Extending C++ ostream - c++

I'm trying to learn more about the workings of the C++ I/O stream library by extending std::streambuf. As a learning experiment, my goal is to simply create a custom stream which directs all output to std::cerr. It seems simple enough:
#include <iostream>
using namespace std;
class my_ostreambuf : public std::streambuf
{
public:
protected:
std::streamsize xsputn(const char * s, std::streamsize n)
{
std::cerr << "Redirecting to cerr: " << s << std::endl;
return n;
}
};
int main()
{
my_ostreambuf buf;
std::ostream os(&buf);
os << "TEST";
}
This seems to work, since it prints Redirecting to cerr: TEST. The problem is that it doesn't work when a single character (as opposed to a string) is inserted into the stream via std::ostream::sputc. For example:
int main()
{
my_ostreambuf buf;
std::ostream os(&buf);
os << "ABC"; // works
std::string s("TEST");
std::copy(s.begin(), s.end(), std::ostreambuf_iterator<char>(os)); // DOESN'T WORK
}
The problem I guess is that xsputn doesn't handle single character insertion. (I guess sputc doesn't call xsputn internally?) But, looking over the list of virtual protected functions in std::streambuf, I don't see any function I'm supposed to override that handles single character insertion.
So, how can I accomplish this?

Single-character output is handled by overflow. Here's how you might implement overflow in terms of xsputn if xsputn does the actual outputting:
int_type overflow(int_type c = traits_type::eof())
{
if (c == traits_type::eof())
return traits_type::eof();
else
{
char_type ch = traits_type::to_char_type(c);
return xsputn(&ch, 1) == 1 ? c : traits_type::eof();
}
}

Related

Overloading cout for logging purposes?

