Is an array argument passed to a function not a constant pointer? - c++

Consider the code:
void foo(char a[]){
a++; // works fine, gets compiled
//...
}
Now, consider this:
void foo(){
char a[50];
a++; // Compiler error
//...
}
I heard an array is equivalent to a constant pointer and can't be incremented as it is not a lvalue...
Then why does first code gets compiled, is it so because array arguments to functions are passed as a pointer, i.e. T[] is converted to T* for passing..
So, foo(a) passes a as a pointer.
But is it not back converted to T[] again because is declared as:
void foo(char a[]);

When you pass an array as an argument to a function, it decays to a pointer.
So the thing you increment inside the function body is a pointer, not an array.

This is a rather unfortunate feature inherited from the C language, with the rather yucky name of "decay." Since C once did not allow passing compound types by value, they decided to allow programmers to specify arrays as function parameter types, but only cosmetically. The array type decays to a pointer type, implementing a sort of pass-by-reference semantic different from the rest of the language. Ugly.
To recap (and others have already said this), the signature
void foo(char a[]); // asking for trouble
is unceremoniously mangled into
void foo(char *a);
… all for the sake of compatibility with ancient C code. Since you aren't writing ancient C code, you should not make use of this "feature."
However, you can cleanly pass a reference to an array. C++ requires that the size of the array be known:
void foo( char (&a)[ 50 ] );
Now a cannot be modified within the function (edit: its contents can, of course — you know what I mean), and only arrays of the right size may be passed. For everything else, pass a pointer or a higher-level type.

I heard an array is equivalent to a constant pointer
You can think of it that way, but they're not equivalent.
An array decays to a pointer when passed to a function, that's why inside the function it's valid.
Just because the signature is void foo(char a[]) doesn't make a an array.
Outside the function, it's just an array, and you can't do pointer arithmetics on it.

In C++, any function parameter of type "array of T" is adjusted to be "pointer to T". Try this code:
void foo(char a[]) {}
void foo(char* a) {} //error: redefinition
They are indeed the same function.
So, why can we pass an array argument to a function as a pointer parameter? Not because an array is equivalent to a constant pointer, but because an array type can be implicitly converted to an rvalue of pointer type. Also note the result of the conversion is an rvalue, that's why you can't apply the operator ++ to an array, you can only apply this operator to an lvalue.

I heard an array is equivalent to a constant pointer and can't be incremented as it is not a lvalue...
Almost.
An array expression is a non-modifiable lvalue; it may not be an operand to operators such as ++ or --, and it may not be the target of an assignment expression. This is not the same thing as a constant pointer (that is, a pointer declared as T * const).
An array expression will be replaced with a pointer expression whose value is the address of the first element of the array except when the array expression is an operand of the sizeof or unary & operators, or when the array expression is a string literal being used to initialize another array in a declaration.
When you call a function with an array argument, such as
int a[N];
...
foo(a);
the expression a is converted from type "N-element array of int" to "pointer to int" and this pointer value is what gets passed to foo; thus, the corresponding function prototype should be
void foo (int *arr) {...}
Note that in the context of a function parameter declaration, T a[] and T a[N] are identical to T *a; in all three cases, a is declared as a pointer to T. Within the function foo, the parameter arr is a pointer expression, which is a modifiable lvalue, and as such it may be assigned to and may be the operand of the ++ and -- operators.
Remember that all these conversions are on the array expression; that is, the array identifier or other expression that refers to the array object in memory. The array object (the chunk of memory holding the array values) is not converted.

When you pass an array a[] to a function, it passes the value of 'a', an address, into the function. so you can use it as a pointer in the function. If you declare an array in the function, 'a' is constant because you can't change its address in memory.

Related

Do you need to use "&" for a function that has a function pointer as a parameter? [duplicate]

