I have read about Linear Diophantine equations such as ax+by=c are called diophantine equations and give an integer solution only if gcd(a,b) divides c.
These equations are of great importance in programming contests. I was just searching the Internet, when I came across this problem. I think its a variation of diophantine equations.
Problem :
I have two persons,Person X and Person Y both are standing in the middle of a rope. Person X can jump either A or B units to the left or right in one move. Person Y can jump either C or D units to the left or right in one move. Now, I'm given a number K and I have to find the no. of possible positions on the rope in the range [-K,K] such that both the persons can reach that position using their respective movies any number of times. (A,B,C,D and K are given in question).
My solution:
I think the problem can be solved mathematically using diophantine equations.
I can form an equation for Person X like A x_1 + B y_1 = C_1 where C_1 belongs to [-K,K] and similarly for Person Y like C x_2 + D y_2 = C_2 where C_2 belongs to [-K,K].
Now my search space reduces to just finding the number of possible values for which C_1 and C_2 are same. This will be my answer for this problem.
To find those values I'm just finding gcd(A,B) and gcd(C,D) and then taking the lcm of these two gcd's to get LCM(gcd(A,B),gcd(C,D)) and then simply calculating the number of points in the range [1,K] which are multiples of this lcm.
My final answer will be 2*no_of_multiples in [1,K] + 1.
I tried using the same technique in my C++ code, but it's not working(Wrong Answer).
This is my code :
http://pastebin.com/XURQzymA
My question is: can anyone please tell me if I'm using diophantine equations correctly ?
If yes, can anyone tell me possible cases where my logic fails.
These are some of the test cases which were given on the site with problem statement.
A B C D K are given as input in same sequence and the corresponding output is given on next line :
2 4 3 6 7
3
1 2 4 5 1
3
10 12 3 9 16
5
This is the link to original problem. I have written the original question in simple language. You might find it difficult, but if you want you can check it:
http://www.codechef.com/APRIL12/problems/DUMPLING/
Please give me some test cases so that I can figure out where am I doing wrong ?
Thanks in advance.
Solving Linear Diophantine equations
ax + by = c and gcd(a, b) divides c.
Divide a, b and c by gcd(a,b).
Now gcd(a,b) == 1
Find solution to aU + bV = 1 using Extended Euclidean algorithm
Multiply equation by c. Now you have a(Uc) + b (Vc) = c
You found solution x = U*c and y = V * c
The problem is that the input values are 64-bit (up to 10^18) so the LCM can be up to 128 bits large, therefore l can overflow. Since k is 64-bit, an overflowing l indicates k = 0 (so answer is 1). You need to check this case.
For instance:
unsigned long long l=g1/g; // cannot overflow
unsigned long long res;
if ((l * g2) / g2 != l)
{
// overflow case - l*g2 is very large, so k/(l*g2) is 0
res = 0;
}
else
{
l *= g2;
res = k / l;
}
Related
I have N distinct lines on a cartesian plane. Since slope-intercept form of a line is, y = mx + c, slope and y-intercept of these lines are given. I have to find the y coordinate of the bottommost intersection of any two lines.
I have implemented a O(N^2) solution in C++ which is the brute-force approach and is too slow for N = 10^5. Here is my code:
int main() {
int n;
cin >> n;
vector<pair<int, int>> lines(n);
for (int i = 0; i < n; ++i) {
int slope, y_intercept;
cin >> slope >> y_intercept;
lines[i].first = slope;
lines[i].second = y_intercept;
}
double min_y = 1e9;
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
if (lines[i].first ==
lines[j].first) // since lines are distinct, two lines with same slope will never intersect
continue;
double x = (double) (lines[j].second - lines[i].second) / (lines[i].first - lines[j].first); //x-coordinate of intersection point
double y = lines[i].first * x + lines[i].second; //y-coordinate of intersection point
min_y = min(y, min_y);
}
}
cout << min_y << endl;
}
How to solve this efficiently?
In case you are considering solving this by means of Linear Programming (LP), it could be done efficiently, since the solution which minimizes or maximizes the objective function always lies in the intersection of the constraint equations. I will show you how to model this problem as a maximization LP. Suppose you have N=2 first degree equations to consider:
y = 2x + 3
y = -4x + 7
then you will set up your simplex tableau like this:
x0 x1 x2 x3 b
-2 1 1 0 3
4 1 0 1 7
where row x0 represents the negation of the coefficient of "x" in the original first degree functions, x1 represents the coefficient of "y" which is generally +1, x2 and x3 represent the identity matrix of dimensions N by N (they are the slack variables), and b represents the value of the idepent term. In this case, the constraints are subject to <= operator.
