Contours opencv : How to eliminate small contours in a binary image - c++

I am currently working on image processing project. I am using Opencv2.3.1 with VC++.
I have written the code such that, the input image is filtered to only blue color and converted to a binary image. The binary image has some small objects which I don't want. I wanted to eliminate those small objects, so i used openCV's cvFindContours() method to detect contours in Binary image. but the problem is I cant eliminate the small objects in the image output. I used cvContourArea() function , but didn't work properly.. , erode function also didn't work properly.
So please someone help me with this problem..
The binary image which I obtained :
The result/output image which I want to obtain :

Ok, I believe your problem could be solved with the bounding box demo recently introduced by OpenCV.
As you have probably noticed, the object you are interested at should be inside the largest rectangle draw in the picture. Luckily, this code is not very complex and I'm sure you can figure it all out by investigating and experimenting with it.

Here is my solution to eliminate small contours.
The basic idea is check the length/area for each contour, then delete the smaller one from vector container.
normally you will get contours like this
Mat canny_output; //example from OpenCV Tutorial
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
Canny(src_img, canny_output, thresh, thresh*2, 3);//with or without, explained later.
findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0,0));
With Canny() pre-processing, you will get contour segments, however each segment is stored with boundary pixels as a closed ring. In this case, you can check the length and delete the small one like
for (vector<vector<Point> >::iterator it = contours.begin(); it!=contours.end(); )
{
if (it->size()<contour_length_threshold)
it=contours.erase(it);
else
++it;
}
Without Canny() preprocessing, you will get contours of objects.
Similarity, you can also use area to define a threshold to eliminate small objects, as OpenCV tutorial shown
vector<Point> contour = contours[i];
double area0 = contourArea(contour);
this contourArea() is the number of non-zero pixels

Are you sure filtering by small contour area didn't work? It's always worked for me. Can we see your code?
Also, as sue-ling mentioned, it's a good idea to use both erode and dilate to approximately preserve area. To remove small noisy bits, use erode first, and to fill in holes, use dilate first.
And another aside, you may want to check out the new C++ versions of the cv* functions if you weren't aware of them already (documentation for findContours). They're much easier to use, in my opinion.

Judging by the before and after images, you need to determine the area of all the white areas or blobs, then apply a threshold area value. This would eliminate all areas less than the value and leave only the large white region which is seen in the 2nd image. After using the cvFindContours function, try using 0 order moments. This would return the area of the blobs in the image. This link might be helpful in implementing what I've just described.
http://www.aishack.in/2010/07/tracking-colored-objects-in-opencv/

I believe you can use morphological operators like erode and dilate (read more here)
You need to perform erosion with a kernel size near to the radius of the circle on the right (the one you want to eliminate).
followed by dilation using the same kernel to fill the gaps created by the erosion step.
FYI erosion followed by dilation using the same kernel is called opening.
the code will be something like this
int erosion_size = 30; // adjust with you application
Mat erode_element = getStructuringElement( MORPH_ELLIPSE,
Size( 2*erosion_size + 1, 2*erosion_size+1 ),
Point( erosion_size, erosion_size ) );
erode( binary_img, binary_img, erode_element );
dilate( binary_img, binary_img, erode_element );

It is not a fast way but may be usefull in some cases.
There is a new function in OpencCV 3.0 - connectedComponentsWithStats. With it we can get area of connected components and eliminate unnecessary. So we can easy remove circle with holes, with the same bounding box as solid circle.