So I figured when making function pointers, you do not need the operator & to get the address of the initial function:
#include <stdio.h>
double foo (double x){
return x*x;
}
int main () {
double (*fun1)(double) = &foo;
double (*fun2)(double) = foo;
printf("%f\n",fun1(10));
printf("%f\n",fun2(10));
printf("fun1 = %p \t &foo = %p\n",fun1, &foo);
printf("fun2 = %p \t foo = %p\n",fun2, foo);
int a[10];
printf(" a = %p \n &a = %p \n",a,&a);
return 0;
}
output:
>./a.out
100.000000
100.000000
fun1 = 0x4004f4 &foo = 0x4004f4
fun2 = 0x4004f4 foo = 0x4004f4
a = 0x7fff26804470
&a = 0x7fff26804470
Then I realized this is also true for arrays, meaning that if you have int a[10] both a and &a point to the same location. Why is that with arrays and functions? Is the address saved in a memory location that has the same address as the value(address) being saved in it?
Given int a[10], both a and &a yield the same address, yes, but their types are different.
a is of type int[10]. When it is implicitly converted to a pointer type, the pointer is of type int* and points to the initial element of the array. &a is of type int (*)[10] (that is, a pointer to an array of ten integers). Because there can be no padding in an array, they both yield pointers with the same value, but the pointers have different types.
Functions are similar to arrays, but not entirely the same. Your function foo is of type double(double). Whenever foo is used in an expression and is not the operand of the unary & operator, it is implicitly converted to a pointer to itself, which is of type double(*)(double).
So, for all practical purposes, the name of a function and a pointer to the same function are interchangeable. There are some subtleties, all of which I discuss in an answer to "Why do all these crazy function pointer definitions all work? What is really going on?" (That question was asked about C++, but the rules for nonmember functions in C++ are the same as for functions in C.)
No, there's no extra storage dedicated to pointing to the function/array.
With most variables variable_name has a meaning other than getting the address of that variable, so you need to use &variable to get the address.
With a function or array, function_name (by itself, not followed by parentheses) doesn't have any other meaning, so there was no problem with interpreting it as taking the address of the function.
Likewise in reverse: a normal pointer needs to be dereferenced explicitly, but a pointer to a function doesn't (again, because there's no other reasonable interpretation), so given a pointer to a function like:
int (*func)(param_list);
The following are equivalent to each other -- both call whatever function func points at:
(*func)(params);
func(params);
fun and &fun are exactly the same (except that sizeof(f) is illegal).
a and &a are the same up to pointer arithmetic: a + 10 == &a + 1, because 10*sizeof(*a) == sizeof(a) (where sizeof(*a) == sizeof(int)).
Basically, since the function name is "known" to be a function, the & is not strictly necessary. This behavior is the same for arrays. Recall that a function itself is not a variable, so it behaves a little differently than you might expect sometimes. If you have the 2nd edition of K&R, you can check out section 5.11 on pointers to functions, or the reference manual at the end,
Section A7.1 Pointer generation: If the type of an expression or
subexpression is "array of T" for some type T, then the value of the
expression is a pointer to the first object in the array, and the type
of the expression is altered to "pointer to T." This conversion does
not take place of the expression is the operand of the unary &
operator, ... Similarly, an expression of type "function returning T,"
except when used as the operand of the & operator, is converted to
"pointer to function returning T."
Section A7.4.2 Address Operator: The unary & operator takes the address
of its operand.... The result is a pointer to the object or function
referred to by the lvalue. If the type of the operand is T, the type
of the result is "pointer to T."
As far as I know, this is the same for C99.
printf("fun1 = %p \t &foo = %p\n",fun1, foo);
Here your are calling foo by passing Function Pointer with pass by value
and
printf("fun2 = %p \t foo = %p\n",fun2, &foo)
Here you are calling &foo by passing function Pointer with pass by reference
in both case your are calling the printf with function pointer only.
Remember foo itself is function pointer value and `not a variable.
Same happens with array.
int arr[10] translates into get continuous block of 10 Integers and address of first element is stored into arr. so arr is also a pointer.

What's the difference between char[] and char[n] in C/CPP?

Trying to figure out string literal types in C/CPP
printf("%s\n", typeid("abc").name());
printf("%s\n", typeid(const char[]).name());
print
A4_c
A_c
Not familiar with C, is different length/capacity of array means different type in C? if yes, why could we pass char[n] as char[] when passing function parameters?
is different length/capacity of array means different type in C?
Yes.
if yes, why could we pass char[n] as char[] when passing function parameters?
It is actually not possible to accept an array value as a function argument. When a function argument is declared to be an array type, that declaration is adjusted by the language to mean a pointer to an element of that array type. I.e. array of char becomes pointer to char. Same applies to return types. Example:
void function(char argument[N]); // this
void function(char *argument); // actually means this
Similarly, when an array name is used as a value argument, that array name implicitly converts to a pointer to the first element of the array. This implicit conversion is called decaying. Example:
void function(char *argument);
char array[N];
function(array); // array decays to pointer to first element
Note that this adjustment is only applied to "toplevel" arrays. Pointers to arrays and references to arrays are not adjusted to be pointers or references to pointers to element of that array even in function argument declarations.
What's the difference between char[] and char[n] in C/CPP?
char[n] is an array type. It is an array of n elements. It is a complete type. It is possible to create arrays of this type.
char[] is an array of unknown bound. It is an incomplete type. It is not possible to create an array of this type. This type can only be used in contexts where it is adjusted to another type. In a function declaration, it is adjusted to a pointer to element.
In a declaration of a non-argument array, it is adjusted to the the actual array type of known bound that is deduced from an initialiser:
char arr[] = {'1', '\0'}; // type of arr is adjusted to char[2]
char arr[]; // ill-formed declaration
Since the typeid().name() output varies from compiler to compiler, piping output to c++filt is a better way to see the type's name.
This code:
#include <iostream>
int main(void)
{
std::cout << typeid("abc").name() << std::endl;
std::cout << typeid(const char[]).name() << std::endl;
return (0);
}
compiled and ran as ./a.out outputs:
A4_c
A_c
but when ran as ./a.out | c++filt
outputs the following:
char [4]
char []
For char[] vs char[4] its minimal, but for big nested types and auto in later standards of C++ it becomes a real handy tool for seeing whats happening under the hood.
(Sorry for not being a direct answer but oh how I cringe to see unformatted typeid names in any context, especially since they are compiler specific)

