < lines.size(); j++)
{
Vec2f line1 = lines[i];
Vec2f line2 = lines[j];
if(acceptLinePair(line1, line2, CV_PI / 32))
{
Point2f intersection = computeIntersect(line1, line2);
intersections.push_back(intersection);
}
}
}
if(intersections.size() > 0)
{
vector<Point2f>::iterator i;
for(i = intersections.begin(); i != intersections.end(); ++i)
{
cout << "Intersection is " << i->x << ", " << i->y << endl;
circle(occludedSquare, *i, 1, Scalar(0, 255, 0), 3);
}
}
imshow("intersect", occludedSquare);
waitKey();
return 0;
}
bool acceptLinePair(Vec2f line1, Vec2f line2, float minTheta)
{
float theta1 = line1[1], theta2 = line2[1];
if(theta1 < minTheta)
{
theta1 += CV_PI; // dealing with 0 and 180 ambiguities...
}
if(theta2 < minTheta)
{
theta2 += CV_PI; // dealing with 0 and 180 ambiguities...
}
return abs(theta1 - theta2) > minTheta;
}
// the long nasty wikipedia line-intersection equation...bleh...
Point2f computeIntersect(Vec2f line1, Vec2f line2)
{
vector<Point2f> p1 = lineToPointPair(line1);
vector<Point2f> p2 = lineToPointPair(line2);
float denom = (p1[0].x - p1[1].x)*(p2[0].y - p2[1].y) - (p1[0].y - p1[1].y)*(p2[0].x - p2[1].x);
Point2f intersect(((p1[0].x*p1[1].y - p1[0].y*p1[1].x)*(p2[0].x - p2[1].x) -
(p1[0].x - p1[1].x)*(p2[0].x*p2[1].y - p2[0].y*p2[1].x)) / denom,
((p1[0].x*p1[1].y - p1[0].y*p1[1].x)*(p2[0].y - p2[1].y) -
(p1[0].y - p1[1].y)*(p2[0].x*p2[1].y - p2[0].y*p2[1].x)) / denom);
return intersect;
}
vector<Point2f> lineToPointPair(Vec2f line)
{
vector<Point2f> points;
float r = line[0], t = line[1];
double cos_t = cos(t), sin_t = sin(t);
double x0 = r*cos_t, y0 = r*sin_t;
double alpha = 1000;
points.push_back(Point2f(x0 + alpha*(-sin_t), y0 + alpha*cos_t));
points.push_back(Point2f(x0 - alpha*(-sin_t), y0 - alpha*cos_t));
return points;
}
NOTE : The main reason I resized the image was so I could see it on my screen, and speed-up processing.
Canny
This uses Canny edge detection to help greatly reduce the number of lines detected after thresholding.
Hough transform
Then the Hough transform is used to detect the sides of the square.
Intersections
Finally, we compute the intersections of all the line pairs.
Hope that helps!
I tried to use convex hull method which is pretty simple.
Here you find convex hull of the contour detected. It removes the convexity defects at the bottom of paper.
Below is the code (in OpenCV-Python):
import cv2
import numpy as np
img = cv2.imread('sof.jpg')
img = cv2.resize(img,(500,500))
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(gray,127,255,0)
contours,hier = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
if cv2.contourArea(cnt)>5000: # remove small areas like noise etc
hull = cv2.convexHull(cnt) # find the convex hull of contour
hull = cv2.approxPolyDP(hull,0.1*cv2.arcLength(hull,True),True)
if len(hull)==4:
cv2.drawContours(img,[hull],0,(0,255,0),2)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
(Here, i haven't found square in all planes. Do it yourself if you want.)
Below is the result i got:
I hope this is what you needed.
1st: start experimenting with threshold techniques to isolate the white paper sheet from the rest of the image. This is a simple way:
Mat new_img = imread(argv[1]);
double thres = 200;
double color = 255;
threshold(new_img, new_img, thres, color, CV_THRESH_BINARY);
imwrite("thres.png", new_img);
but there are other alternatives that could provide better result. One is to investigate inRange(), and another is to detect through color by converting the image to the HSV color space.
