Grails Unit Test Buggy Dynamic Finder - unit-testing

I am in the process of writing unit tests for a service class. This service class calls MyDomain.findAllByIdNotInList. The issue I am facing is that grails does not recognize NotInList as a dynamic finder for a mocked domain. I tried Metaclass-ing this functionality out, but was having issues with it.
Any creative ways for bypassing this short of turning the Unit Test into an Integration test? I would like to avoid this for multiple reasons (time to run, Only our Unit tests run at build time, etc)
Also, it is possible my metaclassing is written poorly:
MyDomain.metaClass.findAllByIdNotInList = {ArrayList list ->
return []
}
Edit: Using grails 1.3.7.
also tried
MyDomain.metaClass.findAllByIdNotInList = {deflist ->
return []
}
Bug report here:
http://jira.grails.org/browse/GRAILS-8593

#Sagar V's comment is correct you should be able to utilize all dynamic finders when a Domain is properly mocked. If you're using a version of Grails before 2.0 you'd have to extend GrailsUnitTestCase and call MockDomain(MyDomain) before attempting to invoke the dynamic finders. As an FYI your metaClassing is not written properly (in my opinion you should use the mocking framework to get your test working I'm providing the correct syntax so you can use it properly in the future).
MyDomain.metaClass.'static'.findAllByIdNotInList = {defList ->
[]
}
When the method that you're overriding is static you need to add the .'static'. inbetween the metaClass and the method name.

Related

AngularJS mocking $logProvider in config block

Is there a way to inject providers when writing unit tests using Karma(Testacular) and Jasmine in angular?
Our team decided recently to use angularjs $log to write debugging details to the console. This way we can leverage the ability to disable the logging via the $logProvider.debugEnabled() method.
angular.module("App", ["prismLogin", "ui.bootstrap"])
.config(["$routeProvider", "$logProvider",
function ($routeProvider, $logProvider) {
$routeProvider
//routes here edited for brevity
//This is the offending line, it breaks several pre-existing tests
$logProvider.debugEnabled(true);
}]);
However after adding the $logProvider.debugEnabled(true); line several of our tests no longer execute successfully, failing with the following message:
TypeError: Object doesn't support property or method 'debugEnabled' from App
So my question again, is it possible to mock the $logProvider? Or should I provide my own configuration block for the test harness?
I attempted searching for a way to mock the app module with no luck. It seems to me that using the concrete app module instead of a mock is very brittle. I would like to avoid reworking tests associated with the app module every time a change is made in the app or run configuration blocks.
The tests that are failing are units of code with no relation to the $logProvider? I feel as if I a missing something here and making things much harder than they should be. How should one go about writing tests that are flexible and are not affected by other side effects introduced in your application?
It appears that this is a know issue with angular-mocks.
Until the issue is addressed , I was able to resolve the issue by adding the following method to the angular.mock.$LogProvider definition in angular-mocks.js at line 295.
this.debugEnabled = function(flag) {
return this;
};

MvvmCross: Unit-testing services with plugins

I am creating a cross-platform project with MvvmCross v3 and Xamarin solution and i would like to create some unit-tests.
This seems a bit outdated, so i was trying to follow this and it worked as expected.
However, I am now making an attempt to unit-test some of my domain services, which are dependent on platform specific MvvvCross plugins (e.g ResourceLoader).
Running the test results in the following exception:
Cirrious.CrossCore.Exceptions.MvxException: Failed to resolve type
Cirrious.CrossCore.Plugins.IMvxPluginManager.
I assume that IMvxPluginManager is probably registered in the Setup flow, and that I need to include platform implementation of the plugins in my project, yet I was wondering what would be the preferred way of setting up my unit-test project? Is there something that I am missing?
Is there any updated tutorial for the above task?
Are there already any plugin platform extensions that supports test environment, or should I make an attempt to write them by myself?
In general, you shouldn't be loading the plugins or a real MvxPluginManager during your service tests.
Instead your unit tests should be registering mock types for the interfaces that your services need to use.
var mock = new Mock<INeedToUse>();
// use mock.Setup methods
Ioc.RegisterSingleton<INeedToUse>(mock.Object);
// or you can use constructor dependency injection on INeedToUse instead
You can also register a mock IMvxPluginManager if you really need to, but in the majority of cases I don't believe you should need that. If you've got a case where you absolutely need it, please post a code sample - it's easier to talk in code than text.
This scenario should be well possible. I wanted to UnitTest my SqlLite service implementation. I did the following to get it to work:
Create a Visual Studio unit test project
Add a reference to .Core portable library project
Add a nuget reference To MvvmCross Test Helper
Add a nugget reference to MvvmCross SqlLite Plugin
( this will make use of the WPF implementation of SqlLite)
Download the SqlLite windows library and copy these into your test project
Sql Lite Download location
And make sure to add the sqllite3.dll to the root of your unit test project and set the "Copy to Output Library" to "Copy always". This will make sure the actual sqllite database is copied to the unit test dll location. (Check that the DLL is copied to your bin/debug folder)
Then write you unit test the following way:
[TestClass]
public class SqlServiceTests:MvxIoCSupportingTest
{
private readonly ISQLiteConnectionFactory _factory;
public SqlServiceTests()
{
base.ClearAll();
_factory = new MvxWpfSqLiteConnectionFactory();
Ioc.RegisterSingleton<ISQLiteConnectionFactory>(_factory);
}
[TestMethod]
public void YourSqlLiteTest()
{
// Arrange
var si = new SqlDataService(_factory);
var list = si.GetOrderList();
}
}
I haven't tested this with my viewmodel. By using the IoC.RegisterSingleton method the SqlConnectionFactory should be readyli available for your viewmodels.

