So I'm working on some cleanup in haxeflixel, and I need to validate a csv map, so I'm using a regex to check if its ok (don't mention the ending commas, I know thats not valid csv but I want to allow it), and I think I have a decent regex for doing that, and it seems to work well on flash, but c++ crashes, and neko gives me this error: An error occured while running pcre_exec....
here is my regex, I'm sorry its long, but I have no idea where the problem is...
^(([ ]*-?[0-9]+[ ]*,?)+\r?\n?)+$
if anyone knows what might be going on I'd appreciate it,
Thanks,
Nico
ps. there are probably errors in my regex for checking csv, but I can figure those out, its kind of enjoyable, I'd rather just know what specifically could be causing this:)
edit: ah, I've just noticed this doesn't happen on all strings, once I narrow it down to what strings, I will post one... as for what I'm checking for, its basically just to make sure theres no weird xml header, or any non integer value in the map file, basically it should validate this:
1,1,1,1
1,1,1,1
1,1,1,1
or this:
1,1,1,1,
1,1,1,1,
1,1,1,1,
but not:
xml blahh blahh>
1,m,1,1
1,1,b,1
1,1,1,1
xml>
(and yes I know thats not valid xml;))
edit: it gets stranger:
so I'm trying to determine what strings crash it, and while this still wouldnt explain a normal map crashing, its definatly weird, and has the same result:
what happens is:
this will fail a .match() test, but not crash:
a
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
while this will crash the program:
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,*a*,1,1,1,1,1,1,1,1,1,1,1,1,1
To be honest, you wrote one of the worst regexps I ever seen. It actually looks like it was written specifically to be as slow as possible. I write it not to offend you, but to express how much you need to learn to write regexps(hint: writing your own regexp engine is a good exercise).
Going to your problem, I guess it just runs out of memory(it is extremely memory intensive). I am not sure why it happens only on pcre targets(both neko and cpp targets use pcre), but I guess it is about memory limits per regexp run in pcre or some heuristics in other targets to correct such miswritten regexps.
I'd suggest something along the lines of
~/^(( *-?[0-9]+ *,)* *-?[0-9]+ *,?\r?\n)*(( *-?[0-9]+ *,)* *-?[0-9]+ *,?\r?\n?)$/
There, "~/" and last "/" are haxe regexp markers.
I wasnt extensively testing it, just a run on your samples, but it should do the job(probably with a bit of tweaking).
Also, just as a hint, I'd suggest you to split file into lines first before running any regexps, it will lower memmory usage(or you will need to hold only a part of your text in memory) and simplify your regexp.
I'd also note that since you will need to parse csv anyhow(for any properly formed input, which are prevailing in your data I guess), it might be much faster to do all the tests while actually parsing.
Edit: the answer to question "why it eats so much memory"
Well, it is not a short topic, and that's why I proposed to you to write your own regexp engine. There are some differences in implementations, but generally imagine regexp engine works like that:
parses your regular expression and builds a graph of all possible states(state is basically a symbol value and a number of links to other symbols which can follow it).
sets up a list of read pointer and state pointer pairs, current state list, consisting of regexp initial state and a pointer to matched string first letter
sets up read pointer to the first symbol of symbol string
sets up state poiter to initial state of regexp
takes up one pair from current state list and stores it as current state and current read pointer
reads symbol under current read pointer
matches it with symbols in states which current state have links to, and makes a list of states that matched.
if there is a final regexp state in this list, goes to 12
for each item in this list adds a pair of next read pointer(which is current+1) and item to the current state list
if the current state list is empty, returns false, as string didn't match the regexp
goes to 6
here it is, in a final state of matched regexp, returns true, string matches regexp.
Of course, there are some differences between regexp engines, and some of them eliminate some problems afaik. And of course they also have pseudosymbols, groupings, they need to store the positions regexp and groups matched, they have lookahead and lookbehind and also grouping references which makes it a bit(quite a humble measure) more complex and forces to use a bit more complex data structures, but the main idea is the same. So, here we are and your problem is clearly seen from algorithm. The less specific you are about what you want to match and the more there chances for engine to match the same substring as different paths in state graph, the more memory and processor time it will consume, exponentionally.
Try to model how regexp engine matches regexp (a+a+)+b on strings aaaaaab, ab, aa, aaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa (Don't try the last one, it would take hours or days to compute on a modern PC.)
Also, it worth to note that some regexp engines do things in a bit different way so they can handle this situations properly, but there always are ways to make regexp extremely slow.
And another thing to note is that I may hav ebeen wrong about the exact memory problem. This case it may be processor too, and before that it may be engine limits on memory/processor kicking in, not exactly system starving of memory.
