Questions about implementing QThread in my application? - c++

As suggested in this question, I am now trying to incorporate multithreading.
According to the links given by karlphillip, I understand that the documentation about subclassing QThread is not to be followed and to use moveToThread() as explained. Now I see that default implementation of QThread run() has only an exec() which must then be ended by calling quit() when worker thread has finished operations. I have a few questions now so that I understand things better:
QApplication* ptrApp=new QApplication(argc,argv);
QThread* th=new QThread;
MyClass* obj=new MyClass;
obj->moveToThread(th);
QObject::connect(th,SIGNAL(started()),obj,SLOT(someFunct()));
QObject::connect(obj,SIGNAL(over()),th,SLOT(quit()));
th->start();
//some GUI code in main thread here
return ptrApp->exec();
What happens if I continue to use someFunct() even after I emit over() from within someFunct()? Is it undefined behaviour or normal?
Which thread would obj now be associated with (while the rest of the code after emitting over() is still executing in someFunct)? My understanding is: it cannot be in th when I have quit() that thread... quit() will be queued until the exec() in the main thread executes it which will cause the exec() in run() of th to exit (I hope I am not making a mistake here). I assume that thread is no longer existent.
Once slot quit() for th is executed, is it safe to assume that the thread has indeed quit or should I further connect finished() signal of th to some slot to be absolutely sure?

It doesn't matter if the event loop is terminated, somefunct() will continue to run until it gives control back to the now extinct loop.
obj stays associated to the thread, so if a signal connected to one of its slots is emitted, the slot won't run but it will be queued for when/if the thread is restarted.
If the QThread object is deleted, obj->thread() returns 0, so I suppose this would be equivalent to calling obj->moveToThread(0) and according to the documentation:
If targetThread is zero, all event processing for this object and its children stops.
quit() terminates the event loop, then the finished() signal is emitted from the thread, and the thread terminates.
So, even when you receive the finished() signal, you shouldn't assume that the thread is finished yet. You can use QThread::wait from the main thread, after you receive that signal to ensure that.
If the thread is in the finishing state, the QThread destructor already calls wait, so you can safely delete the thread after the finished() signal (with deleteLater() to be even safer).

1. What happens if I continue to use someFunct() even after I emit over() from within someFunct()? Is it undefined behaviour or normal?
As you are using direct connections, emitting over will call directly the function quit, which stops the event loop and return from the exec in the thread run method. Which means someFunct() will not finish its execution and the objects inside it are either lost or in a partial modified state.
2. Which thread would obj now be associated with (while the rest of the code after emitting over() is still executing in someFunct)?
As said previously somefunct will not finish its execution. But I believe any objects associated with this thread will remain as such. I say I believe because there is no solid assertion anywhere, but it make sense the most. As mentioned in the doc, for these objects to send or receive events the thread must be started again....
3. Once slot quit() for th is executed, is it safe to assume that the thread has indeed quit or should I further connect finished() signal of th to some slot to be absolutely sure?
quit() terminates the event loop and return where exec() was called.
Notice that the object Qthread is not the thread. so until you enter exec(), it is the main thread which is running... As well as it is the main thread which runs after the exec.
Anyway these are some great questions...

Related

Is it safe to call deleteLater right after emitting a signal with the object?

I believe the following code is safe, but I have not been able to confirm it:
void someMethod(Process *process) {
emit signalWithProcess(process);
process->deleteLater();
}
I'm not sure if process still exists when the signals are called and auto or queued connections are used.
For direct connections, the code above is correct because the slots are called synchronously. AFAIK, for slots on the same thread as the object, it is also correct because deleteLater() posts a new event to the object's event loop. However, the signal events are posted earlier so they run earlier.
However, for queued connections on different threads I do not understand how it works and whether the code above is safe. My gut-feeling says yes, but I have not been able to verify it.
For example, the process object above belongs to thread A and there's a queued connection to another object on thread B. When someMethod() runs, it adds the queued signals to thread B's event loop and adds the deleteLater event to thread A's event loop.
Unless there is some way to block thread A from deleting the object while the slot is run in thread B, this seems not to be safe. Unfortunately, I have not found anything related to that in the source code or the documentation.
Similar question (but without deleteLater): Is it safe to emit signal passing QObject pointer as parameter right before the passed object is going to be destroyed?