How to use "Pex and Moles" library with Entity Framework?

This is a tough one because not too many people use Pex & Moles or so I think (even though Pex is a really great product - much better than any other unit testing tool)
I have a Data project that has a very simple model with just one entity (DBItem). I've also written a DBRepository within this project, that manipulates this EF model. Repository has a method called GetItems() that returns a list of business layer items (BLItem) and looks similar to this (simplified example):
public IList<BLItem> GetItems()
{
using (var ctx = new EFContext("name=MyWebConfigConnectionName"))
{
DateTime limit = DateTime.Today.AddDays(-10);
IList<DBItem> result = ctx.Items.Where(i => i.Changed > limit).ToList();
return result.ConvertAll(i => i.ToBusinessObject());
}
}
So now I'd like to create some unit tests for this particular method. I'm using Pex & Moles. I created my moles and stubs for my EF object context.
I would like to write parametrised unit test (I know I've first written my production code, but I had to, since I'm testing Pex & Moles) that tests that this method returns valid list of items.
This is my test class:
[PexClass]
public class RepoTest
{
[PexMethod]
public void GetItemsTest(ObjectSet<DBItem> items)
{
MEFContext.ConstructorString = (#this, name) => {
var mole = new SEFContext();
};
DBRepository repo = new DBRepository();
IList<BLItem> result = repo.GetItems();
IList<DBItem> manual = items.Where(i => i.Changed > DateTime.Today.AddDays(-10));
if (result.Count != manual.Count)
{
throw new Exception();
}
}
}
Then I run Pex Explorations for this particular parametrised unit test, but I get an error path bounds exceeded. Pex starts this test by providing null to this test method (so items = null). This is the code, that Pex is running:
[Test]
[PexGeneratedBy(typeof(RepoTest))]
[Ignore("the test state was: path bounds exceeded")]
public void DBRepository_GetTasks22301()
{
this.GetItemsTest((ObjectSet<DBItem>)null);
}
This was additional comment provided by Pex:
The test case ran too long for these inputs, and Pex stopped the analysis. Please notice: The method Oblivious.Data.Test.Repositories.TaskRepositoryTest.b__0 was called 50 times; please check that the code is not stuck in an infinite loop or recursion. Otherwise, click on 'Set MaxStack=200', and run Pex again.
Update attribute [PexMethod(MaxStack = 200)]
Question
Am I doing this the correct way or not? Should I use EFContext stub instead? Do I have to add additional attributes to test method so Moles host will be running (I'm not sure it does now). I'm running just Pex & Moles. No VS test or nUnit or anything else.
I guess I should probably set some limit to Pex how many items should it provide for this particular test method.
Moles is not designed to test the parts of your application that have external dependencies (e.g. file access, network access, database access, etc). Instead, Moles allows you to mock these parts of your app so that way you can do true unit testing on the parts that don't have external dependencies.
So I think you should just mock your EF objects and queries, e.g., by creating in-memory lists and having query methods return fake data from those lists based on whatever criteria is relevant.
I am just getting to grips with pex also ... my issues surrounded me wanting to use it with moq ;)
anyway ...
I have some methods similar to your that have the same problem. When i increased the max they went away. Presumably pex was satisfied that it had sufficiently explored the branches. I have methods where i have had to increase the timeout on the code contract validation also.
One thing that you should probably be doign though is passing in all the dependant objects as parameters ... ie dont instantiate the repo in the method but pass it in.
A general problem you have is that you are instantiating big objects in your method. I do the same in my DAL classes, but then i am not tryign to unit test them in isolation. I build up datasets and use this to test my data access code against.
I use pex on my business logic and objects.
If i were to try and test my DAL code id have to use IOC to pass the datacontext into the methods - which would then make testing possible as you can mock the data context.
You should use Entity Framework Repository Pattern: http://www.codeproject.com/KB/database/ImplRepositoryPatternEF.aspx

Can I unit test a method that makes Sitecore context calls?

