Class and Member Function (beginner) - c++

I'm currently reading a c++ book, and I have a few questions.
1) Is void only used to declare a return type in this example?
2) If void causes it NOT to return data to the calling function, why is it still displaying the message "Welcome to the Grade Book!"?
3) Isn't it easier to create a simple function instead of making an object?
#include <iostream>
using namespace std;
class GradeBook
{
public:
void displayMessage()
{
cout << "Welcome to the Grade Book!" << endl;
}
};
int main()
{
GradeBook myGradeBook;
myGradeBook.displayMessage();
}

That's the only use in this example. You can also have pointers to void (void *).
You're not returning that message. You're printing it. In C++, methods and functions can have side effects. One possible side effect is output.
Yes, in this case. However, this is not a realistic example of the benefits of objects. For that, see How do I describe Object-Oriented Programing to a beginner? Is there a good real-world analogy? among many places.

Is void only used to declare a return type in this example?
Yes, it indicates that displayMessage() will not return back anything to it's caller.
It can also be used as a void *, i.e: A generic pointer which can point to anything, but it is not being used in that way in your example.
If void causes it NOT to return data to the calling function, why is it still displaying the message "Welcome to the Grade Book!"?
The message is not returned to the caller of the function, the message is directed to the standard output when the control was in the function and executing that particular statement.
Isn't it easier to create a simple function instead of making an object?
It's not a matter of ease. It is more of an matter of Object Oriented design principles.
The purpose of having classes and member functions is to bind together the data and the methods that operate on that data in a single unit. You might want to pick up a good book and read up Encapsulation & Abstraction.
The Definitive C++ Book Guide and List

In your case the function "displayMeassage" is not returning the string, it is just printing your message.
Returning means, suppose an example:
class A
{
int num=0;
int getNum()
{
return num;
}
};
void main()
{
A a;
int no=a.getNum();
cout<<"no : "<<no;
}
In above example, then way getNum is returning the number that is what returning is
called.
Whatever you are taking the example is not good to understand the return concept.
Thanks

Related

Purpose of using a virtual function without overriding that virtual function

I am currently working through the Educative course Grokking the Coding Interview. While it is a very good course and does explain the algorithms very well, it does not always explain the code.
A few times I have seen the use of virtual functions, as a dynamic function (to be clear, I mean functions that require the instantiation of an object in order to be called). From reading up on virtual functions, I gather that they are used to achieve some OOP principles such as run time polymorphism, or just generally improving the maintainability of some code. In the case of these algorithms questions, that seems to be completely unnecessary. In fact, I am able to just delete the virtual keyword and the code runs all the same.
My question is: Why might the author be using virtual to define these functions?
Here is an example of the course's author's use of virtual functions:
using namespace std;
#include <iostream>
#include <queue>
#include <vector>
class MedianOfAStream {
public:
priority_queue<int> maxHeap; // containing first half of numbers
priority_queue<int, vector<int>, greater<int>> minHeap; // containing second half of numbers
virtual void insertNum(int num) {
if (maxHeap.empty() || maxHeap.top() >= num) {
maxHeap.push(num);
} else {
minHeap.push(num);
}
// either both the heaps will have equal number of elements or max-heap will have one
// more element than the min-heap
if (maxHeap.size() > minHeap.size() + 1) {
minHeap.push(maxHeap.top());
maxHeap.pop();
} else if (maxHeap.size() < minHeap.size()) {
maxHeap.push(minHeap.top());
minHeap.pop();
}
}
virtual double findMedian() {
if (maxHeap.size() == minHeap.size()) {
// we have even number of elements, take the average of middle two elements
return maxHeap.top() / 2.0 + minHeap.top() / 2.0;
}
// because max-heap will have one more element than the min-heap
return maxHeap.top();
}
};
int main(int argc, char *argv[]) {
MedianOfAStream medianOfAStream;
medianOfAStream.insertNum(3);
medianOfAStream.insertNum(1);
cout << "The median is: " << medianOfAStream.findMedian() << endl;
medianOfAStream.insertNum(5);
cout << "The median is: " << medianOfAStream.findMedian() << endl;
medianOfAStream.insertNum(4);
cout << "The median is: " << medianOfAStream.findMedian() << endl;
}
Again, from everything I've read, I really just don't see the point. And, running this exact code without the virtual keyword works just fine. My thinking would be that this is some sort of best practice in C++ land.
Thanks for any explanation!
From reading up on virtual functions, I gather that they are used to achieve some OOP principles such as run time polymorphism
Yes.
or just generally improving the maintainability of some code
No.
In the case of these algorithms questions, that seems to be completely unnecessary. In fact, I am able to just delete the virtual keyword and the code runs all the same.
Yes.
My question is: Why might the author be using virtual to define these functions?
I see three possibilities here:
The author will inherit this class in a later chapter, and has "got ready" by putting virtual on the member function declarations now. I think that's a bit of an odd choice, personally (particularly as they would also likely want to add a virtual destructor at that time), but maybe keep reading and find out!
The author does it, always, out of habit, even when they don't need to. Some people like to make every function virtual so that you get dynamic polymorphism "by default", without having to change your base class when you later derive from it. I think that's also a very strange thing to do, personally.
The author made a mistake.
a dynamic function (to be clear, I mean functions that require the instantiation of an object in order to be called)
We call those non-static member functions.

