Template function gives "no matching function for call" error - c++

First question on stackoverflow :) I'm relatively new to C++, and have never used templates, so forgive me if I'm doing something silly. I have a template function that combs through a list and checks for a specified element of a general type. That way I can specify whether it's looking for a string, or an int, or whatever.
template <class T>
bool inList(T match, std::string list)
{
int listlen = sizeof(list);
for (int i = 0; i <= listlen; i++) {
if (list[i] == match) return true;
else continue;
}
return false;
};
This is my call to inList(). testvec is a string vector with a few elements, including "test":
if (inList<string>("test", testvec))
cout << "success!";
else cout << "fail :(";
To my dismay and confusion, upon compiling, I am slapped with the following error:
error: no matching function for call to 'inList(const char [5], std::vector<std::basic_string<char> >&)'
What am I doing incorrectly? :(
[EDIT]
I neglected to mention that the template definition is in the global namespace. (it's a simple test program to see if my template will work, and it does not, apparently :( )

That's because there is no way to convert from a std::vector to a std::string. Instead, what you need to do is abstract over the concept of a collection.
You do this so that people can pass in any collection type they want. They can use an array, a vector, a string, a list, a deque... as long as it fits the 'concept' of a collection (here's to hoping c++1x comes with concepts!). They can even use their own in-house specially optimized collection types. That's the beauty of templates.
Using C++11 (works with any standard collection, primitive arrays, and user-defined types):
template<class elem_t, class list_t>
bool in_list(const elem_t& elem, const list_t& list) {
for (const auto& i : list) {
if (elem == i) {
return true;
}
}
return false;
}
EDIT: It's a non-standard extension to deduce std::initializer_list as a template argument, so provide an explicit override:
template<class elem_t>
bool in_list(const elem_t& elem, std::initializer_list<elem_t> list) {
for (const auto& i : list) {
if (elem == i) {
return true;
}
}
return false;
}
With this version, you can call it like:
int main() {
std::vector<int> a = {1, 2, 3, 4, 5};
std::cout << in_list(3, a) << std::endl;
std::string b = "asdfg";
std::cout << in_list('d', b) << std::endl;
std::cout << in_list('d', "asdfg") << std::endl;
std::cout << in_list(3, {1, 2, 3, 4, 5}) << std::endl;
return 0;
}
And for those of us still in C++98, this will work for both strings and vectors, and some user-defined types. It will not work with raw arrays though.
template<class elem_t, class list_t>
bool in_list_98(const elem_t& elem, const list_t& list) {
list_t::const_iterator end = list.end(); //prevent recomputation of end each iteration
for (list_t::const_iterator i = list.begin(); i < end; ++i) {
if (elem == *i) {
return true;
}
}
return false;
}
Or, you can go STL style:
template<class elem_t, class iterator_t>
bool in_list_stl(const elem_t& elem, iterator_t begin, iterator_t end) {
for (iterator_t i = begin; i < end; ++i) {
if (elem == *i) {
return true;
}
}
return false;
}
//call like std::string s = "asdf"; in_list_stl('s', s.begin(), s.end());
If I made a mistake, sorry, I don't have my compiler running right now...