I'm working on a web application that is built over Sitecore CMS. I was wondering if we could unit test for example a method that takes some data from Sitecore makes some processing with it and spits out a result. I would like to test all the logic within the method via a unit test.
I pretty confused after searching the internet wide and deep. Some say that this kind of testing is actually integration testing and not unit testing and I should test only the code that has no Sitecore calls, others say that this is not possible because the Sitecore context would be missing.
I would like to ask for your help experienced fellow programmers:
Can I unit test a method that contains Sitecore calls ? If YES, how ? If NO, why ? Is there any workaround ?
The project is at its beginning, so there will be no problem in choosing between unit testing frameworks such as MSTest or Nunit, if it is the case that the solution is related to the unit testing framework of choice.
It's pretty hard to find out anything about Sitecore without providing email and living through the sales pitch, so I'll just provide a generic approach on how to do something like this.
First and foremost, you assume that the Sitecore API is guaranteed to work - i.e. it's a framework - and you don't unit test it. You should be unit testing your interactions with it.
Then, download MOQ and read the quick start on how to use it. This is my preferred mocking framework. Feel free to use other frameworks if you wish.
Hopefully, Sitecore API provides a way for you to create data objects without dealing with persistence - i.e. to simply create a new instance of whatever it is you are interested in. Here is my imaginary API:
public class Post {
public string Body {get;set;}
public DateTime LastModified {get;set;}
public string Title {get;set;}
}
public interface ISiteCorePosts {
public IEnumerable<Post> GetPostsByUser(int userId);
}
In this case unit testing should be fairly easy. With a bit of Dependency Injection, you can inject the SiteCore interfaces into your component and then unit test it.
public class MyPostProcessor {
private readonly ISiteCorePosts m_postRepository;
public MyPostProcessor(ISiteCorePosts postRepository) {
m_postRepository = postRepository;
}
public void ProcessPosts(int userId) {
var posts = m_postRepository.GetPostsByUser(userId);
//do something with posts
}
}
public class MyPostProcessorTest {
[TestMethod]
ProcessPostsShouldCallGetPostsByUser() {
var siteCorePostsMock = new Mock<ISiteCorePosts>();
//Sets up the mock to return a list of posts when called with userId = 5
siteCorePostsMock.Setup(m=>m.GetPostsByUser(5)).Returns(new List<Post>{/*fake posts*/});
MyPostProcessor target = new MyPostProcessor(siteCorePostsMock.Object);
target.ProcessPosts(5);
//Verifies that all setups are called
siteCorePostsMock.VerifyAll();
}
}
If ISiteCorePosts is not, in fact, an interface and is a concrete class whose methods are not virtual and thus cannot be mocked, you will need to use Facade pattern to wrap the SiteCore interaction to make it more testing friendly.
public class SiteCorePostsFacade {
SiteCorePosts m_Posts = new SiteCorePosts();
//important - make this method virtual so it can be mocked without needing an interface
public virtual IEnumerable<Post> GetPostsByUser(int userId) {
return m_Posts.GetPostsByUser(userId);
}
}
You then proceed to use SiteCorePostsFacade as though it was an interface in the previous example. Good thing about MOQ is that it allows you to mock concrete classes with virtual methods, not just interfaces.
With this approach, you should be able to inject all sorts of data into your application to test all interactions with SiteCore API.
we have used a custom WebControl placed on a WebForm for our integration tests some years now, which wraps the NUnit Test Suite runner functionality much like the NUnit GUI. It show a pretty grid of executed tests with links to fixtures and categories to execute specific tests. Its created much like described here http://adeneys.wordpress.com/2010/04/13/new-technique-for-unit-testing-renderings-in-sitecore/ (the custom test runner part). Our implementation can also return raw NUnit xml for further processing by for example a build server.
I've tried MSTest a while back and it also works when specified that it should launch a WebDev / IIS site to test. It works but is extremely slow compared to above solution.
Happy testing!
Short answer:
You need to mock calls to SiteCore CMS.
Long answer:
I am not aware about SiteCore CMS. But, from your question looks like it is something that is external to your application. Components external to your system should always be used via interface. This has two benefits:
If you want to use another CMS system, you can easily do as your application is just talking to an interface.
It helps you with behavior testing by mocking the interface.
The code you write is your responsibility and hence you should only unit test that piece of code. Your unit tests should ensure that your code calls appropriate SiteCode CMS methods in various scenarios (behavior tests). You can do this using mocking. I use moq for mocking.
As tugga said, it depends upon how tightly the code you want to test is coupled to SiteCore. If it's something like:
SomeSiteCoreService siteCoreDependency = new SomeSiteCoreService()
Then this would be very difficult to test. If SiteCore provides you an interface, then you have more flexibility to unit test it. You could pass the implementation into your method either (contstructor, class property, or method parameter) and then you can send in a fake implementation of that service.
If they do not provide you with an interface, then you have to do a little more work. You would write an adapter interface of your own and the default implementation would delegate to the 3rd party dependency.
public interface ICMSAdapter{
void DoSomethingWithCMS()
}
public class SiteCoreCMSAdapter: ICMSAdapter{
SiteCoreService _cms = new SiteCoreService();
public void DoSomethingWithCMS(){
_cms.DoSomething();
}
That keeps your 3rd party dependencies at arms length and provides seams to all sorts of cool things, like unit tests and you do interception style architecture and do your own thing before and after the call.
}
I was able to get unit tests to interact with sitecore api in VS 2015. The same test throws a StackOverflow exception when run in VS 2012.
For example, this method call runs fine in VS2015 but not VS2015:
Context.SetActiveSite("mysite");
quick note: this assumes you have a site named mysite setup in your config file