Address of a method of an object in C++

As far as I know each created object has its own address, and each object's method also has its own address. I want to verify that with the following idea:
Step 1: Build class A with public method, its name is "method".
Step 2: Create two objects in class A, they are object "b" and object "c".
Step 3: Access the addresses of "b.method" and "c.method" to check that they are equal by using a function pointer.
But I met the problem in step 3 and have found every way to solve but failed.
So I posted up here to ask people to help me how to verify what I said above. Thanks everyone!
And here is my C++ code:
#include<iostream>
using namespace std;
class A
{
public:
int a;
void method()
{
//do something
}
static void (*fptr)();
};
int main()
{
A b, c;
A::fptr= &(b.method); //error: cannot convert 'A::method' from type
// 'void(A::)()' to type 'void (*)()'
cout << A::fptr << endl;
A::fptr= &(c.method); //error: cannot convert 'A::method' from type
//'void(A::)()' to type 'void (*)()'
cout << A::fptr << endl;
return 0;
}
Member functions are not like typical functions. The main difference is the way they are called (they have an implicit this argument), but that difference is enough for the language to demand a new way of defining pointers to them. See here for more details.
The following code prints the address in memory of a method:
#include <iostream>
class A {
public:
void method() {
}
};
int main() {
auto ptr = &A::method;
std::cout << reinterpret_cast<void*>(ptr) << "\n";
return 0;
}
As you can see, I had to cast the pointer to a void* to fool the compiler. G++ prints out a warning on that line, but otherwise does what you want with it.
Notice that the type of ptr is void (A::*)(), i.e. "a pointer to a method in A that receives no arguments and returns void". A pointer to methods in your B and C may be slightly different. They should convert to pointers to A, so you might want to go through that when comparing (or just cast to void* and ignore the warning).
Edited to add:
It seems no cast is needed for comparison. You can just directly compare the two pointers to methods, and they will return true or false correctly.
Thank you everyone!
I've been wondering about this for a long time, and now I've figured out the answer myself, there's only one "method()" that's created on memory, even if there are hundreds of objects created. All objects created that want to use this method will have to find the address of this method. Here is the code to prove what I said:
#include<iostream>
using namespace std;
class A
{
public:
int a;
void method()
{
//do something
}
static void (*fptr)();
};
int main()
{
A b,c;
if(&(b.method)==&(c.method))
{
cout<<"they are same\n";
}
else
{
cout<<"they are not same\n";
}
return 0;
}
The compiler and linker does not have to give distinct functions, distinct implementations.
On at least some platforms, the compiler will spot that 2 functions have the same implementation, and merge the 2 functions into a single piece of code. That limits the amount of bloat added by the template system, but stops it being a guaranteed behavior to identify different member functions.
The compiler can
inline all the examples of a single piece of code, and the result is it doesn't have an address.
share implementations where the code is the same.
create multiple implementations of the same function if it thinks it can be done faster.
When C++ was invented, there was a lot of effort to ensure that a C++ compilation unit was able to call a C compilation unit, and the result of this effort, was that many items of the C++ implementation became visible using compatibility tricks.
The C++ pointer to member function had no backwards-compatibility baggage, and thus no reason to allow it to be inspected. As such it is an opaque item, which can be implemented in multiple ways.
In your example there is only one copy of the method in memory. But i cannot think of any easy way to verify that. You can make thousands of objects and see the memory consumption. You can explore the memory occupied by your object in debugger. The memory consumption may be affected by operating system strategy for assigning memory to process. You can also explore disassembly at https://gcc.godbolt.org/
Relevant start for you would be https://godbolt.org/g/emRYQy