Related

C++ - Iterate over vector of doubles as tuples

I have a C++ vector of doubles, which is guaranteed to have an even number of elements. This vector stores the coordinates of a set of points as x, y coordinates:
A[2 * i ] is the x coordinate of the i'th point.
A[2 * i + 1] is the y coordinate of the i'th point.
How to implement an iterator that allows me to use STL style algorithms (one that takes an iterator range, where dereferencing an iterator gives back the pair of doubles corresponding to the x, y coordinates of the corresponding point) ?
I'm using C++17 if that helps.
We can use range-v3, with two adapters:
chunk(n) takes a range and adapts it into a range of non-overlapping ranges of size n
transform(f) takes a range of x and adapts it into a range of f(x)
Putting those together we can create an adaptor which takes a range and yields a range of non-overlapping pairs:
auto into_pairs = rv::chunk(2)
| rv::transform([](auto&& r){ return std::pair(r[0], r[1]); });
Using the r[0] syntax assumes that the input range is random-access, which in this case is fine since we know we want to use it on a vector, but it can also be generalized to work for forward-only ranges at the cost of a bit more syntax:
| rv::transform([](auto&& r){
auto it = ranges::begin(r);
auto next = ranges::next(it);
return std::pair(*it, *next);
})
Demo, using fmt for convenient printing:
int main() {
std::vector<int> v = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5};
auto into_pairs = rv::chunk(2)
| rv::transform([](auto&& r){ return std::pair(r[0], r[1]); });
// prints {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}
fmt::print("{}\n", v | into_pairs);
}
It's unclear from the question if you wanted pair<T, T>s or pair<T&, T&>s. The latter is doable by providing explicit types to std::pair rather than relying on class template argument deduction.
C++ is a bit of a moving target - also when it comes to iterators (c++20 has concepts for that...). But would it not be nice to have a lazy solution to the problem. I.e. The tuples get generated on the fly, without casting (see other answers) and without having to write a loop to transform a vector<double> to a vector<tuple<double,double>>?
Now I feel I need a disclaimer because I am not sure this is entirely correct (language lawyers will hopefully point out, if I missed something). But it compiles and produces the expected output. That is something, yes?! Yes.
The idea is to build a pseudo container (which actually is just a facade to an underlying container) with an iterator of its own, producing the desired output type on the fly.
#include <vector>
#include <tuple>
#include <iostream>
#include <iterator>
template <class SourceIter>
struct PairWise {
PairWise() = delete;
PairWise(SourceIter first, SourceIter last)
: first{first}
, last{last}
{
}
using value_type =
typename std::tuple<
typename SourceIter::value_type,
typename SourceIter::value_type
>;
using source_iter = SourceIter;
struct IterState {
PairWise::source_iter first;
PairWise::source_iter last;
PairWise::source_iter current;
IterState(PairWise::source_iter first, PairWise::source_iter last)
: first{first}
, last{last}
, current{first}
{
}
friend bool operator==(const IterState& a, const IterState& b) {
// std::cout << "operator==(a,b)" << std::endl;
return (a.first == b.first)
&& (a.last == b.last)
&& (a.current == b.current);
}
IterState& operator++() {
// std::cout << "operator++()" << std::endl;
if (std::distance(current,last) >= 2) {
current++;
current++;
}
return *this;
}
const PairWise::value_type operator*() const {
// std::cout << "operator*()" << std::endl;
return std::make_tuple(*current, *(current+1));
}
};
using iterator = IterState;
using const_iterator = const IterState;
const_iterator cbegin() const {
return IterState{first,last};
}
const_iterator cend() const {
auto i = IterState{first,last};
i.current = last;
return i;
}
const_iterator begin() const {
// std::cout << "begin()" << std::endl;
return IterState{first,last};