Is QThread::quit usabled from within the running thread

So I have the following situation:
I have a QThread that runs an eventloop (i.e. no custom run function). To stop the thread, I send a signal to a worker in that thread. This worker then does cleanups etc and at some point is done and quits the thread.
The problem I am facing right now is: If I invoke the workers stop method and then immediatly wait for the thread to finish it will never do so because the workers done signal does not get processed. Code:
class Worker {
signals:
void done();
public slots:
void stop() {
//dummy code to illustrate what happens here:
QTimer::singleShot(3000, this, &Worker::done);
}
};
// in the main thread
auto thread = new QThread();
auto worker = new Worker();
worker->moveToThread(thread);
connect(worker, &Worker::done, thread, &QThread::quit); //implicitly a queued connection
// ...
QMetaObject::invokeMethod(worker, "stop", Qt::QueuedConnection);
thread->wait(); //blocks here forever, because the connect is queued
Now reason the problem is obvious - Because I block on the main thread the slot can never be invoked (because queued connection) and thus quit is never called. However, if I simply call QThread::quit (or QThread::exit) directly from the worker (or use a DirectConnection) then there is no problem anymore because the eventloop of the main thread is no longer required to process the event.
So the actual question here is: Is that allowed? Can I call QThread::quit from within the actual thread? Or can this create Race conditions, deadlocks and other problems like that. The documentation does not mark the method as threadsafe - but the thread that is managed by QThread might be an exception.
If you look in the file src/corelib/thread/qthread.cpp in the Qt source folder, you can see how quit() is implemented:
void QThread::quit()
{ exit(); }
.... and QThread::exit() is definitely intended to be called from within the thread itself. So the answer is yes, it's fine to call quit() from within the QThread's thread (although it might be a bit more usual to just call QThread::exit() directly instead).
Can I call QThread::quit from within the actual thread?
The question is actually backwards!
Since this method controls the event loop, and the event loop most definitely runs on the thread, the default assumption is that it's not a thread-safe method and thus can only be called from within the thread, since it controls a QEventLoop instance instantiated via QThread::run. That event loop, and its event dispatcher, are QObjects and most definitely have their thread() equal to the QThread instance in question.
But that wouldn't make QThread very useful, and thus QAbstractEventDispatcher::exit, and thus QEventLoop::quit and QThread::quit, are indeed thread-safe methods - you can call them from wherever, including from threads other than the one where the event loop lives. Both the event loop and thread's methods take extra precautions to protect their state from races, so the "and thus" part a few sentences ago is hand-wavey a bit.

Does QThread::quit() immediately end the thread or does it wait until returning to the event loop?

There are a lot of Qt multi-threading tutorials out there that state that a QThread can be stopped safely using the following two lines.
qthread.quit(); // Cause the thread to cease.
qthread.wait(); // Wait until the thread actually stops to synchronize.
I have a lot of code doing this, and in most cases of stopping thread, I'll always set my own cancel flag and check it often during execution (as is the norm). Until now, I was thinking that calling quit would perhaps cause the thread to simply no longer execute any waiting signals (e.g. signals that are queued will no longer have their slots called) but still wait on the currently executing slot to finish.
But I'm wondering if I was right or if quit() actually stops the execution of the thread where it's at, for instance if something is unfinished, like a file descriptor hasn't been closed, it definitely should be, even though in most cases my worker objects will clean up those resources, I'd feel better if I knew exactly how quit works.
I'm asking this because QThread::quit() documentation says that it's "equivalent to calling QThread::exit(0)". I believe this means that the thread would immediately stop where it's at. But what would happen to the stackframe that quit was called in?
QThread::quit does nothing if the thread does not have an event loop or some code in the thread is blocking the event loop. So it will not necessarily stop the thread.
So QThread::quit tells the thread's event loop to exit. After calling it the thread will get finished as soon as the control returns to the event loop of the thread.
You will have to add some kind of abort flag if you are blocking event loop for example by working in a loop. This can be done by a boolean member variable that is public or at least has a public setter method. Then you can tell the thread to exit ASAP from outside (e.g. from your main thread) by setting the abort flag. Of course this will require your thread code to check the abort flag at regular intervals.
You may also force a thread to terminate right now via QThread::terminate(), but this is a very bad practice, because it may terminate the thread at an undefined position in its code, which means you may end up with resources never getting freed up and other nasty stuff. So use this only if you really can't get around it. From its documentation:
Warning: This function is dangerous and its use is discouraged. The thread can be terminated at any point in its code path. Threads can be terminated while modifying data. There is no chance for the thread to clean up after itself, unlock any held mutexes, etc. In short, use this function only if absolutely necessary.
I think this is a good way to finish a thread when you are using loops in a thread:
myThread->m_abort = true; //Tell the thread to abort
if(!myThread->wait(5000)) //Wait until it actually has terminated (max. 5 sec)
{
myThread->terminate(); //Thread didn't exit in time, probably deadlocked, terminate it!
myThread->wait(); //We have to wait again here!
}
In case, if you want to use Qt's builtin facility then try QThread::requestInterruption().
Main thread
struct X {
QThread m_Thread;
void Quit ()
{
m_Thread.quit();
m_Thread.requestInterruption();
}
};
Some Thread referred by X::m_Thread
while(<condition>) {
if(QThread::currentThread()->isInterruptionRequested())
return;
...
}
As per the documentation:
void QThread::requestInterruption()
Request the interruption of the thread. That request is advisory and it is up to code running on the thread to decide if and how it should act upon such request. This function does not stop any event loop running on the thread and does not terminate it in any way.