I would like to define something like a new cout, which I can use to log my data:
some_type cout2( Message_type message ){
cout << message;
logfile.save(message);
}
so I will use it with
cout2 << "some message" << endl;
Up to now I was not able to find out how the code above has to look like exactly.
Thanks for your help.
You can create your own logger like:
class Logger {
public:
Logger(std::string const& filename)
: stream_(filename, std::ofstream::out | std::ofstream::app)
{
if (!stream_) {
// Error...
}
}
Logger& operator<<(std::string const& str) {
std::cout << str;
stream_ << str;
return *this;
}
private:
std::ofstream stream_;
};
Generally speaking, classes from C++ standard library are not designed to be derived, and that is true for stream classes.
So IMHO, it is better to specify what method you will need on your cout2 object, and then:
design a class containing a ostream& object, initialized in ctor
delegate actual output to that internal object
do whatever log you need in your methods
You should use templated a operator << to be able to easily process any class that std::ostream can process.
class LogStream {
std::ostream& out;
Logfile logfile;
LogStream(std::ostream& out, /* param for logfile initialization */ ...)
: out(out), logfile(...) {}
... // other useful methods for state
};
template<typename T>
LogStream& operator << (LogStream& out, T val) {
out.out << message;
// should first test whether T is manipulator, and choose whether and how it should be logged
logfile.save(message);
}
You don't want to modify std::cout.
Instead, you want to create a specialised std::streambuf that writes to two buffers rather than one. For example;
#include <streambuf>
template <typename char_type,
typename traits = std::char_traits<char_type> >
class basic_teebuf:
public std::basic_streambuf<char_type, traits>
{
public:
typedef typename traits::int_type int_type;
basic_teebuf(std::basic_streambuf<char_type, traits> * sb1,
std::basic_streambuf<char_type, traits> * sb2)
: sb1(sb1)
, sb2(sb2)
{
}
protected: // override virtuals inherited from std::basic_streambuf
virtual int sync()
{
int const r1 = sb1->pubsync();
int const r2 = sb2->pubsync();
return r1 == 0 && r2 == 0 ? 0 : -1;
}
virtual int_type overflow(int_type c)
{
int_type const eof = traits::eof();
if (traits::eq_int_type(c, eof))
{
return traits::not_eof(c);
}
else
{
char_type const ch = traits::to_char_type(c);
int_type const r1 = sb1->sputc(ch);
int_type const r2 = sb2->sputc(ch);
return
traits::eq_int_type(r1, eof) ||
traits::eq_int_type(r2, eof) ? eof : c;
}
}
private:
std::basic_streambuf<char_type, traits> * sb1;
std::basic_streambuf<char_type, traits> * sb2;
};
typedef basic_teebuf<char> teebuf;
Then you need to create a specialised ostream which uses such a buffer
#include <ostream>
class teestream : public std::ostream
{
public:
// Construct an ostream which tees output to the supplied
// ostreams.
teestream(std::ostream & o1, std::ostream & o2);
private:
teebuf tbuf;
};
teestream::teestream(std::ostream & o1, std::ostream & o2)
: std::ostream(&tbuf)
, tbuf(o1.rdbuf(), o2.rdbuf())
{
}
All the above does is create a specialised std::ostream that uses our specialised buffer, which in turn makes use of two buffers.
Now, our teestream needs to be initialised using two streams. For example
#include <fstream>
#include <iostream>
// include the preceding definition of teestream here
int main()
{
std::ofstream logfile("hello-world.log");
teestream tee(std::cout, logfile);
// tee is now a stream that writes the same output to std::cout and logfile
tee << "Hello, world!\n";
return 0;
}
The advantage of this is that all stream insertions (operator <<) will work with our teestream - even for classes with overloaded versions.
When main() returns, the streams will also be closed cleanly.
I've written the specalised streambuf as a template (std::streambuf is a specialisation of a templated class named std::basic_streambuf). For generality, it would probably be better to do the same with the stream (using the fact that std::ostream is also a specialisation of a templated std::basic_ostream). I leave that sort of generalisation as an exercise.
The logging systems I've seen, built on this idea look something like this:
#define MY_PRINT(x, ...) \
{ \
fprintf(logFile, x, ##__VA_ARGS__); \
fflush(acuLogFile); \
}
And you would use it like:
MY_PRINT("this is just a test\n");
Even though this is the C way of doing things, it is very versatile and work in C++ as well.
You just have to use your newly define print function everywhere in the code.
Maybe you should have an instance based logger with a .log() method, that, depending on implementation can log to file, write to stdout etc, rather than trying to overload free functions from std namespace?
Your intent will be clearer and it will be more object orientated.
In fact here is an example of a pretty cookie-cutter event logger I wrote recently, if that helps you to understand the sort of thing I'm talking about. My design allows for dependnacy injection, as well as keeping boring decisions about how something should be formatted as output and where it should go (stdout or file etc) in the logger.
Of course you can define your own cout.
First you need a class which can handle the << operator and contains an fstream and an ostream (like cout).
class logstream
{
private:
fstream *filestream;
ostream *cout;
public:
logstream(fstream* filestream, ostream* cout)
{
this->cout = cout;
this->filestream = filestream;
}
string operator<< (char* s)
{
*cout << s;
*filestream << s;
return s;
}
};
To use this, simply initialize it with cout and a fstream.
fstream lout = fstream("Filename", ios::app);
logstream cout = logstream(&lout, &std::cout);
And now you have what you wanted.
cout << "message";
EDIT: Don't forget to include
#include <iostream>
#include <fstream>
and
using namespace std;

Implementing std::basic_streambuf subclass for manipulating input

I have a std::basic_streambuf subclass that causes all output to be written in uppercase, like this:
class upper_streambuf : public std::streambuf
{
public:
upper_streambuf(std::streambuf &real)
: m_realBuffer(real)
{
}
protected:
virtual int overflow(int c)
{
int uc = std::toupper(c);
m_realBuffer.sputc(uc);
return uc;
}
private:
std::streambuf &m_realBuffer;
};
I use it like this for example (which seems to work OK):
upper_streambuf buf(*std::cout.rdbuf());
std::ostream ucout(&buf);
ucout << "Hello, world!" << std::endl; // prints "HELLO, WORLD!"
What I want to achieve is the more-or-less the inverse, I want to read from a stream and have all input converted to lowercase. I have the following:
class lower_streambuf : public std::streambuf
{
public:
lower_streambuf(std::streambuf &real)
: m_realBuffer(real)
{
}
protected:
virtual int underflow()
{
return std::tolower(m_realBuffer.sbumpc());
}
private:
std::streambuf &m_realBuffer;
};
However, when I try and use this one like this:
lower_streambuf buf(*std::cin.rdbuf());
std::istream lcin(&buf);
std::string line;
std::getline(lcin, line);
The result is a segmentation fault. Am I overriding or calling the wrong functions? Please note I am somewhat of a novice in C++. Please also note that I understand I can read the input completely and simply convert it to lowercase once it has been read, but this is more for learning/academic purposes rather than anything practical.
underflow() has post-conditions that you failed to establish: by the time you return from it, you need to have a get area in your streambuf that holds that character you're returning.
A single-character buffer is sufficient:
protected:
virtual int underflow()
{
ch = std::tolower(m_realBuffer.sbumpc());
+ setg(&ch, &ch, &ch+1);
return ch;
}
private:
+ char ch; // input buffer!
std::streambuf &m_realBuffer;
};