This thread also provides an interest discussion on the subject.
2nd: after you execute one of this procedures, you could try to feed the result directly into find_squares():
An alternative to find_squares() is to implement the bounding box technique, which has the potential to provide a more accurate detection of the rectangular area (provided that you have a perfect result of threshold). I've used it here and here. It's worth noting that OpenCV has it's own bounding box tutorial.
Another approach besides find_squares(), as pointed by Abid on his answer, is to use the convexHull method. Check OpenCV's C++ tutorial on this method for code.
convert to lab space
use kmeans for 2 clusters
detect suqares one internal cluster it will solve many thing in the rgb space

OpenCV C++/Obj-C: Detecting a sheet of paper / Square Detection

I successfully implemented the OpenCV square-detection example in my test application, but now need to filter the output, because it's quite messy - or is my code wrong?
I'm interested in the four corner points of the paper for skew reduction (like that) and further processing …
Input & Output:
Original image:
click
Code:
double angle( cv::Point pt1, cv::Point pt2, cv::Point pt0 ) {
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
- (std::vector<std::vector<cv::Point> >)findSquaresInImage:(cv::Mat)_image
{
std::vector<std::vector<cv::Point> > squares;
cv::Mat pyr, timg, gray0(_image.size(), CV_8U), gray;
int thresh = 50, N = 11;
cv::pyrDown(_image, pyr, cv::Size(_image.cols/2, _image.rows/2));
cv::pyrUp(pyr, timg, _image.size());
std::vector<std::vector<cv::Point> > contours;
for( int c = 0; c < 3; c++ ) {
int ch[] = {c, 0};
mixChannels(&timg, 1, &gray0, 1, ch, 1);
for( int l = 0; l < N; l++ ) {
if( l == 0 ) {
cv::Canny(gray0, gray, 0, thresh, 5);
cv::dilate(gray, gray, cv::Mat(), cv::Point(-1,-1));
}
else {
gray = gray0 >= (l+1)*255/N;
}
cv::findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
std::vector<cv::Point> approx;
for( size_t i = 0; i < contours.size(); i++ )
{
cv::approxPolyDP(cv::Mat(contours[i]), approx, arcLength(cv::Mat(contours[i]), true)*0.02, true);
if( approx.size() == 4 && fabs(contourArea(cv::Mat(approx))) > 1000 && cv::isContourConvex(cv::Mat(approx))) {
double maxCosine = 0;
for( int j = 2; j < 5; j++ )
{
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
if( maxCosine < 0.3 ) {
squares.push_back(approx);
}
}
}
}
}
return squares;
}
EDIT 17/08/2012:
To draw the detected squares on the image use this code:
cv::Mat debugSquares( std::vector<std::vector<cv::Point> > squares, cv::Mat image )
{
for ( int i = 0; i< squares.size(); i++ ) {
// draw contour
cv::drawContours(image, squares, i, cv::Scalar(255,0,0), 1, 8, std::vector<cv::Vec4i>(), 0, cv::Point());
// draw bounding rect
cv::Rect rect = boundingRect(cv::Mat(squares[i]));
cv::rectangle(image, rect.tl(), rect.br(), cv::Scalar(0,255,0), 2, 8, 0);
// draw rotated rect
cv::RotatedRect minRect = minAreaRect(cv::Mat(squares[i]));
cv::Point2f rect_points[4];
minRect.points( rect_points );
for ( int j = 0; j < 4; j++ ) {
cv::line( image, rect_points[j], rect_points[(j+1)%4], cv::Scalar(0,0,255), 1, 8 ); // blue
}
}
return image;
}
This is a recurring subject in Stackoverflow and since I was unable to find a relevant implementation I decided to accept the challenge.