c++ Using subclasses

I have this variable; Furniture **furnitures;
Which is an abstract baseclass to 2 subclasses, Bookcase and Couch. I add these randomly;
furnitures[n++] = new Bookcase ();
furnitures[n++] = new Couch();
.
.
For the sake of explaination. Lets set some minor variables.
Furniture private: name, prize
Bookcase private: size
Couch private: seats
How would I go about if I wanted to print out information such as; name and seats?
There are various of problems in this issue. 1, distinguish which subclass is which when I use Furniture[i]. 2, I dont want to blend too much unneccessary functions between the two subclasses that arent needed.
class Furniture
{
virtual void output() = 0;
};
class Couch : public Furniture
{
void output() override;
};
class Bookshelf : public Furniture
{
void output() override;
};
You could define the function in Furniture to save from duplicate code in subclasses like this:
void Furniture::output()
{
// We assume here the output is to cout, but you could also pass the necessary
// stream in as argument to output() for example.
cout << name << price;
}
void Couch::output()
{
Furniture::output();
cout << seats;
}
void Bookshelf::output()
{
Furniture::output();
cout << size;
}
You should never use arrays polymorhphically. Read the first item (I think it's the first) in Scott Meyers' More Effective C++ book to find out why!
In fact, you should almost never use raw arrays in C++ anyway. A correct solution is to use a std::vector<Furniture*>.
How would I go about if I wanted to print out information such as;
name and seats?
There are various of problems in this issue. 1, distinguish which
subclass is which when I use Furniture[i]. 2, I dont want to blend too
much unneccessary functions between the two subclasses that arent
needed..
You are facing this problem because you are abusing object-oriented programming. It's simple: object-oriented programming makes sense when different types implement an abstract common operation and the concrete type is chosen at run-time. In your case, there is no common operation. Printing (or receiving) the number seats is for one type, printing (or receiving) a size is for the other type.
That's not to say that it's bad or wrong, but it's simply not object-oriented.
Now C++ would not be C++ if it didn't offer you a dangerous tool to get out of every dead end you've coded yourself into. In this case, you can use Run-Time Type Identifcation (RTTI) to find out the concrete type of an object. Google for typeid and dynamic_cast and you'll quickly find the solution. But remember, using RTTI for this problem is a workaround. Review your class design, and change it if necessary.

What is the practical use of pointers to member functions?