What does A::* mean where A is a class type [duplicate]

I'm trying to understand how "pointer to member" works but not everything is clear for me.
Here is an example class:
class T
{
public:
int a;
int b[10];
void fun(){}
};
The following code ilustrate the problem and contains questions:
void fun(){};
void main()
{
T obj;
int local;
int arr[10];
int arrArr[10][10];
int *p = &local; // "standard" pointer
int T::*p = &T::a; // "pointer to member" + "T::" , that is clear
void (*pF)() = fun; //here also everything is clear
void (T::*pF)() = T::fun;
//or
void (T::*pF)() = &T::fun;
int *pA = arr; // ok
int T::*pA = T::b; // error
int (T::*pA)[10] = T::b; // error
int (T::*pA)[10] = &T::b; //works;
//1. Why "&" is needed for "T::b" ? For "standard" pointer an array name is the representation of the
// address of the first element of the array.
//2. Why "&" is not needed for the pointer to member function ? For "standard" pointer a function name
// is the representation of the function address, so we can write &funName or just funName when assigning to the pointer.
// That's rule works there.
//3. Why the above pointer declaration looks like the following pointer declaration ?:
int (*pAA)[10] = arrArr; // Here a pointer is set to the array of arrays not to the array.
system("pause");
}
Why "&" is needed for "T::b" ?
Because the standard requires it. This is to distinguish it from accessing a static class member.
From a standard draft n3337, paragraph 5.3.1/4, emphasis mine:
A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not enclosed
in parentheses. [Note: that is, the expression &(qualified-id), where the qualified-id is enclosed in
parentheses, does not form an expression of type “pointer to member.” Neither does qualified-id, because
there is no implicit conversion from a qualified-id for a non-static member function to the type “pointer to
member function” as there is from an lvalue of function type to the type “pointer to function” (4.3). Nor is
&unqualified-id a pointer to member, even within the scope of the unqualified-id’s class. — end note]
For "standard" pointer an array name is the representation of the address of the first element of the array.
Not really. An array automatically converts to a pointer to first element, where required. The name of an array is an array, period.
Why "&" is not needed for the pointer to member function ?
It is needed. If your compiler allows it, it's got a bug. See the standardese above.
For "standard" pointer a function name is the representation of the function address, so we can write &funName or just funName when assigning to the pointer.
The same thing aplies here as for arrays. There's an automatic conversion but otherwise a function has got a function type.
Consider:
#include <iostream>
template<typename T, size_t N>
void foo(T (&)[N]) { std::cout << "array\n"; }
template<typename T>
void foo(T*) { std::cout << "pointer\n"; }
int main()
{
int a[5];
foo(a);
}
Output is array.
Likewise for functions pointers:
#include <iostream>
template<typename T>
struct X;
template<typename T, typename U>
struct X<T(U)> {
void foo() { std::cout << "function\n"; }
};
template<typename T, typename U>
struct X<T(*)(U)> {
void foo() { std::cout << "function pointer\n"; }
};
void bar(int) {}
int main()
{
X<decltype(bar)> x;
x.foo();
}
Output is function.
And a clarification about this, because I'm not sure what exactly your comment is meant to say:
int arrArr[10][10];
int (*pAA)[10] = arrArr; // Here a pointer is set to the array of arrays not to the array.
Again, array-to-pointer conversion. Note that the elements of arrArr are int[10]s. pAA points to the first element of arrArr which is an array of 10 ints located at &arrArr[0]. If you increment pAA it'll be equal to &arrArr[1] (so naming it pA would be more appropriate).
If you wanted a pointer to arrArr as a whole, you need to say:
int (*pAA)[10][10] = &arrArr;
Incrementing pAA will now take you just past the end of arrArr, that's 100 ints away.
I think the simplest thing is to forget about the class members for a moment, and recap pointers and decay.
int local;
int array[10];
int *p = &local; // "standard" pointer to int
There is a tendency for people to say that a "decayed pointer" is the same as a pointer to the array. But there is an important difference between arr and &arr. The former does not decay into the latter
int (*p_array_standard)[10] = &arr;