I made some modifications to the squares demo present in OpenCV and the resulting C++ code below is able to detect a sheet of paper in the image:
void find_squares(Mat& image, vector<vector<Point> >& squares)
{
// blur will enhance edge detection
Mat blurred(image);
medianBlur(image, blurred, 9);
Mat gray0(blurred.size(), CV_8U), gray;
vector<vector<Point> > contours;
// find squares in every color plane of the image
for (int c = 0; c < 3; c++)
{
int ch[] = {c, 0};
mixChannels(&blurred, 1, &gray0, 1, ch, 1);
// try several threshold levels
const int threshold_level = 2;
for (int l = 0; l < threshold_level; l++)
{
// Use Canny instead of zero threshold level!
// Canny helps to catch squares with gradient shading
if (l == 0)
{
Canny(gray0, gray, 10, 20, 3); //
// Dilate helps to remove potential holes between edge segments
dilate(gray, gray, Mat(), Point(-1,-1));
}
else
{
gray = gray0 >= (l+1) * 255 / threshold_level;
}
// Find contours and store them in a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
// Test contours
vector<Point> approx;
for (size_t i = 0; i < contours.size(); i++)
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if (approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)))
{
double maxCosine = 0;
for (int j = 2; j < 5; j++)
{
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
if (maxCosine < 0.3)
squares.push_back(approx);
}
}
}
}
}
After this procedure is executed, the sheet of paper will be the largest square in vector<vector<Point> >:
I'm letting you write the function to find the largest square. ;)
Unless there is some other requirement not specified, I would simply convert your color image to grayscale and work with that only (no need to work on the 3 channels, the contrast present is too high already). Also, unless there is some specific problem regarding resizing, I would work with a downscaled version of your images, since they are relatively large and the size adds nothing to the problem being solved. Then, finally, your problem is solved with a median filter, some basic morphological tools, and statistics (mostly for the Otsu thresholding, which is already done for you).
Here is what I obtain with your sample image and some other image with a sheet of paper I found around:
The median filter is used to remove minor details from the, now grayscale, image. It will possibly remove thin lines inside the whitish paper, which is good because then you will end with tiny connected components which are easy to discard. After the median, apply a morphological gradient (simply dilation - erosion) and binarize the result by Otsu. The morphological gradient is a good method to keep strong edges, it should be used more. Then, since this gradient will increase the contour width, apply a morphological thinning. Now you can discard small components.
At this point, here is what we have with the right image above (before drawing the blue polygon), the left one is not shown because the only remaining component is the one describing the paper:
Given the examples, now the only issue left is distinguishing between components that look like rectangles and others that do not. This is a matter of determining a ratio between the area of the convex hull containing the shape and the area of its bounding box; the ratio 0.7 works fine for these examples. It might be the case that you also need to discard components that are inside the paper, but not in these examples by using this method (nevertheless, doing this step should be very easy especially because it can be done through OpenCV directly).
For reference, here is a sample code in Mathematica:
f = Import["http://thwartedglamour.files.wordpress.com/2010/06/my-coffee-table-1-sa.jpg"]
f = ImageResize[f, ImageDimensions[f][[1]]/4]
g = MedianFilter[ColorConvert[f, "Grayscale"], 2]
h = DeleteSmallComponents[Thinning[
Binarize[ImageSubtract[Dilation[g, 1], Erosion[g, 1]]]]]
convexvert = ComponentMeasurements[SelectComponents[
h, {"ConvexArea", "BoundingBoxArea"}, #1 / #2 > 0.7 &],
"ConvexVertices"][[All, 2]]
(* To visualize the blue polygons above: *)
Show[f, Graphics[{EdgeForm[{Blue, Thick}], RGBColor[0, 0, 1, 0.5],
Polygon ## convexvert}]]
If there are more varied situations where the paper's rectangle is not so well defined, or the approach confuses it with other shapes -- these situations could happen due to various reasons, but a common cause is bad image acquisition -- then try combining the pre-processing steps with the work described in the paper "Rectangle Detection based on a Windowed Hough Transform".
Well, I'm late.
In your image, the paper is white, while the background is colored. So, it's better to detect the paper is Saturation(饱和度) channel in HSV color space. Take refer to wiki HSL_and_HSV first. Then I'll copy most idea from my answer in this Detect Colored Segment in an image.