I've read through this article, and what I take from it is that when you want to call a pointer to a member function, you need an instance (either a pointer to one or a stack-reference) and call it so:
(instance.*mem_func_ptr)(..)
or
(instance->*mem_func_ptr)(..)
My question is based on this: since you have the instance, why not call the member function directly, like so:
instance.mem_func(..) //or: instance->mem_func(..)
What is the rational/practical use of pointers to member functions?
[edit]
I'm playing with X-development & reached the stage where I am implementing widgets; the event-loop-thread for translating the X-events to my classes & widgets needs to start threads for each widget/window when an event for them arrives; to do this properly I thought I needed function-pointers to the event-handlers in my classes.
Not so: what I did discover was that I could do the same thing in a much clearer & neater way by simply using a virtual base class. No need whatsoever for pointers to member-functions. It was while developing the above that the doubt about the practical usability/meaning of pointers to member-functions arose.
The simple fact that you need a reference to an instance in order to use the member-function-pointer, obsoletes the need for one.
[edit - #sbi & others]
Here is a sample program to illustrate my point:
(Note specifically 'Handle_THREE()')
#include <iostream>
#include <string>
#include <map>
//-----------------------------------------------------------------------------
class Base
{
public:
~Base() {}
virtual void Handler(std::string sItem) = 0;
};
//-----------------------------------------------------------------------------
typedef void (Base::*memfunc)(std::string);
//-----------------------------------------------------------------------------
class Paper : public Base
{
public:
Paper() {}
~Paper() {}
virtual void Handler(std::string sItem) { std::cout << "Handling paper\n"; }
};
//-----------------------------------------------------------------------------
class Wood : public Base
{
public:
Wood() {}
~Wood() {}
virtual void Handler(std::string sItem) { std::cout << "Handling wood\n"; }
};
//-----------------------------------------------------------------------------
class Glass : public Base
{
public:
Glass() {}
~Glass() {}
virtual void Handler(std::string sItem) { std::cout << "Handling glass\n"; }
};
//-----------------------------------------------------------------------------
std::map< std::string, memfunc > handlers;
void AddHandler(std::string sItem, memfunc f) { handlers[sItem] = f; }
//-----------------------------------------------------------------------------
std::map< Base*, memfunc > available_ONE;
void AddAvailable_ONE(Base *p, memfunc f) { available_ONE[p] = f; }
//-----------------------------------------------------------------------------
std::map< std::string, Base* > available_TWO;
void AddAvailable_TWO(std::string sItem, Base *p) { available_TWO[sItem] = p; }
//-----------------------------------------------------------------------------
void Handle_ONE(std::string sItem)
{
memfunc f = handlers[sItem];
if (f)
{
std::map< Base*, memfunc >::iterator it;
Base *inst = NULL;
for (it=available_ONE.begin(); ((it != available_ONE.end()) && (inst==NULL)); it++)
{
if (it->second == f) inst = it->first;
}
if (inst) (inst->*f)(sItem);
else std::cout << "No instance of handler for: " << sItem << "\n";
}
else std::cout << "No handler for: " << sItem << "\n";
}
//-----------------------------------------------------------------------------
void Handle_TWO(std::string sItem)
{
memfunc f = handlers[sItem];
if (f)
{
Base *inst = available_TWO[sItem];
if (inst) (inst->*f)(sItem);
else std::cout << "No instance of handler for: " << sItem << "\n";
}
else std::cout << "No handler for: " << sItem << "\n";
}
//-----------------------------------------------------------------------------
void Handle_THREE(std::string sItem)
{
Base *inst = available_TWO[sItem];
if (inst) inst->Handler(sItem);
else std::cout << "No handler for: " << sItem << "\n";
}
//-----------------------------------------------------------------------------
int main()
{
Paper p;
Wood w;
Glass g;
AddHandler("Paper", (memfunc)(&Paper::Handler));
AddHandler("Wood", (memfunc)(&Wood::Handler));
AddHandler("Glass", (memfunc)(&Glass::Handler));
AddAvailable_ONE(&p, (memfunc)(&Paper::Handler));
AddAvailable_ONE(&g, (memfunc)(&Glass::Handler));
AddAvailable_TWO("Paper", &p);
AddAvailable_TWO("Glass", &g);
std::cout << "\nONE: (bug due to member-function address being relative to instance address)\n";
Handle_ONE("Paper");
Handle_ONE("Wood");
Handle_ONE("Glass");
Handle_ONE("Iron");
std::cout << "\nTWO:\n";
Handle_TWO("Paper");
Handle_TWO("Wood");
Handle_TWO("Glass");
Handle_TWO("Iron");
std::cout << "\nTHREE:\n";
Handle_THREE("Paper");
Handle_THREE("Wood");
Handle_THREE("Glass");
Handle_THREE("Iron");
}
{edit] Potential problem with direct-call in above example:
In Handler_THREE() the name of the method must be hard-coded, forcing changes to be made anywhere that it is used, to apply any change to the method. Using a pointer to member-function the only additional change to be made is where the pointer is created.
[edit] Practical uses gleaned from the answers:
From answer by Chubsdad:
What: A dedicated 'Caller'-function is used to invoke the mem-func-ptr;Benefit: To protect code using function(s) provided by other objectsHow: If the particular function(s) are used in many places and the name and/or parameters change, then you only need to change the name where it is allocated as pointer, and adapt the call in the 'Caller'-function. (If the function is used as instance.function() then it must be changed everywhere.)
From answer by Matthew Flaschen:
What: Local specialization in a classBenefit: Makes the code much clearer,simpler and easier to use and maintainHow: Replaces code that would conventionally be implement using complex logic with (potentially) large switch()/if-then statements with direct pointers to the specialization; fairly similar to the 'Caller'-function above.
The same reason you use any function pointer: You can use arbitrary program logic to set the function pointer variable before calling it. You could use a switch, an if/else, pass it into a function, whatever.