If you do &arr, you get a pointer to an array-of-10-ints. This is different from a pointer to an array-of-9-ints. And it's different from a pointer-to-int. sizeof(*p_array_standard) == 10 * sizeof(int).
If you want a pointer to the first element, i.e. a pointer to an int, with sizeof(*p) == sizeof(int)), then you can do:
int *p_standard = &(arr[0);
Everything so far is based on standard/explicit pointers.
There is a special rule in C which allows you to replace &(arr[0]) with arr. You can initialize an int* with &(arr[0]) or with arr. But if you actually want a pointer-to-array, you must do int (*p_array_standard)[10] = &arr;
I think the decaying could almost be dismissed as a piece of syntactic sugar. The decaying doesn't change the meaning of any existing code. It simply allows code that would otherwise be illegal to become legal.
int *p = arr; // assigning a pointer with an array. Why should that work?
// It works, but only because of a special dispensation.
When an array decays, it decays to a pointer to a single element int [10] -> int*. It does not decay to a pointer to the array, that would be int (*p)[10].
Now, we can look at this line from your question:
int (T::*pA3)[10] = T::b; // error
Again, the class member is not relevant to understanding why this failed. The type on the left is a pointer-to-array-of-ints, not a pointer-to-int. Therefore, as we said earlier, decaying is not relevant and you need & to get the pointer-to-array-of-ints type.
A better question would be to ask why this doesn't work (Update: I see now that you did have this in your question.)
int T::*pA3 = T::b;
The right hand side looks like an array, and the left hand side is a pointer to a single element int *, and therefore you could reasonably ask: Why doesn't decay work here?
To understand why decay is difficult here, let's "undo" the syntactic sugar, and replace T::b with &(T::b[0]).
int T::*pA3 = &(T::b[0]);
I think this is the question that you're interested in. We've removed the decaying in order to focus on the real issue. This line works with non-member objects, why doesn't it work with member objects?
The simple answer is that the standard doesn't require it. Pointer-decay is a piece of syntactic sugar, and they simply didn't specify that it must work in cases like this.
Pointers-to-members are basically a little fussier than other pointers. They must point directly at the 'raw' entity as it appears in the object.
(Sorry, I mean it should refer (indirectly) by encoding the offset between the start of the class and the location of this member. But I'm not very good at explaining this.)
They can't point to sub-objects, such as the first element of the array, or indeed the second element of the array.
Q: Now I have a question of my own. Could pointer decay be extended to work on member arrays like this? I think it makes some sense. I'm not the only one to think of this! See this discussion for more. It's possible, and I guess there's nothing stopping a compiler from implementing it as an extension. Subobjects, including array members, are at a fixed offset from the start of the class, so this is pretty logical.
The first thing to note is that arrays decay into pointers to the first element.
int T::*pA = T::b;
There are two issues here, or maybe one, or more than two... The first is the subexpression T::b. The b member variable is not static, and cannot be accessed with that syntax. For pointer to members you need to always use the address-of operator:
int T::*pa = &T::b; // still wrong
Now the problem is that the right hand side has type int (T::*)[10] that does not match the left hand side, and that will fail to compile. If you fix the type on the left you get:
int (T::*pa)[10] = &T::b;
Which is correct. The confusion might have risen by the fact that arrays tend to decay to the first element, so maybe the issue was with the previous expression: int *p = a; which is transformed by the compiler into the more explicit int *p = &a[0];. Arrays and functions have a tendency to decay, but no other element in the language does. And T::b is not an array.
Edit: I skipped the part about functions...
void (*pF)() = fun; //here also everything is clear
void (T::*pF)() = T::fun;
//or
void (T::*pF)() = &T::fun;
It might not be as clear as it seems. The statement void (T::*pf)() = T::fun; is illegal in C++, the compiler you use is accepting it for no good reason. The correct code is the last one: void (T::*pf)() = &T::fun;.
int (T::*pA)[10] = &T::b; //works;
3.Why the above pointer declaration looks like the following pointer declaration ?