}
const_iterator end() const {
// std::cout << "end()" << std::endl;
auto i = IterState{first,last};
i.current = last;
return i;
}
source_iter first;
source_iter last;
};
std::ostream& operator<<(std::ostream& os, const std::tuple<double,double>& value) {
auto [a,b] = value;
os << "<" << a << "," << b << ">";
return os;
}
template <class Container>
auto pairwise( const Container& container)
-> PairWise<typename Container::const_iterator>
{
return PairWise(container.cbegin(), container.cend());
}
int main( int argc, const char* argv[]) {
using VecF64_t = std::vector<double>;
VecF64_t data{ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
for (const auto x : pairwise(data)) {
std::cout << x << std::endl;
}
return 0;
}
Elements in vector are stored in contiguous memory area, so you can use simple pointer arithmetics to access pair of doubles.
operator++ for iterator should skip 2 doubles at every use.
operator* can return tuple of references to double values, so you can read (pair = *it) or edit values (*it = pair).
struct Cont {
std::vector<double>& v;
Cont(std::vector<double>& v) : v(v) {}
struct Iterator : public std::iterator<std::input_iterator_tag , std::pair<double,double>> {
double* ptrData = nullptr;
Iterator(double* data) : ptrData(data) {}
Iterator& operator++() { ptrData += 2; return *this; }
Iterator operator++(int) { Iterator copy(*this); ptrData += 2; return copy; }
auto operator*() { return std::tie(*ptrData,*(ptrData+1)); }
bool operator!=(const Iterator& other) const { return ptrData != other.ptrData; }
};
auto begin() { return Iterator(v.data()); }
auto end() { return Iterator(v.data()+v.size());}
};
int main() {
std::vector<double> v;
v.resize(4);
Cont c(v);
for (auto it = c.begin(); it != c.end(); it++) {
*it = std::tuple<double,double>(20,30);
}
std::cout << v[0] << std::endl; // 20
std::cout << v[1] << std::endl; // 30
}
Demo
There's not an easy "C++" way to do this that's clean and avoids a copy of the original array. There's always this (make a copy):
vector<double> A; // your original list of points
vector<pair<double,double>> points;
for (size_t i = 0; i < A.size()/2; i+= 2)
{
points[i*2] = pair<double,double>(A[i], A[i+1]);
}
The following would likely work, violates a few standards, and the language lawyers will sue me in court for suggesting it. But if we can assume that the sizeof(XY) is the size of two doubles, has no padding, and expected alignment then cheating with a cast will likely work. This assumes you don't need a std::pair
Non standard stuff ahead
vector<double> A; // your original list of points
struct XY {
double x;
double y;
};
static_assert(sizeof(double)*2 == sizeof(XY));
static_assert(alignof(double) == alignof(XY));
XY* points = reinterpret_cast<XY*>(A.data());
size_t numPoints = A.size()/2;
// iterate
for (size_t i = 0; i < numPoints; i++) {
XY& point = points[i];
cout << point.x << "," << point.y << endl;
}
If you can guarantee that std::vector will always have an even number of entries, you could exploit the fact that an vector of doubles will have the same memory layout as a vector of pairs of doubles. This is kind of a dirty trick though so I wouldn't recommend it if you can avoid it. The good news is that the standard guarantees that vector elements will be contiguous.
inline const std::vector<std::pair<double, double>>& make_dbl_pair(std::vector<double>& v)
{
return reinterpret_cast<std::vector<std::pair<double, double>>&>(v);
}
This will only work for iteration with iterators. The size is likely to be double the number of pairs in the vector because it is still a vector of doubles underneath.
Example:
int main(int argc, char* argv[])
{
std::vector<double> dbl_vec = { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 };
const std::vector<std::pair<double, double>>& pair_vec = make_dbl_pair(dbl_vec);
for (auto it = pair_vec.begin(); it != pair_vec.end(); ++it) {
std::cout << it->first << ", " << it->second << "\n";
}
std::cout << "Size: " << dbl_vec.size() << "\n";
return 0;
}

