static lib with many modules - fortran

In case of developing a static lib using fortran:
The lib is consist of multiple modules, e.g. "module a", "module b" etc..
Each of the modules has public variables, types and procedures.
Now, want to use the lib in program "test".
One possible method is to use each of the modules, and providing the *.a lib file during linking. e.g.:
program test
use a
use b
...
end program
But it would be better if only one module/*.h needs to be used/included. e.g.:
program test
use all
...
end program
One possible solution is to copy all public variables, types and interface of procedures into "module all", and use "module all" instead of the individual modules.
But if any of the individual module is modified, "module all" also needs to be modified to meet the change.
Is there a more appropriate method to work around, or is there an automatic tool to generate the "module all"?
Thank you very much for any input.

I wouldn't copy code from the individual modules into module "all", because, as you say, that leads to extra work when code is changed. And possibility of error. Instead, "use" those modules in module "all". Then when you want them all you "use module all". When you want a particular module you use that one. What you have to guard against because it is forbidden is circular module references: A uses B uses C uses A is not allowed.

It seems that the ultimate solution is to use submodule, which unfortunately has not been supported by gcc.
See:
http://fortranwiki.org/fortran/show/Submodules

Related

How to organize subroutines for use by multiple commands?

I am working on creating a package with two new commands, say foo and bar.
For example, if foo.ado contains:
program define foo
...
rex
end
program define rex
...
end
But my other command, bar.ado, also needs to call rex. Where should I put rex?
I see the following few options:
Create a rex.ado file as well.
Create a rex.do file and include it from within both foo.ado and bar.ado using include "`c(sysdir_plus)'r/rex.do" at the bottom of each file.
Copy the code into both foo.ado and bar.ado, which seems ugly because now the code must be maintained in two places.
What is best practice for organizing subroutines that are needed by both foo and bar?
Also, should the subroutine be called rex, _rex, or something else — maybe _foobar_rex — to indicate it is actually a sub-command that foo and bar depend on to work correctly rather than a separate command intended to stand on its own?
Create a rex.ado file as well
Your question is a bit too broad. Personally, I would go with the first option to be safe, although it really depends on the structure of your project. Sometimes including rex in a single ado file may be enough. This will be the case, for example, if foo is a wrapper command. However, for most other use cases, including two commands sharing a common program, i strongly believe that you will need to have a separate ado file.
The second option is obviously unnecessary, since the first does the same thing, plus it does not have to load the program every single time you call it. The third option is probably the worst in a programming context, as it may create conflicts and will be difficult to maintain down the road.
With regards to naming conventions, I would recommend using something like _rex only if you include the program as a subroutine in an ado file. Otherwise, rex will do just fine and will also indicate that the program has a wider scope within your project. It is also better, in my opinion, to provide a more elaborate explanation about the intended use of rex using a comment at the start of the ado file, rather than trying to incorporate this in the name.

Calling a python 2.7 function in c++ using the default api?

Say I have a function
def pyfunc():
print("ayy lmao")
return 4
and I want to call it in c++
int j = (int)python.pyfunc();
how exactly would I do that?
You might want to have a look into this:https://docs.python.org/2/extending/extending.html
In order to call a Python function from C++, you have to embed Python
in your C++ application. To do this, you have to:
Load the Python DLL. How you do this is system dependent:
LoadLibrary under Windows, dlopen under Unix. If the Python DLL is
in the usual path you use for DLLs (%path% under Windows,
LD_LIBRARY_PATH under Unix), this will happen automatically if you try
calling any function in the Python C interface. Manual loading will
give you more control with regards to version, etc.
Once the library has been loaded, you have to call the function
Py_Initialize() to initialize it. You may want to call
Py_SetProgramName() or Py_SetPythonHome() first to establish the
environment.
Your function is in a module, so you'll have to load that:
PyImport_ImportModule. If the module isn't in the standard path,
you'll have to add its location to sys.path: use
PyImport_ImportModule to get the module "sys", then
PyObject_GetAttrString to get the attribute "path". The path
attribute is a list, so you can use any of the list functions to add
whatever is needed to it.
Your function is an attribute of the module, so you use
PyObject_GetAttrString on the module to get an instance of the
function. Once you've got that, you pack the arguments into a tuple or
a dictionary (for keyword arguments), and use PyObject_Call to call
it.
All of the functions, and everything that is necessary, is documented
(extremely well, in fact) in https://docs.python.org/2/c-api/. You'll
be particularly interested in the sections on "Embedding Python" and
"Importing Modules", along with the more general utilities ("Object
Protocol", etc.). You'll also need to understand the general principles
with regards to how the Python/C API works—things like reference
counting and borrowed vs. owned references; you'll probably want to read
all of the sections in the Introduction first.
And of course, despite the overall quality of the documentation, it's
not perfect. A couple of times, I've had to plunge into the Python
sources to figure out what was going on. (Typically, when I'm getting
an error back from Python, to find out what it's actually complaining
about.)