int (*pAA)[10] = arrArr;
To understand this, we needn't confuse ourselves with member arrays, simple arrays are good enough. Say've we two
int a[5];
int a_of_a[10][5];
The first (left-most) dimension of the array decays and we get a pointer to the first element of the array, when we use just the array's name. E.g.
int *pa = a; // first element is an int for "a"
int (*pa_of_a)[5] = a_of_a; // first element is an array of 5 ints for "a_of_a"
So without using & operator on the array, when we assign its name to pointers, or pass it to function as arguments, it decays as explained and gives a pointer to its first element. However, when we use the & operator, the decay doesn't happen since we're asking for the address of the array and not using the array name as-is. Thus the pointer we get would be to the actual type of the array without any decay. E.g.
int (*paa) [5] = &a; // note the '&'
int (*paa_of_a) [10][5] = &a_of_a;
Now in your question the upper declaration is a pointer to an array's address without the decay (one dimension stays one dimension), while the lower declaration is a pointer to an array name with decay (two dimensions become one dimension). Thus both the pointers are to an array of same single dimension and look the same. In our example
int (*pa_of_a)[5]
int (*paa) [5]
notice that the types of these pointers are the same int (*) [5] although the value they point to are of different array's.
Why "&" is needed for "T::b" ?
Because that's how the language is specified. It was decided not to complicate the language with a member-to-pointer conversion just for the sake of saving a single character even though, for historical reasons, we have similar conversions for arrays and functions.
For "standard" pointer an array name is the representation of the address of the first element of the array.
No it isn't; it's convertible to a pointer to its first element due to an arcane conversion rule inherited from C. Unfortunately, that's given rise to a widespread (and wrong) belief that an array is a pointer. This kind of confusion is probably part of the reason for not introducing similar bizarre conversions for member pointers.
Why "&" is not needed for the pointer to member function ?
It is. However, your compiler accepts the incorrect void main(), so it may accept other broken code.
For "standard" pointer a function name is the representation of the function address, so we can write &funName or just funName when assigning to the pointer.
Again, the function name isn't a pointer; it's just convertible to one.
Why the above pointer declaration looks like the following pointer declaration ?
One is a pointer to an array, the other is a pointer to a member array. They are quite similar, and so look quite similar, apart from the difference which indicates that one's a member pointer and the other's a normal pointer.
Because T on it's own already has a well defined meaning: the type Class T. So things like T::b are logically used to mean members of Class T. To get the address of these members we need more syntax, namely &T::b. These factors don't come into play with free functions and arrays.
A pointer to a class or struct type points to an object in memory.
A pointer to a member of a class type actually points to an offset from the start of the object.
You can think of these kind of pointers as pointers to blocks of memory. These need an actual address and offset, hence the &.
A pointer to function points to the access point of the function in the assembly code. A member method in general is the same as a function that passes a this pointer as the first argument.
That's in crude nut shell the logic behind needing a & to get the address for members and object address in general.
void (*pF)() = fun; //here also everything is clear
It doesn't work because function fun is undefined
int T::*pA = T::b; // error
What is T::b? T::b is not static member. So you need specific object. Instead write
int *pA = &obj.b[0];
Similarly,
int (T::*pA)[10] = &T::b; //works;
It can be compiled. But it will not work as you expected. Make b static or call obj.b to get access to defined member of defined object. We can easily check this. Create conctructor for your class T
class T
{
public:
T() {
a = 444;
}
int a;
int b[10];
void fun(){}
};
On what value points pA ?
int T::*pA = &T::a;
*pA doesn't not point on variable with value 444, because no object has been created, no constructor has been called.