Now, the objective function should be:
x0 x1 x2 x3
1 1 0 0
To solve this LP, you may use the "simplex" algorithm which is generally efficient.
Furthermore, the result will be an array representing the assigned values to each variable. In this scenario the solution is:
x0 x1 x2 x3
0.6666666667 4.3333333333 0.0 0.0
The pair (x0, x1) represents the point which you are looking for, where x0 is its x-coordinate and x1 is it's y-coordinate. There are other different results that you could get, for an example, there could exist no solution, you may find out more at plenty of books such as "Linear Programming and Extensions" by George Dantzig.
Keep in mind that the simplex algorithm only works for positive values of X0, x1, ..., xn. This means that before applying the simplex, you must make sure the optimum point which you are looking for is not outside of the feasible region.
EDIT 2:
I believe making the problem feasible could be done easily in O(N) by shifting the original functions into a new position by means of adding a big factor to the independent terms of each function. Check my comment below. (EDIT 3: this implies it won't work for every possible scenario, though it's quite easy to implement. If you want an exact answer for any possible scenario, check the following explanation on how to convert the infeasible quadrants into the feasible back and forth)
EDIT 3:
A better method to address this problem, one that is capable of precisely inferring the minimum point even if it is in the negative side of either x or y: converting to quadrant 1 all of the other 3.
Consider the following generic first degree function template:
f(x) = mx + k
Consider the following generic cartesian plane point template:
p = (p0, p1)
Converting a function and a point from y-negative quadrants to y-positive:
y_negative_to_y_positive( f(x) ) = -mx - k
y_negative_to_y_positive( p ) = (p0, -p1)
Converting a function and a point from x-negative quadrants to x-positive:
x_negative_to_x_positive( f(x) ) = -mx + k
x_negative_to_x_positive( p ) = (-p0, p1)
Summarizing:
quadrant sign of corresponding (x, y) converting f(x) or p to Q1
Quadrant 1 (+, +) f(x)
Quadrant 2 (-, +) x_negative_to_x_positive( f(x) )
Quadrant 3 (-, -) y_negative_to_y_positive( x_negative_to_x_positive( f(x) ) )
Quadrant 4 (+, -) y_negative_to_y_positive( f(x) )
Now convert the functions from quadrants 2, 3 and 4 into quadrant 1. Run simplex 4 times, one based on the original quadrant 1 and the other 3 times based on the converted quadrants 2, 3 and 4. For the cases originating from a y-negative quadrant, you will need to model your simplex as a minimization instance, with negative slack variables, which will turn your constraints to the >= format. I will leave to you the details on how to model the same problem based on a minimization task.
Once you have the results of each quadrant, you will have at hands at most 4 points (because you might find out, for example, that there is no point on a specific quadrant). Convert each of them back to their original quadrant, going back in an analogous manner as the original conversion.
Now you may freely compare the 4 points with each other and decide which one is the one you need.
EDIT 1:
Note that you may have the quantity N of first degree functions as huge as you wish.
Other methods for solving this problem could be better.
EDIT 3: Check out the complexity of simplex. In the average case scenario, it works efficiently.
Cheers!
I was solving a coding problem and came across this one. It states :
We have an infinitely planar cartesian coordinate system on which N points are plotted. Cartesian coordinates of the point I am represented by (Xi, Yi).
Now we want to draw (N-1) line segments which may have arbitrary lengths and the points need not lie on the lines. The slope of each line must be 1 or -1.
Let's denote the minimum distance we have to walk from a point I to reach a line by Di and let's say a = max(D1, D2, D3,..., DN). We want this distance to be minimum as possible.
Thus we have to plot lines in such a way that it minimizes 'a' and compute a*sqrt(2)
Constraints :
1 <= T <= 100
2 <= N <= 10^4
|Xi|, |Yi| <= 10^9 for each valid i
Here T denotes number of test cases.
Sample input 1 :
N = 3
Points : (0,0) , (0,1) , (0,-1)
Sample output 1 :
0.5
Explanation: We should draw lines described by equations y−x+0.5=0 and y−x−0.5=0
Sample input 2 :
N = 3
Points : (0,1) , (1,0) , (-1,0)
Sample output 2 :
0
Explanation: We should draw lines described by equations y−x−1=0 and y+x−1=0
Output format :
For each test case, print a single line containing one real number — the minimum distance a multiplied by sqrt(2). Your answer will be considered correct if its absolute or relative error does not exceed 10^(-6).