Related

OpenCV : Reversing the negative areas of an image

i'm using OpenCV 3.4.6 in a c++/Objective C project and given an image with negative rectangular areas, like this one:
I should detect those negative areas, reverse them and finally get the original image.
I tried to use findContours, enhancing the contrast of the original image or adding a threshold but the rectangles are not detected.
Here one of the test i've tried:
Mat contrasted = [self enhanceContrastTo: matOriginal];
Mat thresholded;
threshold(contrasted, thresholded, 125, 241, THRESH_BINARY);
std::vector<std::vector<cv::Point> > contours;
std::vector<Vec4i> hierarchy;
findContours( thresholded, contours, hierarchy, CV_RETR_EXTERNAL, CV_RETR_TREE );
/* contrast method */
+(Mat)enhanceContrastTo:(Mat)image {
cv::Mat lab_image;
cv::cvtColor(image, lab_image, CV_BGR2Lab);
// Extract the L channel
std::vector<cv::Mat> lab_planes(3);
cv::split(lab_image, lab_planes); // now we have the L image in lab_planes[0]
// apply the CLAHE algorithm to the L channel
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE();
// clahe->setClipLimit(4);
clahe->setClipLimit(3);
cv::Mat dst;
clahe->apply(lab_planes[0], dst);
// Merge the the color planes back into an Lab image
dst.copyTo(lab_planes[0]);
cv::merge(lab_planes, lab_image);
// convert back to RGB
cv::Mat image_clahe;
cv::cvtColor(lab_image, image_clahe, CV_Lab2BGR);
return image_clahe;
}
The rectangles are clearly visible to the naked eye, I hope that opencv can also identify them but I don't know how.
Any idea?
Thanks
This particular question isn't too complicated but even minor variants can get complex. I can advise you on a couple of simple ideas that should suffice to solve the problem.
1) Instead of contour you can check whether neighboring points are close to reverse - this should filter out most irrelevant edges. But just checking for near-reverse is not sufficient as monotone grey area (127) fits the criteria too. Require also minimal threshold difference.
2) Since rectangles are parallel to axes - you can simply go along each row and column and count the number of pixels that are potentially edges of the reversed rectangles. It is better not to just count the number - but to check whether you have continuous large sequences of such pixels and record where exactly these segments are.
3) Use the found segments (or just indexes of rows and columns) of reversed edge-pixels to make candidates for reversed rectangles and then make final verifications.
This is but an algo draft - it will surely require refining. I am not sure why you wanted to use the contour function, tho.

Silhouette extraction from binary image

I am working with binary images from CASIA database and opencv in a C++ project. I am looking for a way of extracting only the silhouette(the bounding box containing the silhouette). The original images are 240x320 and my goal is to get only the silhouette in a new image (let’s say 100x50 size).
My first idea would be to get the minimum and maximum position of “white” pixels on rows and columns and get the pixels inside this rectangle in a new image, but I consider this not efficient at all. If you have any suggetion, I would be more than happy to hear it. On the left is the input and on the right is the output.
You can use the built-in OpenCV functionalities to find contours from your binary image:
e.g.
// using namespace cv;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours( your_binary_mat, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE );
Note this will look for external contours (ignores inner contours which for the image above don't apply anyway) and retrieve a simplified approximation of the points.
Once you access the contour you can use either boundingRect() or minAreaRect() (wether you need the bounding box rotated or not).