Trying to understand "pointer to member"

I'm trying to understand how "pointer to member" works but not everything is clear for me.
Here is an example class:
class T
{
public:
int a;
int b[10];
void fun(){}
};
The following code ilustrate the problem and contains questions:
void fun(){};
void main()
{
T obj;
int local;
int arr[10];
int arrArr[10][10];
int *p = &local; // "standard" pointer
int T::*p = &T::a; // "pointer to member" + "T::" , that is clear
void (*pF)() = fun; //here also everything is clear
void (T::*pF)() = T::fun;
//or
void (T::*pF)() = &T::fun;
int *pA = arr; // ok
int T::*pA = T::b; // error
int (T::*pA)[10] = T::b; // error
int (T::*pA)[10] = &T::b; //works;
//1. Why "&" is needed for "T::b" ? For "standard" pointer an array name is the representation of the
// address of the first element of the array.
//2. Why "&" is not needed for the pointer to member function ? For "standard" pointer a function name
// is the representation of the function address, so we can write &funName or just funName when assigning to the pointer.
// That's rule works there.
//3. Why the above pointer declaration looks like the following pointer declaration ?:
int (*pAA)[10] = arrArr; // Here a pointer is set to the array of arrays not to the array.
system("pause");
}
Why "&" is needed for "T::b" ?
Because the standard requires it. This is to distinguish it from accessing a static class member.
From a standard draft n3337, paragraph 5.3.1/4, emphasis mine:
A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not enclosed
in parentheses. [Note: that is, the expression &(qualified-id), where the qualified-id is enclosed in
parentheses, does not form an expression of type “pointer to member.” Neither does qualified-id, because
there is no implicit conversion from a qualified-id for a non-static member function to the type “pointer to
member function” as there is from an lvalue of function type to the type “pointer to function” (4.3). Nor is
&unqualified-id a pointer to member, even within the scope of the unqualified-id’s class. — end note]
For "standard" pointer an array name is the representation of the address of the first element of the array.
Not really. An array automatically converts to a pointer to first element, where required. The name of an array is an array, period.
Why "&" is not needed for the pointer to member function ?
It is needed. If your compiler allows it, it's got a bug. See the standardese above.
For "standard" pointer a function name is the representation of the function address, so we can write &funName or just funName when assigning to the pointer.
The same thing aplies here as for arrays. There's an automatic conversion but otherwise a function has got a function type.
Consider:
#include <iostream>
template<typename T, size_t N>
void foo(T (&)[N]) { std::cout << "array\n"; }
template<typename T>
void foo(T*) { std::cout << "pointer\n"; }
int main()
{
int a[5];
foo(a);
}
Output is array.
Likewise for functions pointers:
#include <iostream>
template<typename T>
struct X;
template<typename T, typename U>
struct X<T(U)> {
void foo() { std::cout << "function\n"; }
};
template<typename T, typename U>
struct X<T(*)(U)> {
void foo() { std::cout << "function pointer\n"; }
};
void bar(int) {}
int main()
{
X<decltype(bar)> x;
x.foo();
}
Output is function.
And a clarification about this, because I'm not sure what exactly your comment is meant to say:
int arrArr[10][10];
int (*pAA)[10] = arrArr; // Here a pointer is set to the array of arrays not to the array.
Again, array-to-pointer conversion. Note that the elements of arrArr are int[10]s. pAA points to the first element of arrArr which is an array of 10 ints located at &arrArr[0]. If you increment pAA it'll be equal to &arrArr[1] (so naming it pA would be more appropriate).
If you wanted a pointer to arrArr as a whole, you need to say:
int (*pAA)[10][10] = &arrArr;
Incrementing pAA will now take you just past the end of arrArr, that's 100 ints away.
I think the simplest thing is to forget about the class members for a moment, and recap pointers and decay.
int local;
int array[10];
int *p = &local; // "standard" pointer to int
There is a tendency for people to say that a "decayed pointer" is the same as a pointer to the array. But there is an important difference between arr and &arr. The former does not decay into the latter
int (*p_array_standard)[10] = &arr;
If you do &arr, you get a pointer to an array-of-10-ints. This is different from a pointer to an array-of-9-ints. And it's different from a pointer-to-int. sizeof(*p_array_standard) == 10 * sizeof(int).
If you want a pointer to the first element, i.e. a pointer to an int, with sizeof(*p) == sizeof(int)), then you can do:
int *p_standard = &(arr[0);
Everything so far is based on standard/explicit pointers.
There is a special rule in C which allows you to replace &(arr[0]) with arr. You can initialize an int* with &(arr[0]) or with arr. But if you actually want a pointer-to-array, you must do int (*p_array_standard)[10] = &arr;
I think the decaying could almost be dismissed as a piece of syntactic sugar. The decaying doesn't change the meaning of any existing code. It simply allows code that would otherwise be illegal to become legal.
int *p = arr; // assigning a pointer with an array. Why should that work?
// It works, but only because of a special dispensation.
When an array decays, it decays to a pointer to a single element int [10] -> int*. It does not decay to a pointer to the array, that would be int (*p)[10].
Now, we can look at this line from your question:
int (T::*pA3)[10] = T::b; // error
Again, the class member is not relevant to understanding why this failed. The type on the left is a pointer-to-array-of-ints, not a pointer-to-int. Therefore, as we said earlier, decaying is not relevant and you need & to get the pointer-to-array-of-ints type.
A better question would be to ask why this doesn't work (Update: I see now that you did have this in your question.)
int T::*pA3 = T::b;
The right hand side looks like an array, and the left hand side is a pointer to a single element int *, and therefore you could reasonably ask: Why doesn't decay work here?
To understand why decay is difficult here, let's "undo" the syntactic sugar, and replace T::b with &(T::b[0]).
int T::*pA3 = &(T::b[0]);
I think this is the question that you're interested in. We've removed the decaying in order to focus on the real issue. This line works with non-member objects, why doesn't it work with member objects?
The simple answer is that the standard doesn't require it. Pointer-decay is a piece of syntactic sugar, and they simply didn't specify that it must work in cases like this.