Using iterators to modify array elements in c++

The problem arise when I am trying to write an insert function that is suppose to move all elements in the array up at the specified location given by the iterator and then insert a new value into the array at the position given by the iterator.
The code is getting errors in the insert function with the following error:
no match for 'operator[]' (operand types are 'std::basic_string [1000]' and 'std::basic_string')
I am new to using iterators, and I think that it is not possible to access array elements with pointers as indices. So I am not sure if there is another way to do this, or do I need to overload the [] operator to make it work some how?
template <class T>
class Vector {
public:
typedef T* iterator;
Vector () { }
T& operator[](unsigned int i) {
return items[i];
}
// T& operator[](iterator i) {
//return items[*i];
//}
iterator begin () {
return &items[0];
}
iterator end () {
return &items[used];
}
int size () { return used; }
iterator insert (iterator position, const T& item) {
for(Vector<T>::iterator i=&items[998]; i>=position; i--)
{
items[*(i+1)]=items[*i];
}
items[*position]= item;
return position;
}
private:
T items[1000];
int used=0;
};
This code is problematic in the sense that it creates 1000 elements of type T, even if logically it is empty. Also, if there are more than 1000 insertions, then the upper elements are discarded.
As for the compilation issues, I have tries to compile the code with Vector<int> and it compiles fine, but crashes. For the same reason it crashes with Vector<int> it does not compile with Vector<std::string>. The Issue is with the type of *i, which is , i.e., std::string in the case of Vector<std::string>. Either use iterator all the way, or use indexes, but don't mix. Using iterators:
for(Vector<T>::iterator i=&items[998]; i>=position; i--)
{
*(i+1)=*i;
}
Edit :
[Just noticed an answer by Scheff that figured this out, after completing this edit]
The above invokes undefined behavior for v.insert(v.begin(), value) since i iterates before items. To avoid that, the iteration should stop before it falls off items:
for(Vector<T>::iterator i=&items[999]; i > position; i--)
{
*i = *(i-1);
}
Also, note that the line following the loop should also be fixed:
items[*position]= item; // <--- BUG: also mixing indexes and iterators
Or using indexes:
for(int i= 998; begin() + i>=position; i--)
{
items[i+1]=items[i];
}
In addition to the answer of Michael Veksler, I tried to get it working (and hence needed a bit longer).
So, with his first proposed fix and additionally
items[*position]= item;
changed to
*position = item;
the following test compiles and runs:
#include <iostream>
int main()
{
Vector<double> vec;
vec.insert(vec.begin(), 1.0);
vec.insert(vec.begin(), 2.0);
vec.insert(vec.begin(), 3.0);
std::cout << "vec.size(): " << vec.size() << '\n';
for (int i = 0; i < vec.size(); ++i) {
std::cout << "vec[" << i << "]: " << vec[i] << '\n';
}
return 0;
}
Output:
vec.size(): 0
Oops!
The update of used is missing in insert() as well:
++used;
And, now it looks better:
vec.size(): 3
vec[0]: 3
vec[1]: 2
vec[2]: 1
The complete MCVE:
#include <iostream>
template <class T>
class Vector {
public:
typedef T* iterator;
Vector () { }
T& operator[](unsigned int i) {
return items[i];
}
// T& operator[](iterator i) {
//return items[*i];
//}
iterator begin () {
return &items[0];
}
iterator end () {
return &items[used];
}
int size () { return used; }
iterator insert (iterator position, const T& item) {
for(Vector<T>::iterator i=&items[998]; i>=position; i--)
{
*(i+1) = *i;
}
*position = item;
++used;
return position;
}
private:
T items[1000];
int used=0;
};
int main()
{
Vector<double> vec;
vec.insert(vec.begin(), 1.0);
vec.insert(vec.begin(), 2.0);
vec.insert(vec.begin(), 3.0);
std::cout << "vec.size(): " << vec.size() << '\n';
for (int i = 0; i < vec.size(); ++i) {
std::cout << "vec[" << i << "]: " << vec[i] << '\n';
}
return 0;
}
Live Demo on coliru
So you can think of an iterator in this context as essentially a glorified pointer to the elements in the array, as you defined in your typedef at the beginning of your class.
When you're trying to access the elements in your array in your insert function, you are essentially dereferencing these pointers to yield the elements themselves and THEN using those elements as indices for your array, hence producing the error that the index is of the wrong type.
So for example suppose you had a Vector<std::string>. Inside the for loop in the insert function, you have this line:
items[*(i+1)]=items[*i];
Because i is an iterator as you defined, i has the type std::string * and hence *i has the type std::string. When you then write items[*i] you are trying to use the std::string as an index for your array which you can't do.
Instead, you should use a line similar to the following:
*(i + 1) = *i
There are also a couple of logical errors in your code, but I'll leave you to find those later on.
Hope this helps!
Have a look at how std::move_backward can be implemented
template< class BidirIt1, class BidirIt2 >
BidirIt2 move_backward(BidirIt1 first, BidirIt1 last, BidirIt2 d_last)
{
while (first != last) {
*(--d_last) = std::move(*(--last));
}
return d_last;
}
You don't need to move any of the elements past end, and we can rewrite your insert to be similar
iterator insert (iterator position, const T& item) {
for(iterator i = end(), d = end() + 1; i != position; )
{
*(--d) = std::move(*(--i));
}
*position = item;
++used;
return position;
}
Note that this is undefined if you try to insert into a full Vector