EDIT:
The example in the question does show that you can sometimes use virtual functions as an alternative to pointers to member functions. This shouldn't be surprising, because there are usually multiple approaches in programming.
Here's an example of a case where virtual functions probably don't make sense. Like the code in the OP, this is meant to illustrate, not to be particularly realistic. It shows a class with public test functions. These use internal, private, functions. The internal functions can only be called after a setup, and a teardown must be called afterwards.
#include <iostream>
class MemberDemo;
typedef void (MemberDemo::*MemberDemoPtr)();
class MemberDemo
{
public:
void test1();
void test2();
private:
void test1_internal();
void test2_internal();
void do_with_setup_teardown(MemberDemoPtr p);
};
void MemberDemo::test1()
{
do_with_setup_teardown(&MemberDemo::test1_internal);
}
void MemberDemo::test2()
{
do_with_setup_teardown(&MemberDemo::test2_internal);
}
void MemberDemo::test1_internal()
{
std::cout << "Test1" << std::endl;
}
void MemberDemo::test2_internal()
{
std::cout << "Test2" << std::endl;
}
void MemberDemo::do_with_setup_teardown(MemberDemoPtr mem_ptr)
{
std::cout << "Setup" << std::endl;
(this->*mem_ptr)();
std::cout << "Teardown" << std::endl;
}
int main()
{
MemberDemo m;
m.test1();
m.test2();
}
My question is based on this: since you have the instance, why not call the member function directly[?]
Upfront: In more than 15 years of C++ programming, I have used members pointers maybe twice or thrice. With virtual functions being around, there's not all that much use for it.
You would use them if you want to call a certain member functions on an object (or many objects) and you have to decide which member function to call before you can find out for which object(s) to call it on. Here is an example of someone wanting to do this.
I find the real usefulness of pointers to member functions comes when you look at a higher level construct such as boost::bind(). This will let you wrap a function call as an object that can be bound to a specific object instance later on and then passed around as a copyable object. This is a really powerful idiom that allows for deferred callbacks, delegates and sophisticated predicate operations. See my previous post for some examples:
https://stackoverflow.com/questions/1596139/hidden-features-and-dark-corners-of-stl/1596626#1596626
Member functions, like many function pointers, act as callbacks. You could manage without them by creating some abstract class that calls your method, but this can be a lot of extra work.
One common use is algorithms. In std::for_each, we may want to call a member function of the class of each member of our collection. We also may want to call the member function of our own class on each member of the collection - the latter requires boost::bind to achieve, the former can be done with the STL mem_fun family of classes (if we don't have a collection of shared_ptr, in which case we need to boost::bind in this case too). We could also use a member function as a predicate in certain lookup or sort algorithms. (This removes our need to write a custom class that overloads operator() to call a member of our class, we just pass it in directly to boost::bind).
The other use, as I mentioned, are callbacks, often in event-driven code. When an operation has completed we want a method of our class called to handle the completion. This can often be wrapped into a boost::bind functor. In this case we have to be very careful to manage the lifetime of these objects correctly and their thread-safety (especially as it can be very hard to debug if something goes wrong). Still, it once again can save us from writing large amounts of "wrapper" code.
There are many practical uses. One that comes to my mind is as follows:
Assume a core function such as below (suitably defined myfoo and MFN)
void dosomething(myfoo &m, MFN f){ // m could also be passed by reference to
// const
m.*f();
}
Such a function in the presence of pointer to member functions, becomes open for extension and closed for modification (OCP)
Also refer to Safe bool idiom which smartly uses pointer to members.
The best use of pointers to member functions is to break dependencies.
Good example where pointer to member function is needed is Subscriber/Publisher pattern :
http://en.wikipedia.org/wiki/Publish/subscribe
In my opinion, member function pointers do are not terribly useful to the average programmer in their raw form. OTOH, constructs like ::std::tr1::function that wrap member function pointers together with a pointer to the object they're supposed to operate on are extremely useful.
Of course ::std::tr1::function is very complex. So I will give you a simple example that you wouldn't actually use in practice if you had ::std::tr1::function available:
// Button.hpp
#include <memory>
class Button {
public:
Button(/* stuff */) : hdlr_(0), myhandler_(false) { }
~Button() {
// stuff
if (myhandler_) {
delete hdlr_;
}
}
class PressedHandler {
public:
virtual ~PressedHandler() = 0;
virtual void buttonPushed(Button *button) = 0;
};
// ... lots of stuff
// This stores a pointer to the handler, but will not manage the
// storage. You are responsible for making sure the handler stays
// around as long as the Button object.
void setHandler(const PressedHandler &hdlr) {
hdlr_ = &hdlr;
myhandler_ = false;
}
// This stores a pointer to an object that Button does not manage. You
// are responsible for making sure this object stays around until Button
// goes away.
template <class T>
inline void setHandlerFunc(T &dest, void (T::*pushed)(Button *));
private:
const PressedHandler *hdlr_;
bool myhandler_;
template <class T>
class PressedHandlerT : public Button::PressedHandler {
public:
typedef void (T::*hdlrfuncptr_t)(Button *);
PressedHandlerT(T *ob, hdlrfuncptr_t hdlr) : ob_(ob), func_(hdlr) { }
virtual ~PressedHandlerT() {}
virtual void buttonPushed(Button *button) { (ob_->*func_)(button); }
private:
T * const ob_;
const hdlrfuncptr_t func_;
};
};
template <class T>
inline void Button::setHandlerFunc(T &dest, void (T::*pushed)(Button *))
{
PressedHandler *newhandler = new PressedHandlerT<T>(&dest, pushed);