OpenCV: findContours exception

my matlab code is:
h = fspecial('average', filterSize);
imageData = imfilter(imageData, h, 'replicate');
bwImg = im2bw(imageData, grayThresh);
cDist=regionprops(bwImg, 'Area');
cDist=[cDist.Area];
opencv code is:
cv::blur(dst, dst,cv::Size(filterSize,filterSize));
dst = im2bw(dst, grayThresh);
cv::vector<cv::vector<cv::Point> > contours;
cv::vector<cv::Vec4i> hierarchy;
cv::findContours(dst,contours,hierarchy,CV_RETR_CCOMP, CV_CHAIN_APPROX_NONE);
here is my image2blackand white function
cv::Mat AutomaticMacbethDetection::im2bw(cv::Mat src, double grayThresh)
{
cv::Mat dst;
cv::threshold(src, dst, grayThresh, 1, CV_THRESH_BINARY);
return dst;
}
I'm getting an exception in findContours() C++ exception: cv::Exception at memory location 0x0000003F6E09E0A0.
Can you please explain what am I doing wrong.
dst is cv::Mat and I used it all along it has my original values.
Update here is my matrix written into *.txt file:
http://www.filedropper.com/gili
UPDATE 2:
I have added dst.convertTo(dst,CV_8U); like Micka suggested, I no longer have an exception. however values are nothing like expected.
Take a look at this question which has a similar problem to what you're encountering: Matlab and OpenCV calculate different image moment m00 for the same image.
Basically, the OP in the linked post is trying to find the zeroth image moment for both x and y of all closed contours - which is actually just the area, by using findContours in OpenCV and regionprops in MATLAB. In MATLAB, that can be accessed by the Area property from regionprops, and judging from your MATLAB code, you wish to find the same quantity.
From the post, there is most certainly a difference between how OpenCV and MATLAB finds contours in an image. This boils down to the way both platforms consider what is a "connected pixel". OpenCV only uses a four-pixel neighbourhood while MATLAB uses an eight-pixel neighbourhood.
As such, there is nothing wrong with your implementation, and converting to 8UC1 is good. However, the areas (and ultimately the total number of connected components and contours themselves) between both contours found with MATLAB and OpenCV are not the same. The only way for you to get exactly the same result is if you manually draw the contours found by findContours on a black image, and using the cv::moments function directly on this image.
However, because of the differing implementations of cv::blur() in comparison to fspecial with an averaging mask that is even, you still may not be able to get the same results along the borders of the image. If there are no important contours around the borders of your image, then hopefully this will give you the right result.
Good luck!

Make mask from edge detection on image?

I am trying to pull all the pixels from the image on the right that are part of the shoe. I decided to take the edge detection of the image, but now I need to make a mask so that I can grab all the pixels bounded by the outer outline of the shoe. Is there a way in opencv to do this? I looked at the findContours function, but that only gave me a bunch of contours with no way to then make a mask?
If floodfill does not provide you with a sufficient mask, another way could be to take the edge image from figure 1 and apply a dilation operator and then a closing operator. The mask will be slightly larger than the original due to the dilation although the dilation helps in closing black spots when applying the closing operator.
This is the result I obtained (I do not have a high enough rep to post the image in the answer. Here is the link):
http://tinypic.com/view.php?pic=33jmpao&s=8#.U_cHm_mSz9s
The link below may also be useful to you.
http://docs.opencv.org/trunk/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
The code I used:
// Dilation
Mat se = getStructuringElement(CV_SHAPE_ELLIPSE, Size(9, 9));
dilate(edge_image, dst, se, Point(-1,-1), 1);
// Closing
Mat closed;
Mat element = getStructuringElement(MORPH_ELLIPSE, Size(19, 19));
morphologyEx(dst, closed, MORPH_CLOSE, element, Point(-1,-1), 3);
This is my first answer on stackoverflow. I hope it helps and good luck! :)

OpenCV, how to use arrays of points for smoothing and sampling contours?