Why is trying to store a pointer to function ambiguous

Here is my code:
#include <functional>
#include <iostream>
#include<vector>
using namespace std;
// vector iterator
template <class T> class vit
{
private:
//vector<T>::iterator it;
vector<T> m_v;
function<bool (T, T)> m_fptr;
int len, pos;
public:
vit(vector<T> &v) { this->m_v = v; len = v.size(); pos = 0;};
// it= v.begin(); };
bool next(T &i) {
//if(it == m_v.end()) return false;
if(pos==len) return false;
//i = *it;
i = m_v[pos];
//if(idle) { idle = false ; return true; }
//it++;
pos++;
return true;};
//bool idle = true;
void set_same(function<bool (T,T)> fptr) { m_fptr = fptr ;};
//void set_same(function<bool(int, int)> fun) { return ; }
bool grp_begin() {
return pos == 0 || ! m_fptr(m_v[pos], m_v[pos-1]); };
bool grp_end() {
return pos == len || ! m_fptr(m_v[pos], m_v[pos+1]); };
};
bool is_same(int a, int b) { return a == b; }
main()
{
vector<int> v ={ 1, 1, 2, 2, 2, 3, 1, 1, 1 };
int total;
for(auto it = v.begin(); it != v.end(); it++) {
if(it == v.begin() || *it != *(it-1)) {
total = 0;
}
total += *it;
if(it+1 == v.end() || *it != *(it+1)) {
cout << total << endl;
}
}
cout << "let's gry a group" <<endl;
vit<int> g(v);
int i;
while(g.next(i)) { cout << i << endl; }
cout << "now let's get really fancy" << endl;
vit<int> a_vit(v);
//auto is_same = [](int a, int b) { return a == b; };
a_vit.set_same(is_same);
//int total;
while(a_vit.next(i)) {
if(a_vit.grp_begin()) total = 0;
total += i;
if(a_vit.grp_end()) cout << total << endl ;
}
}
When I compile it with g++ -std=c++11 iter.cc -o iter, I get the result:
iter.cc: In function 'int main()':
iter.cc:63:17: error: reference to 'is_same' is ambiguous
a_vit.set_same(is_same);
^
iter.cc:37:6: note: candidates are: bool is_same(int, int)
bool is_same(int a, int b) { return a == b; }
^
In file included from /usr/include/c++/5.3.0/bits/move.h:57:0,
from /usr/include/c++/5.3.0/bits/stl_pair.h:59,
from /usr/include/c++/5.3.0/utility:70,
from /usr/include/c++/5.3.0/tuple:38,
from /usr/include/c++/5.3.0/functional:55,
from iter.cc:1:
/usr/include/c++/5.3.0/type_traits:958:12: note: template<class, class> struct std::is_same
struct is_same;
^
By way of explanation, I have created a class called 'vit'. It does two things: iterate over a vector, and determine if a new group has been reached.
The class function 'set_same' is supposed to store a function provided by the calling class to determine if two adjacent elements of a vector are in the same group. However, I can't seem to store the function in the class for future use by grp_begin() and grp_end() on account of the ostensible ambiguity of is_same.
What gives?
There is an is_same function defined by you and there is a struct is_same defined by the C++ Standard Library. Since you are using namespace std, your compiler doesn't know which is_same you meant to use.
It's what the error says: it's not clear whether you mean your is_same (in the global namespace) or the class template is_same (in namespace std).
You may disambiguate as follows:
::is_same
… with the leading :: meaning "in the global namespace".
Though you should consider putting your code in a namespace of its own.
Thanks guys. This is my first time touching C++ after more than a decade. I have cleaned up the code, and used a lambda to bring the "is_same" function closer to where it is called.
Did you spot the bug in my code? 'pos' was off-by-one when calling grp_begin() and grp_end(). Here is the revised code:
#include <functional>
#include <iostream>
#include <vector>
// vector iterator
template <class T> class vit
{
private:
std::vector<T> m_v;
std::function<bool (T, T)> m_fptr;
int len, pos;
public:
vit(std::vector<T> &v) { m_v = v; len = v.size(); pos = -1;};
bool next(T &val) {
pos++;
if(pos==len) return false;
val = m_v[pos];
return true;};
void set_same(std::function<bool (T,T)> fptr) { m_fptr = fptr ;};
bool grp_begin() {
return pos == 0 || ! m_fptr(m_v[pos], m_v[pos-1]); };
bool grp_end() {
return pos+1 == len || ! m_fptr(m_v[pos], m_v[pos+1]); };
};
main()
{
std::vector<int> v ={ 1, 1, 2, 2, 2, 3, 1, 1, 1 };
vit<int> a_vit(v);
std::function<bool (int, int)> is_same = [](int a, int b) { return a == b; };
a_vit.set_same(is_same);
int i, total;
while(a_vit.next(i)) {
if(a_vit.grp_begin()) total = 0;
total += i;
if(a_vit.grp_end()) std::cout << total << std::endl ;
}
}
My class definition isn't bullet-proof and could be better: if the user forgets to 'set-same', for example, they'll be referring a random memory address as a function.
Nevertheless, I'm pretty chuffed with my solution so far. The class caller is relieved of all the bookkeeping relating iterating over the vector, and working out if a group boundary has been crossed.
The calling code looks very compact and intuitive to me.I can see C++ being my go to language.