Pointers-to-members are basically a little fussier than other pointers. They must point directly at the 'raw' entity as it appears in the object.
(Sorry, I mean it should refer (indirectly) by encoding the offset between the start of the class and the location of this member. But I'm not very good at explaining this.)
They can't point to sub-objects, such as the first element of the array, or indeed the second element of the array.
Q: Now I have a question of my own. Could pointer decay be extended to work on member arrays like this? I think it makes some sense. I'm not the only one to think of this! See this discussion for more. It's possible, and I guess there's nothing stopping a compiler from implementing it as an extension. Subobjects, including array members, are at a fixed offset from the start of the class, so this is pretty logical.
The first thing to note is that arrays decay into pointers to the first element.
int T::*pA = T::b;
There are two issues here, or maybe one, or more than two... The first is the subexpression T::b. The b member variable is not static, and cannot be accessed with that syntax. For pointer to members you need to always use the address-of operator:
int T::*pa = &T::b; // still wrong
Now the problem is that the right hand side has type int (T::*)[10] that does not match the left hand side, and that will fail to compile. If you fix the type on the left you get:
int (T::*pa)[10] = &T::b;
Which is correct. The confusion might have risen by the fact that arrays tend to decay to the first element, so maybe the issue was with the previous expression: int *p = a; which is transformed by the compiler into the more explicit int *p = &a[0];. Arrays and functions have a tendency to decay, but no other element in the language does. And T::b is not an array.
Edit: I skipped the part about functions...
void (*pF)() = fun; //here also everything is clear
void (T::*pF)() = T::fun;
//or
void (T::*pF)() = &T::fun;
It might not be as clear as it seems. The statement void (T::*pf)() = T::fun; is illegal in C++, the compiler you use is accepting it for no good reason. The correct code is the last one: void (T::*pf)() = &T::fun;.
int (T::*pA)[10] = &T::b; //works;
3.Why the above pointer declaration looks like the following pointer declaration ?
int (*pAA)[10] = arrArr;
To understand this, we needn't confuse ourselves with member arrays, simple arrays are good enough. Say've we two
int a[5];
int a_of_a[10][5];
The first (left-most) dimension of the array decays and we get a pointer to the first element of the array, when we use just the array's name. E.g.
int *pa = a; // first element is an int for "a"
int (*pa_of_a)[5] = a_of_a; // first element is an array of 5 ints for "a_of_a"
So without using & operator on the array, when we assign its name to pointers, or pass it to function as arguments, it decays as explained and gives a pointer to its first element. However, when we use the & operator, the decay doesn't happen since we're asking for the address of the array and not using the array name as-is. Thus the pointer we get would be to the actual type of the array without any decay. E.g.
int (*paa) [5] = &a; // note the '&'
int (*paa_of_a) [10][5] = &a_of_a;
Now in your question the upper declaration is a pointer to an array's address without the decay (one dimension stays one dimension), while the lower declaration is a pointer to an array name with decay (two dimensions become one dimension). Thus both the pointers are to an array of same single dimension and look the same. In our example
int (*pa_of_a)[5]
int (*paa) [5]
notice that the types of these pointers are the same int (*) [5] although the value they point to are of different array's.
Why "&" is needed for "T::b" ?
Because that's how the language is specified. It was decided not to complicate the language with a member-to-pointer conversion just for the sake of saving a single character even though, for historical reasons, we have similar conversions for arrays and functions.
For "standard" pointer an array name is the representation of the address of the first element of the array.
No it isn't; it's convertible to a pointer to its first element due to an arcane conversion rule inherited from C. Unfortunately, that's given rise to a widespread (and wrong) belief that an array is a pointer. This kind of confusion is probably part of the reason for not introducing similar bizarre conversions for member pointers.
Why "&" is not needed for the pointer to member function ?
It is. However, your compiler accepts the incorrect void main(), so it may accept other broken code.
For "standard" pointer a function name is the representation of the function address, so we can write &funName or just funName when assigning to the pointer.
Again, the function name isn't a pointer; it's just convertible to one.
Why the above pointer declaration looks like the following pointer declaration ?
One is a pointer to an array, the other is a pointer to a member array. They are quite similar, and so look quite similar, apart from the difference which indicates that one's a member pointer and the other's a normal pointer.
Because T on it's own already has a well defined meaning: the type Class T. So things like T::b are logically used to mean members of Class T. To get the address of these members we need more syntax, namely &T::b. These factors don't come into play with free functions and arrays.
A pointer to a class or struct type points to an object in memory.
A pointer to a member of a class type actually points to an offset from the start of the object.
You can think of these kind of pointers as pointers to blocks of memory. These need an actual address and offset, hence the &.
A pointer to function points to the access point of the function in the assembly code. A member method in general is the same as a function that passes a this pointer as the first argument.
That's in crude nut shell the logic behind needing a & to get the address for members and object address in general.
void (*pF)() = fun; //here also everything is clear
It doesn't work because function fun is undefined
int T::*pA = T::b; // error
What is T::b? T::b is not static member. So you need specific object. Instead write
int *pA = &obj.b[0];
Similarly,
int (T::*pA)[10] = &T::b; //works;
It can be compiled. But it will not work as you expected. Make b static or call obj.b to get access to defined member of defined object. We can easily check this. Create conctructor for your class T
class T
{
public:
T() {
a = 444;
}
int a;
int b[10];
void fun(){}
};
On what value points pA ?
int T::*pA = &T::a;
*pA doesn't not point on variable with value 444, because no object has been created, no constructor has been called.