I have a problem to get my head around smoothing and sampling contours in OpenCV (C++ API).
Lets say I have got sequence of points retrieved from cv::findContours (for instance applied on this this image:
Ultimately, I want
To smooth a sequence of points using different kernels.
To resize the sequence using different types of interpolations.
After smoothing, I hope to have a result like :
I also considered drawing my contour in a cv::Mat, filtering the Mat (using blur or morphological operations) and re-finding the contours, but is slow and suboptimal. So, ideally, I could do the job using exclusively the point sequence.
I read a few posts on it and naively thought that I could simply convert a std::vector(of cv::Point) to a cv::Mat and then OpenCV functions like blur/resize would do the job for me... but they did not.
Here is what I tried:
int main( int argc, char** argv ){
cv::Mat conv,ori;
ori=cv::imread(argv[1]);
ori.copyTo(conv);
cv::cvtColor(ori,ori,CV_BGR2GRAY);
std::vector<std::vector<cv::Point> > contours;
std::vector<cv::Vec4i > hierarchy;
cv::findContours(ori, contours,hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_NONE);
for(int k=0;k<100;k += 2){
cv::Mat smoothCont;
smoothCont = cv::Mat(contours[0]);
std::cout<<smoothCont.rows<<"\t"<<smoothCont.cols<<std::endl;
/* Try smoothing: no modification of the array*/
// cv::GaussianBlur(smoothCont, smoothCont, cv::Size(k+1,1),k);
/* Try sampling: "Assertion failed (func != 0) in resize"*/
// cv::resize(smoothCont,smoothCont,cv::Size(0,0),1,1);
std::vector<std::vector<cv::Point> > v(1);
smoothCont.copyTo(v[0]);
cv::drawContours(conv,v,0,cv::Scalar(255,0,0),2,CV_AA);
std::cout<<k<<std::endl;
cv::imshow("conv", conv);
cv::waitKey();
}
return 1;
}
Could anyone explain how to do this ?
In addition, since I am likely to work with much smaller contours, I was wondering how this approach would deal with border effect (e.g. when smoothing, since contours are circular, the last elements of a sequence must be used to calculate the new value of the first elements...)
Thank you very much for your advices,
Edit:
I also tried cv::approxPolyDP() but, as you can see, it tends to preserve extremal points (which I want to remove):
Epsilon=0
Epsilon=6
Epsilon=12
Epsilon=24
Edit 2:
As suggested by Ben, it seems that cv::GaussianBlur() is not supported but cv::blur() is. It looks very much closer to my expectation. Here are my results using it:
k=13
k=53
k=103
To get around the border effect, I did:
cv::copyMakeBorder(smoothCont,smoothCont, (k-1)/2,(k-1)/2 ,0, 0, cv::BORDER_WRAP);
cv::blur(smoothCont, result, cv::Size(1,k),cv::Point(-1,-1));
result.rowRange(cv::Range((k-1)/2,1+result.rows-(k-1)/2)).copyTo(v[0]);
I am still looking for solutions to interpolate/sample my contour.
Your Gaussian blurring doesn't work because you're blurring in column direction, but there is only one column. Using GaussianBlur() leads to a "feature not implemented" error in OpenCV when trying to copy the vector back to a cv::Mat (that's probably why you have this strange resize() in your code), but everything works fine using cv::blur(), no need to resize(). Try Size(0,41) for example. Using cv::BORDER_WRAP for the border issue doesn't seem to work either, but here is another thread of someone who found a workaround for that.
Oh... one more thing: you said that your contours are likely to be much smaller. Smoothing your contour that way will shrink it. The extreme case is k = size_of_contour, which results in a single point. So don't choose your k too big.
Another possibility is to use the algorithm openFrameworks uses:
https://github.com/openframeworks/openFrameworks/blob/master/libs/openFrameworks/graphics/ofPolyline.cpp#L416-459
It traverses the contour and essentially applies a low-pass filter using the points around it. Should do exactly what you want with low overhead and (there's no reason to do a big filter on an image that's essentially just a contour).
How about approxPolyDP()?
It uses this algorithm to 'smooth' a contour (basically gettig rid of most of the contour's points and leave the ones that represent a good approximation of your contour)
From 2.1 OpenCV doc section Basic Structures:
template<typename T>
explicit Mat::Mat(const vector<T>& vec, bool copyData=false)
You probably want to set 2nd param to true in:
smoothCont = cv::Mat(contours[0]);
and try again (this way cv::GaussianBlur should be able to modify the data).
I know this was written a long time ago, but did you tried a big erode followed by a big dilate (opening), and then find the countours? It looks like a simple and fast solution, but I think it could work, at least to some degree.
Basically the sudden changes in contour corresponds to high frequency content. An easy way to smooth your contour would be to find the fourier coefficients assuming the coordinates form a complex plane x + iy and then by eliminating the high frequency coefficients.
My take ... many years later ...!
Maybe two easy ways to do it:
loop a few times with dilate,blur,erode. And find the contours on that updated shape. I found 6-7 times gives good results.
create a bounding box of the contour, and draw an ellipse inside the bounded rectangle.
Adding the visual results below:
This applies to me. The edges are smoother than before:
medianBlur(mat, mat, 7)
morphologyEx(mat, mat, MORPH_OPEN, getStructuringElement(MORPH_RECT, Size(12.0, 12.0)))
val contours = getContours(mat)
This is opencv4android code.