For an school project, I need to parse a text/source file containing a simplified "fake" programming language to build an AST. I've looked at boost::spirit, however since this is a group project and most seems reluctant to learn extra libraries, plus the lecturer/TA recommended leaning to create a simple one on C++. I thought of going that route. Is there some examples out there or ideas on how to start? I have a few attempts but not really successful yet ...
parsing line by line
Test each line with a bunch of regex (1 for procedure/function declaration), one for assignment, one for while etc...
But I will need to assume there are no multiple statements in one line: eg. a=b;x=1;
When I reach a container statement, procedures, whiles etc, I will increase the indent. So all nested statements will go under this
When I reach a } I will decrement indent
Any better ideas or suggestions? Example code I need to parse (very simplified here ...)
procedure Hello {
a = 1;
while a {
b = a + 1 + z;
}
}
Another idea was to read whole file into a string, and go top down. Match all procedures, then capture everything in { ... } then start matching statements (end with ;) or containers while { ... }. This is similar to how PEG does things? But I will need to read entire file
Multipass makes things easier. On a first pass, split things into tokens, like "=", or "abababa", or a quote-delimited string, or a block of whitespace. Don't be destructive (keep the original data), but break things down to simple chunks, and maybe have a little struct or enum that describes what the token is (ie, whitespace, a string literal, an identifier type thing, etc).
So your sample code gets turned into:
identifier(procedure) whitespace( ) identifier(Hello) whitespace( ) operation({) whitespace(\n\t) identifier(a) whitespace( ) operation(=) whitespace( ) number(1) operation(;) whitespace(\n\t) etc.
In those tokens, you might also want to store line number and offset on the line (this will help with error message generation later).
A quick test would be to turn this back into the original text. Another quick test might be to dump out pretty-printed version in html or something (where you color whitespace to have a pink background, identifiers as light blue, operations as light green, numbers as light orange), and see if your tokenizer is making sense.
Now, your language may be whitespace insensitive. So discard the whitespace if that is the case! (C++ isn't, because you need newlines to learn when // comments end)
(Note: a professional language parser will be as close to one-pass as possible, because it is faster. But you are a student, and your goal should be to get it to work.)
So now you have a stream of such tokens. There are a bunch of approaches at this point. You could pull out some serious parsing chops and build a CFG to parse them. (Do you know what a CFG is? LR(1)? LL(1)?)
An easier method might be to do it a bit more ad-hoc. Look for operator({) and find the matching operator(}) by counting up and down. Look for language keywords (like procedure), which then expects a name (the next token), then a block (a {). An ad-hoc parser for a really simple language may work fine.
I've done exactly this for a ridiculously simple language, where the parser consisted of a really simple PDA. It might work for you guys. Or it might not.
Since you mentioned PEG i'll like to throw in my open source project : https://github.com/leblancmeneses/NPEG/tree/master/Languages/npeg_c++
Here is a visual tool that can export C++ version: http://www.robusthaven.com/blog/parsing-expression-grammar/npeg-language-workbench
Documentation for rule grammar: http://www.robusthaven.com/blog/parsing-expression-grammar/npeg-dsl-documentation
If i was writing my own language I would probably look at the terminals/non-terminals found in System.Linq.Expressions as these would be a great start for your grammar rules.
http://msdn.microsoft.com/en-us/library/system.linq.expressions.aspx
System.Linq.Expressions.Expression
System.Linq.Expressions.BinaryExpression
System.Linq.Expressions.BlockExpression
System.Linq.Expressions.ConditionalExpression
System.Linq.Expressions.ConstantExpression
System.Linq.Expressions.DebugInfoExpression
System.Linq.Expressions.DefaultExpression
System.Linq.Expressions.DynamicExpression
System.Linq.Expressions.GotoExpression
System.Linq.Expressions.IndexExpression
System.Linq.Expressions.InvocationExpression
System.Linq.Expressions.LabelExpression
System.Linq.Expressions.LambdaExpression
System.Linq.Expressions.ListInitExpression
System.Linq.Expressions.LoopExpression
System.Linq.Expressions.MemberExpression
System.Linq.Expressions.MemberInitExpression
System.Linq.Expressions.MethodCallExpression
System.Linq.Expressions.NewArrayExpression
System.Linq.Expressions.NewExpression
System.Linq.Expressions.ParameterExpression
System.Linq.Expressions.RuntimeVariablesExpression
System.Linq.Expressions.SwitchExpression
System.Linq.Expressions.TryExpression
System.Linq.Expressions.TypeBinaryExpression
System.Linq.Expressions.UnaryExpression