Time limit: 1 sec
My understanding is as the slopes are 1 or -1 the equations of the lines would be y = x + c or y = -x + c and we just have to find the y-intercept c which minimizes the distance 'a' in the problem. Also, the minimum distance from a point to the line is the length of the perpendicular to the line.
So I am having difficulty to devise an algorithm which will check all possible values of 'c' and find the optimal one.
Let us denote M[i] the point (x[i], y[i])
The fist step is to compute the distance between a point M(x, y) and a line D, slope of which is equal to +/-1.
Let us denote D and D' the lines
D: y + x + c = 0
D': y - x + c = 0
Then, a few calculations allow to show that
the distance between M and D is equal to d(M, D) = abs(y + x + c)/sqrt(2)
the distance between M and D' is equal to d(M, D') = abs(y - x + c)/sqrt(2)
Let us now consider two different points, for example M[0] and M[1], and let us calculate the minimum distance between these two points and a line D of parameter c and slope +/-1.
Formally, we have two find the minimum, over c and slope, of
max(d(M[0], D), d(M[1], D))
If the slope is -1, i.e. if the equation is y+x+c=0, one can easily show the the optimum c parameter is equal to
c = -(x0 + y0 + x1 + y1)/2
The corresponding distance is equal to abs(x0+y0-x1-y1)/(2*sqrt(2))
If the slope is 1, i.e. if the equation is y-x+c=0, one can show the the optimum c parameter is equal to
c = (x0 - y0 + x1 - y1)/2
The corresponding distance is equal to abs(y0 - x0 - y1 + x1)/(2*sqrt(2))
Therefore, the minimum distance from these two points to an optimal line is the minimum of the previous two distances.
This leads to define the following quantities, for each points M[i]:
a|i] = y[i] - x[i]
b[i] = y[i] + x[i]
And then to define a distance between points M[i] and M[j] as :
d(M[i], M[j]) = min (abs(b[i]-b[j]), abs(a[i]-a[j]))
The proposed algorithm consists in finding the pair (M[i], M[j]) such that this distance is minimized.
Then the wanted result is equal to half this distance.
This corresponds to consider that a line will pass through the distant points (according to the defined distance), except the two closest ones, for which we will draw a line just in between.
(EDIT)
The complexity is not O(n^2) as previously stated.
The complexity to find the min of d(M[i], M[j]) is O(N logN).
This is obtained by sorting the a[i] and to get the min of the differences between adjacent values, i.e. min(a[i+1] - a[i]).
Then by doing the same for the b[i], and finally taking the minimum of the two obtained values.
I have 3D Vertices of a triangle as (x1,y1,z1) ; (x2,y2,z2) and (x3,y3,z3).
I would like to know the value of dz/dx.
I have been looking into various 3D Geometry forums,but could not find relevant things.I am trying to write the algorithm in C++.
I would be really glad,if someone can help me.
Thanks in Advance.
The general plane equation is:
a*x + b*y + c*z + d = 0
where a, b, c and d are floating numbers. So, at first you need to find these numbers. Note, however, that you can set the d = 0, because all planes with the same a, b, c coefficients and different d are parallel to each other. So, you get a system of linear equations:
a*x1 + b*y1 + c*z1 = 0
a*x2 + b*y2 + c*z2 = 0
a*x3 + b*y3 + c*z3 = 0
After you solve the system you'll have these three coefficients - then you can express z as a function of x and y:
z = - (a*x + b*y) / c
Then it'll be easy to find the dz/dx:
dz/dx = - a / c
There are some special cases, which you'll need to care of in your code - for example, what if all your points are collinear, or you got c = 0. You'll need to be very careful to cover ALL the corner cases.
Using Chebyshev polynomials, we can compute sin(2*Pi/n) exactly using the CGAL and CORE library, like the following piece of codes:
#include <CGAL/CORE_Expr.h>
#include <CGAL/Polynomial.h>
#include <CGAL/number_utils.h>
//return sin(theta) and cos(theta) for theta = 2pi/n
static std::pair<AA, AA> sin_cos(unsigned short n) {
// We actually use -x instead of x since root_of will give the k-th
// smallest root but we want the second largest one without counting.