Main steps:
Read into BGR
Convert the image from bgr to hsv space
Threshold the S channel
Then find the max external contour(or do Canny, or HoughLines as you like, I choose findContours), approx to get the corners.
This is my result:
The Python code(Python 3.5 + OpenCV 3.3):
#!/usr/bin/python3
# 2017.12.20 10:47:28 CST
# 2017.12.20 11:29:30 CST
import cv2
import numpy as np
##(1) read into bgr-space
img = cv2.imread("test2.jpg")
##(2) convert to hsv-space, then split the channels
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h,s,v = cv2.split(hsv)
##(3) threshold the S channel using adaptive method(`THRESH_OTSU`) or fixed thresh
th, threshed = cv2.threshold(s, 50, 255, cv2.THRESH_BINARY_INV)
##(4) find all the external contours on the threshed S
#_, cnts, _ = cv2.findContours(threshed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cv2.findContours(threshed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
canvas = img.copy()
#cv2.drawContours(canvas, cnts, -1, (0,255,0), 1)
## sort and choose the largest contour
cnts = sorted(cnts, key = cv2.contourArea)
cnt = cnts[-1]
## approx the contour, so the get the corner points
arclen = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.02* arclen, True)
cv2.drawContours(canvas, [cnt], -1, (255,0,0), 1, cv2.LINE_AA)
cv2.drawContours(canvas, [approx], -1, (0, 0, 255), 1, cv2.LINE_AA)
## Ok, you can see the result as tag(6)
cv2.imwrite("detected.png", canvas)
Related answers:
How to detect colored patches in an image using OpenCV?
Edge detection on colored background using OpenCV
OpenCV C++/Obj-C: Detecting a sheet of paper / Square Detection
How to use `cv2.findContours` in different OpenCV versions?
What you need is a quadrangle instead of a rotated rectangle.
RotatedRect will give you incorrect results. Also you will need a perspective projection.
Basicly what must been done is:
Loop through all polygon segments and connect those which are almost equel.
Sort them so you have the 4 most largest line segments.
Intersect those lines and you have the 4 most likely corner points.
Transform the matrix over the perspective gathered from the corner points and the aspect ratio of the known object.
I implemented a class Quadrangle which takes care of contour to quadrangle conversion and will also transform it over the right perspective.
See a working implementation here:
Java OpenCV deskewing a contour
Once you have detected the bounding box of the document, you can perform a four-point perspective transform to obtain a top-down birds eye view of the image. This will fix the skew and isolate only the desired object.
Input image:
Detected text object
Top-down view of text document
Code
from imutils.perspective import four_point_transform
import cv2
import numpy
# Load image, grayscale, Gaussian blur, Otsu's threshold
image = cv2.imread("1.png")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (7,7), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# Find contours and sort for largest contour
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
displayCnt = None
for c in cnts:
# Perform contour approximation
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
if len(approx) == 4:
displayCnt = approx
break
# Obtain birds' eye view of image
warped = four_point_transform(image, displayCnt.reshape(4, 2))
cv2.imshow("thresh", thresh)
cv2.imshow("warped", warped)
cv2.imshow("image", image)
cv2.waitKey()
Detecting sheet of paper is kinda old school. If you want to tackle skew detection then it is better if you straightaway aim for text line detection. With this you will get the extremas left, right, top and bottom. Discard any graphics in the image if you dont want and then do some statistics on the text line segments to find the most occurring angle range or rather angle. This is how you will narrow down to a good skew angle. Now after this you put these parameters the skew angle and the extremas to deskew and chop the image to what is required.
As for the current image requirement, it is better if you try CV_RETR_EXTERNAL instead of CV_RETR_LIST.
Another method of detecting edges is to train a random forests classifier on the paper edges and then use the classifier to get the edge Map. This is by far a robust method but requires training and time.
Random forests will work with low contrast difference scenarios for example white paper on roughly white background.