Use multiple ofstreams to write to a single output file in c++

I have class Writer that has two ofstream members.
Both streams are associated with the same output file. I'd like to use both streams in Writer::write method, but to make sure that each stream writes to the end of the real output file.
Code
class my_ofstream1:
public ofstream
{
// implement some functions.
// using internal, extended type of streambuf
};
class my_ofstream2:
public ofstream
{
// implement some functions.
// using internal, extended type of streambuf
// (not the same type as found in my_ofstream1)
};
class Writer
{
public:
void open(string path)
{
f1.open(path.c_str(),ios_base::out); f2.open(path.c_str(),ios_base::out);
}
void close()
{
f1.close(); f2.close();
}
void write()
{
string s1 = "some string 1";
string s2 = "some string 2";
f1.write(s1.c_str(), s1.size());
// TBD - ensure stream f2 writes to the end of the actual output file
assert(f1.tellp() == f2.tellp());
f2.write(s2.c_str(), s2.size());
}
private:
my_ofstream1 f1;
my_ofstream1 f2;
};
void main()
{
Writer w;
w.open("some_file.txt");
w.write();
w.close();
}
Questions
How to ensure f2 is in sync with f1? meaning, before writing, stream offset of f2 must be in sync with stream offset of f1 and vice versa?
I can't use function std::ios::rdbuf since each ofstream uses special derived streambuf. so by using rdbuf() I'll lose the necessary functionality.
I tried using some of the techniques found in Synchronizing Streams topic but could not make it happen.
This looks like both of your classes use the filtering streambuf
idiom. In any case, don't derive your classes from
std::ofstream, but directly from ostream, and have them both
use the same std::filebuf object. If you are using the
filtering streambuf idiom, don't let your filtering
streambuf's buffer; leave that to the final std::filebuf.
In other words, your "internal, extended type of streambuf"
should contain a pointer to the final sink, which will be
a filebuf (but your filtering streambufs don't need to know
this). Functions like sync, they just pass on to the final
destination, and they should never establish a buffer
themselves, but pass everything on to the filebuf.
Is this not what you are looking for? This could be easily modified to work with ostreams rather the ofstreams, which is nicer - the actual issue is synchronisation of the buffers. In this code I have simply made the filebuf bf unbuffered and it works fine. Alternatively leave it buffered but include calls to pubsync when switching between my_ofstream's. I don't understand why ios:rdbuf is not available. Are you creating your own streambuf?
#include <iostream>
#include <fstream>
#include <assert.h>
using namespace std;
class my_ofstream1 : public ofstream
{
public:
my_ofstream1& write (const char_type* s, streamsize n)
{
ofstream::write (s, n);
//rdbuf()->pubsync();
return *this;
}
void attach (filebuf* bf){
ios::rdbuf(bf);
}
};
class my_ofstream2 : public ofstream
{
public:
my_ofstream2& write (const char_type* s, streamsize n)
{
ofstream::write (s, n);
//rdbuf()->pubsync();
return *this;
}
void attach (filebuf* bf){
ios::rdbuf(bf);
}
};
class Writer
{
filebuf bf;
my_ofstream1 f1;
my_ofstream1 f2;
public:
void open(string path)
{
bf.open(path.c_str(),ios_base::out);
bf.pubsetbuf(0,0); //unbufferred
f1.attach(&bf); f2.attach(&bf);
}
void close()
{
f1.close(); f2.close();
}
void write()
{
string s1 = "some string 1";
string s2 = "some string 2";
f1.write(s1.c_str(), s1.size());
assert(f1.tellp() == f2.tellp());
f2.write(s2.c_str(), s2.size());
}
};
int main()
{
Writer w;
w.open("some_file.txt");
w.write();
w.close();
return 0;
}