Elegantly (iterating) parsing data in chunks?

We have some "iterable" collection of data, for instance: std::vector<Foo> bar.
We wish to process Foo elements from bar until some condition is met in which point we "yield" (think Python) the result of all these processed Foos and wait until the next chunk of parsed information is requested.
So far what we're doing is this:
ParsedChunk foobar( std::vector<Foo> bar, size_t* start_from) {
size_t& i = *start_from;
ParsedChunk result_so_far;
for (;i < bar.size(); i++) {
process_some_foo_and_update_chunk(result_so_far, bar[i]);
if (check_condition(? ? ?) {
return result_so_far;
}
}
}
Any suggestions for doing this better?
As I already pointed out in my comment, this is IMO a very good case for an custom iterator:
The iterator scans through your range, as long as some predicate holds, and
when the predicate isn't true for some element, calls a function with the sub range of elements where the predicate held (plus the one that didn't satisfy the predicate). The result of that function call is then the value you get when you dereference the iterator.
template<typename Fn, typename Predicate, typename Iterator>
struct collector {
using value_type = typename std::result_of<Fn(Iterator, Iterator)>::type;
using pointer = value_type const *;
using reference = value_type const &;
using difference_type = std::ptrdiff_t;
using iterator_category = std::forward_iterator_tag;
value_type cache;
Fn fn;
Predicate predicate;
Iterator pos, from, stop;
collector(Fn&& fn, Predicate&& p, Iterator&& s, Iterator&& e)
: fn(std::forward<Fn>(fn)),
predicate(std::forward<Predicate>(p)),
pos(std::forward<Iterator>(s)),
from(pos),
stop(std::forward<Iterator>(e))
{
next_range();
}
collector & operator++(void) {
next_range();
return *this;
}
reference operator*(void) const {
return cache;
}
void next_range(void) {
from = pos;
if (pos == stop) return;
for (; pos != stop; ++pos) {
if (not predicate(*pos)) {
++pos;
break;
}
}
cache = fn(from, pos);
}
collector end_of_range(void) const {
auto copy = collector{*this};
copy.pos = copy.stop;
copy.from = copy.stop;
return copy;
}
bool operator==(collector const & rhs) const {
return (from == rhs.from) and (pos == rhs.pos) and (stop == rhs.stop);
}
bool operator!=(collector const & rhs) const {
return (from != rhs.from) or (pos != rhs.pos) or (stop != rhs.stop);
}
};
template<typename Fn, typename Predicate, typename Iterator>
auto make_collector_range(Fn&& fn, Predicate&& p, Iterator&& s, Iterator&& e) {
using I = typename std::decay<Iterator>::type;
using P = typename std::decay<Predicate>::type;
using F = typename std::decay<Fn>::type;
using C = collector<F,P,I>;
auto start = C{
std::forward<Fn>(fn), std::forward<Predicate>(p),
std::forward<Iterator>(s), std::forward<Iterator>(e)};
auto stop = start.end_of_range();
return make_pair(std::move(start), std::move(stop));
}
An example usage, calculating the sum of the numbers till 50, but not in one step, but in steps of 15 numbers each:
int main(int, char**) {
vector<int> numbers = vector<int>(50);
generate(begin(numbers), end(numbers),
[i = 0] (void) mutable{
return ++i;
});
copy(begin(numbers), end(numbers), ostream_iterator<int>{cout, " "});
cout << endl;
auto collected = make_collector_range(
[](auto const & from, auto const & to) {
return accumulate(from, to, 0);
},
[](auto const & num) {
return not ((num % 3 == 0) and (num % 5 == 0));
},
begin(numbers), end(numbers));
copy(collected.first, collected.second, ostream_iterator<int>{cout, " "});
cout << endl;
bool passed = accumulate(collected.first, collected.second, 0) == (50*51)/2;
cout << "test " << (passed ? "passed" : "failed") << endl;
return 0;
}
(Live demo here)
(Note: This example uses a fixed "step" width, and predicate and function are unrelated to each other and don't maintain state, but none of this is required by the iterator.)
I hope the intention of the code is clear, if not I can try to provide a more detailed explanation about its workings.