if (myhandler_) {
delete hdlr_;
}
hdlr_ = newhandler;
myhandler_ = true;
}
// UseButton.cpp
#include "Button.hpp"
#include <memory>
class NoiseMaker {
public:
NoiseMaker();
void squee(Button *b);
void hiss(Button *b);
void boo(Button *b);
private:
typedef ::std::auto_ptr<Button> buttonptr_t;
const buttonptr_t squeebutton_, hissbutton_, boobutton_;
};
NoiseMaker::NoiseMaker()
: squeebutton_(new Button), hissbutton_(new Button), boobutton_(new Button)
{
squeebutton_->setHandlerFunc(*this, &NoiseMaker::squee);
hissbutton_->setHandlerFunc(*this, &NoiseMaker::hiss);
boobutton_->setHandlerFunc(*this, &NoiseMaker::boo);
}
Assuming Button is in a library and not alterable by you, I would enjoy seeing you implement that cleanly using a virtual base class without resorting to a switch or if else if construct somewhere.
The whole point of pointers of pointer-to-member function type is that they act as a run-time way to reference a specific method. When you use the "usual" syntax for method access
object.method();
pointer->method();
the method part is a fixed, compile-time specification of the method you want to call. It is hardcoded into your program. It can never change. But by using a pointer of pointer-to-member function type you can replace that fixed part with a variable, changeable at run-time specification of the method.
To better illustrate this, let me make the following simple analogy. Let's say you have an array
int a[100];
You can access its elements with fixed compile-time index
a[5]; a[8]; a[23];
In this case the specific indices are hardcoded into your program. But you can also access array's elements with a run-time index - an integer variable i
a[i];
the value of i is not fixed, it can change at run-time, thus allowing you to select different elements of the array at run-time. That is very similar to what pointers of pointer-to-member function type let you do.
The question you are asking ("since you have the instance, why not call the member function directly") can be translated into this array context. You are basically asking: "Why do we need a variable index access a[i], when we have direct compile-time constant access like a[1] and a[3]?" I hope you know the answer to this question and realize the value of run-time selection of specific array element.
The same applies to pointers of pointer-to-member function type: they, again, let you to perform run-time selection of a specific class method.
The use case is that you have several member methods with the same signature, and you want to build logic which one should be called under given circumstances. This can be helpful to implement state machine algorithms.
Not something you use everyday...
Imagine for a second you have a function that could call one of several different functions depending on parameters passed.
You could use a giant if/else if statement
You could use a switch statement
Or you could use a table of function pointers (a jump table)
If you have a lot of different options the jump table can be a much cleaner way of arranging your code ...
Its down to personal preference though. Switch statement and jump table correspond to more or less the same compiled code anyway :)
Member pointers + templates = pure win.
e.g. How to tell if class contains a certain member function in compile time
or
template<typename TContainer,
typename TProperty,
typename TElement = decltype(*Container().begin())>
TProperty grand_total(TContainer& items, TProperty (TElement::*property)() const)
{
TProperty accum = 0;
for( auto it = items.begin(), end = items.end(); it != end; ++it) {
accum += (it->*property)();
}
return accum;
}
auto ship_count = grand_total(invoice->lineItems, &LineItem::get_quantity);
auto sub_total = grand_total(invoice->lineItems, &LineItem::get_extended_total);
auto sales_tax = grand_total(invoice->lineItems, &LineItem::calculate_tax);
To invoke it, you need a reference to an instance, but then you can call the func direct & don't need a pointer to it.
This is completely missing the point. There are two indepedent concerns here:
what action to take at some later point in time
what object to perform that action on
Having a reference to an instance satisfies the second requirement. Pointers to member functions address the first: they are a very direct way to record - at one point in a program's execution - which action should be taken at some later stage of execution, possibly by another part of the program.
EXAMPLE
Say you have a monkey that can kiss people or tickle them. At 6pm, your program should set the monkey loose, and knows whom the monkey should visit, but around 3pm your user will type in which action should be taken.
A beginner's approach
So, at 3pm you could set a variable "enum Action { Kiss, Tickle } action;", then at 6pm you could do something like "if (action == Kiss) monkey->kiss(person); else monkey->tickle(person)".
Issues
But that introducing an extra level of encoding (the Action type's introduced to support this - built in types could be used but would be more error prone and less inherently meaningful). Then - after having worked out what action should be taken at 3pm, at 6pm you have to redundantly consult that encoded value to decide which action to take, which will require another if/else or switch upon the encoded value. It's all clumsy, verbose, slow and error prone.
Member function pointers
A better way is to use a more specialised varibale - a member function pointer - that directly records which action to perform at 6pm. That's what a member function pointer is. It's a kiss-or-tickle selector that's set earlier, creating a "state" for the monkey - is it a tickler or a kisser - which can be used later. The later code just invokes whatever function's been set without having to think about the possibilities or have any if/else-if or switch statements.
To invoke it, you need a reference to an instance, but then you can call the func direct & don't need a pointer to it.
Back to this. So, this is good if you make the decision about which action to take at compile time (i.e. a point X in your program, it'll definitely be a tickle). Function pointers are for when you're not sure, and want to decouple the setting of actions from the invocation of those actions.