switch easily between different main()

I'm using VS2010
I have a project with several headers and one file with the main() function.
For testing purposes I'd like to be able to easily another main() function that would instanciate different things than my original main.
Is there an easy way to define 2 "main" function, and easily switch between them?
The best would be to compile 2 binaries, one that starts at main1() and the other at main2(), or it can be a solution that requires to recompile some files, it doesn't matter
You are almost always better off using a separate compiled binary with a separate main.
First, "for testing purposes" might include code that should never be in the real binary -- such as test library code. That requires a second binary.
Second, if there is nothing that should be omitted, you still have the issue that anyone can supply an argument or copy and rename the binary to match argv[0] that will give this functionality.
I know it might be difficult to architect your project files to create separate real and test programs, but in most cases, you will have a much better result.
In linker options you have entry point name. This way you can have main1() and main2():
http://msdn.microsoft.com/en-us/library/f9t8842e(v=vs.80).aspx
"There can be only one" What you need to do is create a set of sub functions that main invokes biased upon conditions or though conditional compilation statements.
#ifdef TESTING
int main() {
/* whatever */
}
#else
int main() {
/* whatever else */
}
#endif
An application can only have one main. If you want to run two things, you need to do so in main, via:
The name of the executable run (hint: the first argv is the name of the executable)
Further command line parameters (program -thingone)
Lazily commenting out calls to functions which do something.
Besides specifying different entry points in the linker or having a real main() that calls whichever lower level function you want to pretend is a top level function, you could add a project for each main() you want.
This can be somewhat annoying in VS because separate projects aren't set up by default to share source code.. Some other IDEs make it easier have different executables (or other build products) built from different subsets of a shared set of source code, but I've never found that to be easy using VS's defaults.

Do you really need a main() in C++?