c++ execute function any time a stream is written to

I have a simple GUI program that uses a custom stringstream to redirect output from the console to a text field in the GUI (under some circumstances). currently. the window redraws any time I hit enter, but it's possible that output could be generated at other times. Is there a way to register a function with the stringstream that gets executed every time the << operator is used on the stream?
NOTE
I should have pointed out that I cannot use C++11 in my solution. the machines on which this will be compiled and run will not have c++11 available.
Personally, I wouldn't use an std::ostringstream (or even an std::stringstream) for this at all! Instead, I would create my own stream buffer taking care of sending the data to the GUI. That is, I'd overwrite std::streambuf::overflow() and std::streambuf::sync() to send the current data to the GUI. To also make sure that any output is sent immediately, I'd set up an std::ostream to have std::ios_base::unitbuf set. Actually, sending the changes to a function is quite simple, i.e., I'll implement this:
#include <streambuf>
#include <ostream>
#include <functional>
#include <string>
#include <memory>
#include <iostream> // only for testing...
#if HAS_FUNCTION
typedef std::function<void(std::string)> function_type;
#else
class function_type
{
private:
struct base {
virtual ~base() {}
virtual base* clone() const = 0;
virtual void call(std::string const&) = 0;
};
template <typename Function>
struct concrete
: base {
Function d_function;
concrete(Function function)
: d_function(function) {
}
base* clone() const { return new concrete<Function>(this->d_function); }
void call(std::string const& value) { this->d_function(value); }
};
std::auto_ptr<base> d_function;
public:
template <typename Function>
function_type(Function function)
: d_function(new concrete<Function>(function)) {
}
function_type(function_type const& other)
: d_function(other.d_function->clone()) {
}
function_type& operator= (function_type other) {
this->swap(other);
return *this;
}
~function_type() {}
void swap(function_type& other) {
std::swap(this->d_function, other.d_function);
}
void operator()(std::string const& value) {
this->d_function->call(value);
}
};
#endif
class functionbuf
: public std::streambuf {
private:
typedef std::streambuf::traits_type traits_type;
function_type d_function;
char d_buffer[1024];
int overflow(int c) {
if (!traits_type::eq_int_type(c, traits_type::eof())) {
*this->pptr() = traits_type::to_char_type(c);
this->pbump(1);
}
return this->sync()? traits_type::not_eof(c): traits_type::eof();
}
int sync() {
if (this->pbase() != this->pptr()) {
this->d_function(std::string(this->pbase(), this->pptr()));
this->setp(this->pbase(), this->epptr());
}
return 0;
}
public:
functionbuf(function_type const& function)
: d_function(function) {
this->setp(this->d_buffer, this->d_buffer + sizeof(this->d_buffer) - 1);
}
};
class ofunctionstream
: private virtual functionbuf
, public std::ostream {
public:
ofunctionstream(function_type const& function)
: functionbuf(function)
, std::ostream(static_cast<std::streambuf*>(this)) {
this->flags(std::ios_base::unitbuf);
}
};
void some_function(std::string const& value) {
std::cout << "some_function(" << value << ")\n";
}
int main() {
ofunctionstream out(&some_function);
out << "hello" << ',' << " world: " << 42 << "\n";
out << std::nounitbuf << "not" << " as " << "many" << " calls\n" << std::flush;
}
A fair chunk of the above code is actually unrelated to the task at hand: it implements a primitive version of std::function<void(std::string)> in case C++2011 can't be used.
If you don't want quite as many calls, you can turn off std::ios_base::unitbuf and only sent the data upon flushing the stream, e.g. using std::flush (yes, I know about std::endl but it unfortunately is typically misused to I strongly recommend to get rid of it and use std::flush where a flush is really meant).
In order to do this you should create your own streambuf class. streambuf classes represent IO devices and each one takes care of the various issues specific to that kind of device. The standard defines a streambuf for files and another for strings. Network access would use another, and output to a GUI should also be represented as another kind of device if you're going to use streams at all.
Writing an appropriate streambuf class isn't trivial and seems to be kind obscure, but there are resources out there. The C++ Standard Library - A Tutorial and Reference has a small section on this. Standard C++ IOStreams and Locales: Advanced Programmer's Guide and Reference provides in-depth information. A search for subclassing basic_streambuf will also turn up some free resources online.
If you haven't already, can you derive a subclass from stringstream and overload its stream insertion operator to generate events?
Pseudocode:
class AlertingStream : public stringstream
{
ostream& operator << (type)
{
for (each listener in listeners)
{
listener.notify();
}
perform insertion;
return *this;
}
}