basic C++ question

I see in a class notices of a friend this:
void show_results(Book& foreign_books) {
int total_books
total_books = foreign_books.getBooksNumber();
cout << total_books << endl;
}
this is a good class definition?
class Book{
public:
Book();
int getBooksNumber();
};
ps: i've writing this from mobile phone, and i cannot check too much documentation(I'm newbie too). I need your confirmation. ty
It's really hard to tell what you are asking. Let me offer some criticisms, though. Maybe these will help.
The show_results method should be const-correct. That means you should pass foreign_books as a const:
const Book& foreign_books
This way, your compiler will complain if you try to modify foreign_books at all in your method.
As mgb points out, your Books class won't work because the show_results method requires a Book, not a Books. But once you fix that, you probably want to make the getBooksNumber const-correct as well:
int getBooksNumber() const;
You haven't told us what you are trying to accomplish here, so it's really hard to tell if you are close to correct in what you are doing.
Finally, you missed a semicolon in your show_results method:
void show_results(Book& foreign_books) {
int total_books; // **here**
total_books = foreign_books.getBooksNumber();
cout << total_books << endl;
}
Except that Books and Book isn't the same (typ0)
And you have to have some data member in Books to store the number, and some way of generating it.
You probably also need some sort of factory to create a unique number for each Books()
I am not sure if you are trying to associate a unique number to each book or just if you are keeping track of total number of Book objects constructed so far. If former is the case then you should declare a member variable saying bookNumber in Book class, and in getBooksNumber() you should return the value assigned to the bookNumber variable. Better if you make getBooksNumber() as constant function and if you invoke this function with constant object.
If later is the case where you are keeping track of total number of Book object constructed so far, then you should have a static data member to keep track of it and you can make getBooksNumber() static as well, and can invoke getBooksNumber() without the object of call.