From what I can tell you can kick off all the action in a constructor when you create a global object. So do you really need a main() function in C++ or is it just legacy?
I can understand that it could be considered bad practice to do so. I'm just asking out of curiosity.
If you want to run your program on a hosted C++ implementation, you need a main function. That's just how things are defined. You can leave it empty if you want of course. On the technical side of things, the linker wants to resolve the main symbol that's used in the runtime library (which has no clue of your special intentions to omit it - it just still emits a call to it). If the Standard specified that main is optional, then of course implementations could come up with solutions, but that would need to happen in a parallel universe.
If you go with the "Execution starts in the constructor of my global object", beware that you set yourself up to many problems related to the order of constructions of namespace scope objects defined in different translation units (So what is the entry point? The answer is: You will have multiple entry points, and what entry point is executed first is unspecified!). In C++03 you aren't even guaranteed that cout is properly constructed (in C++0x you have a guarantee that it is, before any code tries to use it, as long as there is a preceeding include of <iostream>).
You don't have those problems and don't need to work around them (wich can be very tricky) if you properly start executing things in ::main.
As mentioned in the comments, there are however several systems that hide main from the user by having him tell the name of a class which is instantiated within main. This works similar to the following example
class MyApp {
public:
MyApp(std::vector<std::string> const& argv);
int run() {
/* code comes here */
return 0;
};
};
IMPLEMENT_APP(MyApp);
To the user of this system, it's completely hidden that there is a main function, but that macro would actually define such a main function as follows
#define IMPLEMENT_APP(AppClass) \
int main(int argc, char **argv) { \
AppClass m(std::vector<std::string>(argv, argv + argc)); \
return m.run(); \
}
This doesn't have the problem of unspecified order of construction mentioned above. The benefit of them is that they work with different forms of higher level entry points. For example, Windows GUI programs start up in a WinMain function - IMPLEMENT_APP could then define such a function instead on that platform.
Yes! You can do away with main.
Disclaimer: You asked if it were possible, not if it should be done. This is a totally un-supported, bad idea. I've done this myself, for reasons that I won't get into, but I am not recommending it. My purpose wasn't getting rid of main, but it can do that as well.
The basic steps are as follows:
Find crt0.c in your compiler's CRT source directory.
Add crt0.c to your project (a copy, not the original).
Find and remove the call to main from crt0.c.
Getting it to compile and link can be difficult; How difficult depends on which compiler and which compiler version.
Added
I just did it with Visual Studio 2008, so here are the exact steps you have to take to get it to work with that compiler.
Create a new C++ Win32 Console Application (click next and check Empty Project).
Add new item.. C++ File, but name it crt0.c (not .cpp).
Copy contents of C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\crt\src\crt0.c and paste into crt0.c.
Find mainret = _tmain(__argc, _targv, _tenviron); and comment it out.
Right-click on crt0.c and select Properties.
Set C/C++ -> General -> Additional Include Directories = "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\crt\src".
Set C/C++ -> Preprocessor -> Preprocessor Definitions = _CRTBLD.
Click OK.
Right-click on the project name and select Properties.
Set C/C++ -> Code Generation -> Runtime Library = Multi-threaded Debug (/MTd) (*).
Click OK.
Add new item.. C++ File, name it whatever (app.cpp for this example).
Paste the code below into app.cpp and run it.
(*) You can't use the runtime DLL, you have to statically link to the runtime library.
#include <iostream>
class App
{
public: App()
{
std::cout << "Hello, World! I have no main!" << std::endl;
}
};
static App theApp;
Added
I removed the superflous exit call and the blurb about lifetime as I think we're all capable of understanding the consequences of removing main.
Ultra Necro
I just came across this answer and read both it and John Dibling's objections below. It was apparent that I didn't explain what the above procedure does and why that does indeed remove main from the program entirely.
John asserts that "there is always a main" in the CRT. Those words are not strictly correct, but the spirit of the statement is. Main is not a function provided by the CRT, you must add it yourself. The call to that function is in the CRT provided entry point function.
The entry point of every C/C++ program is a function in a module named 'crt0'. I'm not sure if this is a convention or part of the language specification, but every C/C++ compiler I've come across (which is a lot) uses it. This function basically does three things:
Initialize the CRT
Call main
Tear down
In the example above, the call is _tmain but that is some macro magic to allow for the various forms that 'main' can have, some of which are VS specific in this case.
What the above procedure does is it removes the module 'crt0' from the CRT and replaces it with a new one. This is why you can't use the Runtime DLL, there is already a function in that DLL with the same entry point name as the one we are adding (2). When you statically link, the CRT is a collection of .lib files, and the linker allows you to override .lib modules entirely. In this case a module with only one function.
Our new program contains the stock CRT, minus its CRT0 module, but with a CRT0 module of our own creation. In there we remove the call to main. So there is no main anywhere!
(2) You might think you could use the runtime DLL by renaming the entry point function in your crt0.c file, and changing the entry point in the linker settings. However, the compiler is unaware of the entry point change and the DLL contains an external reference to a 'main' function which you're not providing, so it would not compile.
Generally speaking, an application needs an entry point, and main is that entry point. The fact that initialization of globals might happen before main is pretty much irrelevant. If you're writing a console or GUI app you have to have a main for it to link, and it's only good practice to have that routine be responsible for the main execution of the app rather than use other features for bizarre unintended purposes.
Well, from the perspective of the C++ standard, yes, it's still required. But I suspect your question is of a different nature than that.
I think doing it the way you're thinking about would cause too many problems though.
For example, in many environments the return value from main is given as the status result from running the program as a whole. And that would be really hard to replicate from a constructor. Some bit of code could still call exit of course, but that seems like using a goto and would skip destruction of anything on the stack. You could try to fix things up by having a special exception you threw instead in order to generate an exit code other than 0.
But then you still run into the problem of the order of execution of global constructors not being defined. That means that in any particular constructor for a global object you won't be able to make any assumptions about whether or not any other global object yet exists.
You could try to solve the constructor order problem by just saying each constructor gets its own thread, and if you want to access any other global objects you have to wait on a condition variable until they say they're constructed. That's just asking for deadlocks though, and those deadlocks would be really hard to debug. You'd also have the issue of which thread exiting with the special 'return value from the program' exception would constitute the real return value of the program as a whole.
I think those two issues are killers if you want to get rid of main.
And I can't think of a language that doesn't have some basic equivalent to main. In Java, for example, there is an externally supplied class name who's main static function is called. In Python, there's the __main__ module. In perl there's the script you specify on the command line.
If you have more than one global object being constructed, there is no guarantee as to which constructor will run first.
If you are building static or dynamic library code then you don't need to define main yourself, but you will still wind up running in some program that has it.
If you are coding for windows, do not do this.
Running your app entirely from within the constructor of a global object may work just fine for quite awhile, but sooner or later you will make a call to the wrong function and end up with a program that terminates without warning.
Global object constructors run during the startup of the C runtime.
The C runtime startup code runs during the DLLMain of the C runtime DLL
During DLLMain, you are holding the DLL loader lock.
Tring to load another DLL while already holding the DLL loader lock results in a swift death for your process.
Compiling your entire app into a single executable won't save you - many Win32 calls have the potential to quietly load system DLLs.
There are implementations where global objects are not possible, or where non-trivial constructors are not possible for such objects (especially in the mobile and embedded realms).