Correctly over-loading a stringbuf to replace cout in a MATLAB mex file

MathWorks currently doesn't allow you to use cout from a mex file when the MATLAB desktop is open because they have redirected stdout. Their current workaround is providing a function, mexPrintf, that they request you use instead. After googling around a bit, I think that it's possible to extend the std::stringbuf class to do what I need. Here's what I have so far. Is this robust enough, or are there other methods I need to overload or a better way to do this? (Looking for portability in a general UNIX environment and the ability to use std::cout as normal if this code is not linked against a mex executable)
class mstream : public stringbuf {
public:
virtual streamsize xsputn(const char *s, std::streamsize n)
{
mexPrintf("*s",s,n);
return basic_streambuf<char, std::char_traits<char>>::xsputn(s,n);
}
};
mstream mout;
outbuf = cout.rdbuf(mout.rdbuf());
You don't really want to overload std::stringbuf, you want to overload std::streambuf or std::basic_streambuf (if you want to support multiple character types), also you need to override the overflow method as well.
But I also think you need to rethink your solution to your problem.
cout is just an ostream, so if all classes / functions takes an ostream then you can pass in anything you like. e.g. cout, ofstream, etc
If that's too hard then I would create my own version of cout, maybe called mycout that can be defined at either compiler time or runtime time (depending on what you want to do).
A simple solution may be:
#include <streambuf>
#include <ostream>
class mystream : public std::streambuf
{
public:
mystream() {}
protected:
virtual int_type overflow(int_type c)
{
if(c != EOF)
{
char z = c;
mexPrintf("%c",c);
return EOF;
}
return c;
}
virtual std::streamsize xsputn(const char* s, std::streamsize num)
{
mexPrintf("*s",s,n);
return num;
}
};
class myostream : public std::ostream
{
protected:
mystream buf;
public:
myostream() : std::ostream(&buf) {}
};
myostream mycout;
And the cout version could just be:
typedef std::cout mycout;
A runtime version is a bit more work but easily doable.
Shane, thanks very much for your help. Here's my final working implementation.
class mstream : public std::streambuf {
public:
protected:
virtual std::streamsize xsputn(const char *s, std::streamsize n);
virtual int overflow(int c = EOF);
};
...
std::streamsize
mstream::xsputn(const char *s, std::streamsize n)
{
mexPrintf("%.*s",n,s);
return n;
}
int
mstream::overflow(int c)
{
if (c != EOF) {
mexPrintf("%.1s",&c);
}
return 1;
}
...
// Replace the std stream with the 'matlab' stream
// Put this in the beginning of the mex function
mstream mout;
std::streambuf *outbuf = std::cout.rdbuf(&mout);
...
// Restore the std stream buffer
std::cout.rdbuf(outbuf);
I have changed the OP's final implementation a little bit, adding a constructor and destructor. Creating an object of this class automatically replaces the stream buffer in std::cout, and when the object goes out of scope, the original stream buffer is restored. RAII!
class mxstreambuf : public std::streambuf {
public:
mxstreambuf() {
stdoutbuf = std::cout.rdbuf( this );
}
~mxstreambuf() {
std::cout.rdbuf( stdoutbuf );
}
protected:
virtual std::streamsize xsputn( const char* s, std::streamsize n ) override {
mexPrintf( "%.*s", n, s );
return n;
}
virtual int overflow( int c = EOF ) override {
if( c != EOF ) {
mexPrintf( "%.1s", & c );
}
return 1;
}
private:
std::streambuf *stdoutbuf;
};
To use the stream buffer in a MEX-file, simply:
mxstreambuf mout;
std::cout << "Hello World!\n";
... and don't worry about forgetting anything.
cout is a particular character output stream. If you want a cout that writes to a file, use an fstream, particularly an ofstream. They have the same interface that cout provides. Additionally, if you want to grab their buffer (with rdbuf) you can.