Looping on a closed range

How would you fix this code?
template <typename T> void closed_range(T begin, T end)
{
for (T i = begin; i <= end; ++i) {
// do something
}
}
T is constrained to be an integer type, can be the wider of such types and can be signed or unsigned
begin can be numeric_limits<T>::min()
end can be numeric_limits<T>::max() (in which case ++i will overflow in the above code)
I've several ways, but none I really like.
Maybe,
template <typename T> void closed_range(T begin, const T end)
if (begin <= end) {
do {
// do something
} while (begin != end && (++begin, true));
}
}
Curses, my first attempt was wrong, and the fix above isn't as pretty as I'd hoped. How about:
template <typename T> bool advance(T &value) { ++value; return true; }
template <typename T> void closed_range(T first, const T last)
if (first <= last) {
do {
// do something
} while (first != last && advance(first));
}
}
There's no ambiguity with std::advance even if T isn't an integer type, since std::advance takes 2 parameters. So the template would also work with for instance a random-access iterator, if for some reason you wanted a closed range of those.
Or how about a bit of set theory? Obviously this is massive overkill if you're only writing one loop over a closed range, but if it's something that you want to do a lot, then it makes the loop code about right. Not sure about efficiency: in a really tight loop you might want make sure the call to endof is hoisted:
#include <limits>
#include <iostream>
template <typename T>
struct omega {
T val;
bool isInfinite;
operator T() { return val; }
explicit omega(const T &v) : val(v), isInfinite(false) { }
omega &operator++() {
(val == std::numeric_limits<T>::max()) ? isInfinite = true : ++val;
return *this;
}
};
template <typename T>
bool operator==(const omega<T> &lhs, const omega<T> &rhs) {
if (lhs.isInfinite) return rhs.isInfinite;
return (!rhs.isInfinite) && lhs.val == rhs.val;
}
template <typename T>
bool operator!=(const omega<T> &lhs, const omega<T> &rhs) {
return !(lhs == rhs);
}
template <typename T>
omega<T> endof(T val) {
omega<T> e(val);
return ++e;
}
template <typename T>
void closed_range(T first, T last) {
for (omega<T> i(first); i != endof(last); ++i) {
// do something
std::cout << i << "\n";
}
}
int main() {
closed_range((short)32765, std::numeric_limits<short>::max());
closed_range((unsigned short)65533, std::numeric_limits<unsigned short>::max());
closed_range(1, 0);
}
Output:
32765
32766
32767
65533
65534
65535
Be a bit careful using other operators on omega<T> objects. I've only implemented the absolute minimum for the demonstration, and omega<T> implicitly converts to T, so you'll find that you can write expressions which potentially throw away the "infiniteness" of omega objects. You could fix that by declaring (not necessarily defining) a full set of arithmetic operators; or by throwing an exception in the conversion if isInfinite is true; or just don't worry about it on grounds that you can't accidentally convert the result back to an omega, because the constructor is explicit. But for example, omega<int>(2) < endof(2) is true, but omega<int>(INT_MAX) < endof(INT_MAX) is false.
My take:
// Make sure we have at least one iteration
if (begin <= end)
{
for (T i = begin; ; ++i)
{
// do something
// Check at the end *before* incrementing so this won't
// be affected by overflow
if (i == end)
break;
}
}
This works and is fairly clear:
T i = begin;
do {
...
}
while (i++ < end);
If you want to catch the special case of begin >= end you need to add another if like in Steve Jessop's solution.
template <typename T, typename F>
void closed_range(T begin, T end, F functionToPerform)
{
for (T i = begin; i != end; ++i) {
functionToPerform(i);
}
functionToPerform(end);
}
EDIT: Reworked things to more closely match the OP.
#include <iostream>
using namespace std;
template<typename T> void closed_range(T begin, T end)
{
for( bool cont = (begin <= end); cont; )
{
// do something
cout << begin << ", ";
if( begin == end )
cont = false;
else
++begin;
}
// test - this should return the last element
cout << " -- " << begin;
}
int main()
{
closed_range(10, 20);
return 0;
}
The output is:
10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, -- 20