Why does setting function pointer as pointer and pointerpointer work? [duplicate]

So I figured when making function pointers, you do not need the operator & to get the address of the initial function:
#include <stdio.h>
double foo (double x){
return x*x;
}
int main () {
double (*fun1)(double) = &foo;
double (*fun2)(double) = foo;
printf("%f\n",fun1(10));
printf("%f\n",fun2(10));
printf("fun1 = %p \t &foo = %p\n",fun1, &foo);
printf("fun2 = %p \t foo = %p\n",fun2, foo);
int a[10];
printf(" a = %p \n &a = %p \n",a,&a);
return 0;
}
output:
>./a.out
100.000000
100.000000
fun1 = 0x4004f4 &foo = 0x4004f4
fun2 = 0x4004f4 foo = 0x4004f4
a = 0x7fff26804470
&a = 0x7fff26804470
Then I realized this is also true for arrays, meaning that if you have int a[10] both a and &a point to the same location. Why is that with arrays and functions? Is the address saved in a memory location that has the same address as the value(address) being saved in it?
Given int a[10], both a and &a yield the same address, yes, but their types are different.
a is of type int[10]. When it is implicitly converted to a pointer type, the pointer is of type int* and points to the initial element of the array. &a is of type int (*)[10] (that is, a pointer to an array of ten integers). Because there can be no padding in an array, they both yield pointers with the same value, but the pointers have different types.
Functions are similar to arrays, but not entirely the same. Your function foo is of type double(double). Whenever foo is used in an expression and is not the operand of the unary & operator, it is implicitly converted to a pointer to itself, which is of type double(*)(double).
So, for all practical purposes, the name of a function and a pointer to the same function are interchangeable. There are some subtleties, all of which I discuss in an answer to "Why do all these crazy function pointer definitions all work? What is really going on?" (That question was asked about C++, but the rules for nonmember functions in C++ are the same as for functions in C.)
No, there's no extra storage dedicated to pointing to the function/array.
With most variables variable_name has a meaning other than getting the address of that variable, so you need to use &variable to get the address.
With a function or array, function_name (by itself, not followed by parentheses) doesn't have any other meaning, so there was no problem with interpreting it as taking the address of the function.
Likewise in reverse: a normal pointer needs to be dereferenced explicitly, but a pointer to a function doesn't (again, because there's no other reasonable interpretation), so given a pointer to a function like:
int (*func)(param_list);
The following are equivalent to each other -- both call whatever function func points at:
(*func)(params);
func(params);
fun and &fun are exactly the same (except that sizeof(f) is illegal).
a and &a are the same up to pointer arithmetic: a + 10 == &a + 1, because 10*sizeof(*a) == sizeof(a) (where sizeof(*a) == sizeof(int)).
Basically, since the function name is "known" to be a function, the & is not strictly necessary. This behavior is the same for arrays. Recall that a function itself is not a variable, so it behaves a little differently than you might expect sometimes. If you have the 2nd edition of K&R, you can check out section 5.11 on pointers to functions, or the reference manual at the end,
Section A7.1 Pointer generation: If the type of an expression or
subexpression is "array of T" for some type T, then the value of the
expression is a pointer to the first object in the array, and the type
of the expression is altered to "pointer to T." This conversion does
not take place of the expression is the operand of the unary &
operator, ... Similarly, an expression of type "function returning T,"
except when used as the operand of the & operator, is converted to
"pointer to function returning T."
Section A7.4.2 Address Operator: The unary & operator takes the address
of its operand.... The result is a pointer to the object or function
referred to by the lvalue. If the type of the operand is T, the type
of the result is "pointer to T."
As far as I know, this is the same for C99.
printf("fun1 = %p \t &foo = %p\n",fun1, foo);
Here your are calling foo by passing Function Pointer with pass by value
and
printf("fun2 = %p \t foo = %p\n",fun2, &foo)
Here you are calling &foo by passing function Pointer with pass by reference
in both case your are calling the printf with function pointer only.
Remember foo itself is function pointer value and `not a variable.
Same happens with array.
int arr[10] translates into get continuous block of 10 Integers and address of first element is stored into arr. so arr is also a pointer.