How to mimic the "multiple instances of global variables within the application" behaviour of a static library but using a DLL?

We have an application written in C/C++ which is broken into a single EXE and multiple DLLs. Each of these DLLs makes use of the same static library (utilities.lib).
Any global variable in the utility static library will actually have multiple instances at runtime within the application. There will be one copy of the global variable per module (ie DLL or EXE) that utilities.lib has been linked into.
(This is all known and good, but it's worth going over some background on how static libraries behave in the context of DLLs.)
Now my question.. We want to change utilities.lib so that it becomes a DLL. It is becoming very large and complex, and we wish to distribute it in DLL form instead of .lib form. The problem is that for this one application we wish to preserve the current behaviour that each application DLL has it's own copy of the global variables within the utilities library. How would you go about doing this? Actually we don't need this for all the global variables, only some; but it wouldn't matter if we got it for all.
Our thoughts:
There aren't many global variables within the library that we care about, we could wrap each of them with an accessor that does some funky trick of trying to figure out which DLL is calling it. Presumably we can walk up the call stack and fish out the HMODULE for each function until we find one that isn't utilities.dll. Then we could return a different version depending on the calling DLL.
We could mandate that callers set a particular global variable (maybe also thread local) prior to calling any function in utilities.dll. The utilities DLL could then use this global variable value to determine the calling context.
We could find some way of loading utilities.dll multiple times at runtime. Perhaps we'd need to make multiple renamed copies at build time, so that each application DLL can have it's own copy of the utilities DLL. This negates some of the advantages of using a DLL in the first place, but there are other applications for which this "static library" style behaviour isn't needed and which would still benefit from utilities.lib becoming utilities.dll.
You are probably best off simply having utilities.dll export additional functions to allocate and deallocate a structure that contains the variables, and then have each of your other worker DLLs call those functions at runtime when needed, such as in the DLL_ATTACH_PROCESS and DLL_DETACH_PROCESS stages of DllEntryPoint(). That way, each DLL gets its own local copy of the variables, and can pass the structure back to utilities.dll functions as an additional parameter.
The alternative is to simply declare the individual variables locally inside each worker DLL directly, and then pass them into utilities.dll as input/output parameters when needed.
Either way, do not have utilities.dll try to figure out context information on its own. It won't work very well.
If I were doing this, I'd factor out all stateful global variables - I would export a COM object or a simple C++ class that contains all the necessary state, and each DLL export would become a method on your class.
Answers to your specific questions:
You can't reliably do a stack trace like that - due to optimizations like tail call optimization or FPO you cannot determine who called you in all cases. You'll find that your program will work in debug, work mostly in release but crash occasionally.
I think you'll find this difficult to manage, and it also puts a demand that your library can't be reentrant with other modules in your process - for instance, if you support callbacks or events into other modules.
This is possible, but you've completely negated the point of using DLL's. Rather than renaming, you could copy into distinct directories and load via full path.