MEF and unit testing with NUnit

A few weeks ago I jumped on the MEF (ComponentModel) bandwagon, and am now using it for a lot of my plugins and also shared libraries. Overall, it's been great aside from the frequent mistakes on my part, which result in frustrating debugging sessions.
Anyhow, my app has been running great, but my MEF-related code changes have caused my automated builds to fail. Most of my unit tests were failing simply because the modules I was testing were dependent upon other modules that needed to be loaded by MEF. I worked around these situations by bypassing MEF and directly instantiating those objects.
In other words, via MEF I would have something like
[Import]
public ICandyInterface ci { get; set; }
and
[Export(typeof(ICandyInterface))]
public class MyCandy : ICandyInterface
{
[ImportingConstructor]
public MyCandy( [Import("name_param")] string name) {}
...
}
But in my unit tests, I would just use
CandyInterface MyCandy = new CandyInterface( "Godiva");
In addition, the CandyInterface requires a connection to a database, which I have worked around by just adding a test database to my unit test folder, and I have NUnit use that for all of the tests.
Ok, so here are my questions regarding this situation:
Is this a Bad Way to do things?
Would you recommend composing parts in [SetUp]
I haven't yet learned how to use mocks in unit testing -- is this a good example of a case where I might want to mock the underlying database connection (somehow) to just return dummy data and not really require a database?
If you've encountered something like this before, can you offer your experience and the way you solved your problem? (or should this go into the community wiki?)
It sounds like you are on the right track. A unit test should test a unit, and that's what you do when you directly create instances. If you let MEF compose instances for you, they would tend towards integration tests. Not that there's anything wrong with integration tests, but unit tests tend to be more maintainable because you test each unit in isolation.
You don't need a container to wire up instances in unit tests.
I generally recommend against composing Fixtures in SetUp, as it leads to the General Fixture anti-pattern.
It is best practice to replace dependencies with Test Doubles. Dynamic mocks is one of the more versatile ways of doing this, so definitely something you should learn.
I agree that creating the DOCs manually is much better than using MEF composition container to satisfy imports, but regarding the note 'compositing fixtures in setup leads to the general fixture anti pattern' - I want to mention that that's not always the case.
If you’re using the static container and satisfy imports via CompositionInitializer.SatisfyImports you will have to face the general fixture anti pattern as CompositionInitializer.Initialize cannot be called more than once. However, you can always create CompositionContainer, add catalogs, and call SatisyImportOnce on the container itself. In that case you can use a new CompositionContainer in every test and get away with facing the shared/general fixture anti pattern
I blogged on how to do unit tests (not nunit but works just the same) with MEF.
The trick was to use a MockExportProvider and i created a test base for all my tests to inherit from.
This is my main AutoWire function that works for integration and unit tests:
protected void AutoWire(MockExportProvider mocksProvider, params Assembly[] assemblies){
CompositionContainer container = null;
var assCatalogs = new List<AssemblyCatalog>();
foreach(var a in assemblies)
{
assCatalogs.Add(new AssemblyCatalog(a));
}
if (mocksProvider != null)
{
var providers = new List<ExportProvider>();
providers.Add(mocksProvider); //need to use the mocks provider before the assembly ones
foreach (var ac in assCatalogs)
{
var assemblyProvider = new CatalogExportProvider(ac);
providers.Add(assemblyProvider);
}
container = new CompositionContainer(providers.ToArray());
foreach (var p in providers) //must set the source provider for CatalogExportProvider back to the container (kinda stupid but apparently no way around this)
{
if (p is CatalogExportProvider)
{
((CatalogExportProvider)p).SourceProvider = container;
}
}
}
else
{
container = new CompositionContainer(new AggregateCatalog(assCatalogs));
}
container.ComposeParts(this);
}
More info on my post: https://yoavniran.wordpress.com/2012/10/18/unit-testing-wcf-and-mef/