Polynomial x(CGAL::shift(Polynomial(-1), 1));
Polynomial twox(2*x);
Polynomial a(1), b(x);
for (unsigned short i = 2; i <= n; ++i) {
Polynomial c = twox*b - a;
a = b;
b = c;
}
a = b - 1;
AA cos = -CGAL::root_of(2, a.begin(), a.end());
AA sin = CGAL::sqrt(AA(1) - cos*cos);
return std::make_pair(sin, cos);
}
But if I want to compute sin(2*m*Pi/n) exactly, where m and n are integers, what is the formula of the polynomial that I should use? Thanks.
(Partial solution.)
This is essentially computing the real and imaginary part of the roots of unity as algebraic numbers. Let's denote w(m) = exp(2*pi*I*m/n). Then, w(m) itself is a complex root of En(x) = x^n-1.
You need to find a defining polynomial of Re(w(m)). Resultants are a tool to find such a polynomial: 2*Re(w(m)) is a root of Res (En(x-y), En(y); y).
For an explanation why this is the case: Note that 2*Re(w(m)) = w(m) + conj(w(m)), and that the complex roots of En come in conjugate pairs; hence, also conj(w(m)) is a root of En. Now loosely speaking, the En(y) part "constrains" y to be any (complex) root of En, and combining this with the first argument allows x to take any complex value such that x-y is a root of En as well. Hence, a possible assignment is y = conj(w(m)) and x-y = w(m), hence x = w(m)+conj(w(m)) = 2*Re(w(m)).
CGAL can compute resultants of multivariate polynomials, so you can compute this resultant, and you simply have to pick the correct real root. (The largest one will obviously be w(0) = 1, the smallest one is 2*Re(w(floor(n/2))).)
Unfortunately, the resultant has a high complexity (degree n^2), and resultant computation will not be the fastest operation you've ever seen. Also, you'll pay for dense polynomials although your instances are very sparse and structured. YMMV; I have no clue about your use case, and if you need higher degrees.
However, I did a few tests in a computer algebra system, and I found that the resultant splits into factors of more reasonable size, and that all its real roots actually belong to a much simpler polynomial of degree floor(n/2)+1 only. (No proof, just an observation.)
I don't know of a direct formula to write down this factor, and I don't want to speculate about it. But maybe some people at mathoverflow or math.stackexchange can help?
EDIT: Here is a guess for at least a recursive formula.
I write s(n,x) for the significant factor of the resultant polynomial containing all real roots but 0. This means that s(n,x) has all values 2*Re(w(m)) for m != n/4, 3*n/4 as roots.
s(0,x) = 0
s(1,x) = x - 2
s(2,x) = x^2 - 4
s(3,x) = x^2 - x - 2
s(4,x) = x^2 - 4
s(5,x) = x^3 - x^2 - 3*x + 2
s(6,x) = x^4 - 5*x^2 + 4
s(7,x) = x^4 - x^3 - 4*x^2 + 3*x + 2
s(8,x) = x^4 - 6*x^2 + 8
s(n,x) = (x^2-2)*s(n-4,x) - s(n-8,x)
Waiting for a proof...
So i'm implementing a heuristic algorithm, and i've come across this function.
I have an array of 1 to n (0 to n-1 on C, w/e). I want to choose a number of elements i'll copy to another array. Given a parameter y, (0 < y <= 1), i want to have a distribution of numbers whose average is (y * n). That means that whenever i call this function, it gives me a number, between 0 and n, and the average of these numbers is y*n.
According to the author, "l" is a random number: 0 < l < n . On my test code its currently generating 0 <= l <= n. And i had the right code, but i'm messing with this for hours now, and i'm lazy to code it back.
So i coded the first part of the function, for y <= 0.5
I set y to 0.2, and n to 100. That means it had to return a number between 0 and 99, with average 20.
And the results aren't between 0 and n, but some floats. And the bigger n is, smaller this float is.
This is the C test code. "x" is the "l" parameter.
//hate how code tag works, it's not even working now
int n = 100;
float y = 0.2;
float n_copy;
for(int i = 0 ; i < 20 ; i++)
{
float x = (float) (rand()/(float)RAND_MAX); // 0 <= x <= 1
x = x * n; // 0 <= x <= n
float p1 = (1 - y) / (n*y);
float p2 = (1 - ( x / n ));
float exp = (1 - (2*y)) / y;
p2 = pow(p2, exp);
n_copy = p1 * p2;
printf("%.5f\n", n_copy);
}
And here are some results (5 decimals truncated):
0.03354
0.00484
0.00003
0.00029
0.00020
0.00028
0.00263
0.01619
0.00032
0.00000
0.03598
0.03975
0.00704
0.00176
0.00001
0.01333
0.03396
0.02795
0.00005
0.00860
The article is:
http://www.scribd.com/doc/3097936/cAS-The-Cunning-Ant-System
pages 6 and 7.
or search "cAS: cunning ant system" on google.
So what am i doing wrong? i don't believe the author is wrong, because there are more than 5 papers describing this same function.
all my internets to whoever helps me. This is important to my work.
Thanks :)
You may misunderstand what is expected of you.
Given a (properly normalized) PDF, and wanting to throw a random distribution consistent with it, you form the Cumulative Probability Distribution (CDF) by integrating the PDF, then invert the CDF, and use a uniform random predicate as the argument of the inverted function.
A little more detail.
f_s(l) is the PDF, and has been normalized on [0,n).
Now you integrate it to form the CDF
g_s(l') = \int_0^{l'} dl f_s(l)
Note that this is a definite integral to an unspecified endpoint which I have called l'. The CDF is accordingly a function of l'. Assuming we have the normalization right, g_s(N) = 1.0. If this is not so we apply a simple coefficient to fix it.
Next invert the CDF and call the result G^{-1}(x). For this you'll probably want to choose a particular value of gamma.
Then throw uniform random number on [0,n), and use those as the argument, x, to G^{-1}. The result should lie between [0,1), and should be distributed according to f_s.
Like Justin said, you can use a computer algebra system for the math.
dmckee is actually correct, but I thought that I would elaborate more and try to explain away some of the confusion here. I could definitely fail. f_s(l), the function you have in your pretty formula above, is the probability distribution function. It tells you, for a given input l between 0 and n, the probability that l is the segment length. The sum (integral) for all values between 0 and n should be equal to 1.
The graph at the top of page 7 confuses this point. It plots l vs. f_s(l), but you have to watch out for the stray factors it puts on the side. You notice that the values on the bottom go from 0 to 1, but there is a factor of x n on the side, which means that the l values actually go from 0 to n. Also, on the y-axis there is a x 1/n which means these values don't actually go up to about 3, they go to 3/n.
So what do you do now? Well, you need to solve for the cumulative distribution function by integrating the probability distribution function over l which actually turns out to be not too bad (I did it with the Wolfram Mathematica Online Integrator by using x for l and using only the equation for y <= .5). That however was using an indefinite integral and you are really integration along x from 0 to l. If we set the resulting equation equal to some variable (z for instance), the goal now is to solve for l as a function of z. z here is a random number between 0 and 1. You can try using a symbolic solver for this part if you would like (I would). Then you have not only achieved your goal of being able to pick random ls from this distribution, you have also achieved nirvana.
A little more work done
I'll help a little bit more. I tried doing what I said about for y <= .5, but the symbolic algebra system I was using wasn't able to do the inversion (some other system might be able to). However, then I decided to try using the equation for .5 < y <= 1. This turns out to be much easier. If I change l to x in f_s(l) I get
y / n / (1 - y) * (x / n)^((2 * y - 1) / (1 - y))
Integrating this over x from 0 to l I got (using Mathematica's Online Integrator):
(l / n)^(y / (1 - y))
It doesn't get much nicer than that with this sort of thing. If I set this equal to z and solve for l I get:
l = n * z^(1 / y - 1) for .5 < y <= 1
One quick check is for y = 1. In this case, we get l = n no matter what z is. So far so good. Now, you just generate z (a random number between 0 and 1) and you get an l that is distributed as you desired for .5 < y <= 1. But wait, looking at the graph on page 7 you notice that the probability distribution function is symmetric. That means that we can use the above result to find the value for 0 < y <= .5. We just change l -> n-l and y -> 1-y and get
n - l = n * z^(1 / (1 - y) - 1)
l = n * (1 - z^(1 / (1 - y) - 1)) for 0 < y <= .5
Anyway, that should solve your problem unless I made some error somewhere. Good luck.
Given that for any values l, y, n as described, the terms you call p1 and p2 are both in [0,1) and exp is in [1,..) making pow(p2, exp) also in [0,1) thus I don't see how you'd ever get an output with the range [0,n)