What is the use of QThread.wait() function?

I have stumbled upon this problem, as others haves:
QThread won't stop / does not process a signal
QThread - Using a slot quit() to exit the thread
The problem is that I want to have a worker thread started, do some job (which involves sending signals to other threads in my code, and receiving signals asynchronously) and then exit. But I want this thread to be synchronized with the code that is starting it. In other words, I want the execution in the code which creates the worker thread to be halted until the worker thread is done its job.
But it seems this is not possible in Qt. The reason is that the worker's QThread.quit() slot cannot be signaled from within the thread itself. The event loop which listens for signals to this slot, should reside in the same thread that created the worker thread. This means the creating thread should not be blocked, otherwise the worker thread never stops.
Which brings me to my question, that what is the point of QThread.wait() then? I think this function should just be stuck at the end of the program to make sure all the threads have exited, but it cannot actually be used to synchronize threads, at least it cannot be used to synchronize a worker thread, with the thread that created it. Because if the QThread.wait() is called from the creating thread, it blocks its event loop, which will block the worker thread's interface, which will prevent it from ever exiting.
Am I missing something?
I thought I need to add a code snippet:
for (auto i = myVector.begin(); i < myVector.end(); ++i)
{
// 5-line best practice creation for the thread
QThread* workerThread = new QThread;
MyWorkerObject* workerObject = new MyWorkerObject(0);
workerObject->moveToThread(workerThread);
QObject::connect(workerThread, SIGNAL(started()), workerObject, SLOT(init()));
QObject::connect(workerThread, SIGNAL(finished()), workerObject, SLOT(deleteLater()));
// Stop mechanism
QObject::connect(workerObject, SIGNAL(finished()), workerThread, SLOT(quit()));
// Start mechanism
wokerThread->start();
// Invoking the work
QMetaObject::invokeMethod(workerObject, "StartYourJob", Qt::QueuedConnection, Q_ARG(SomeType, *i));
// Synchronization
workerThread->wait();
delete wokerThread;
}
I finally found my answer here:
http://comments.gmane.org/gmane.comp.lib.qt.user/6090
In short, if QThread::quit() is invoked as a slot, the event loop handler of the creating thread will deal with it, which is not what I want.
I should call it directly. So when the workerObject finishes its job, instead of sending a signal (which has to pass through the blocked creating thread), it should directly call its container's quit:
this->thread()->quit();
This would be the exit point of the workerObject. Now there is no need for the stop mechanism and these lines can be eliminated from the code.
// Stop mechanism
QObject::connect(workerObject, SIGNAL(finished()), workerThread, SLOT(quit()));
Does anybody see any problem with this approach?
The purpose of threads is to allow processes to run concurrently (at the same time!), so if you're just creating a thread to do work and waiting on the current thread, you don't need to be using a new thread.
To answer your question of the purpose of QThread::wait(), the Qt documentation states that it is similar to the POSIX function pthread_join. A quick search on pthread_join reveals this link, which states the rationale is as follows: -
The pthread_join() function is a convenience that has proven useful in
multi-threaded applications. It is true that a programmer could
simulate this function if it were not provided by passing extra state
as part of the argument to the start_routine(). The terminating thread
would set a flag to indicate termination and broadcast a condition
that is part of that state; a joining thread would wait on that
condition variable. While such a technique would allow a thread to
wait on more complex conditions (for example, waiting for multiple
threads to terminate), waiting on individual thread termination is
considered widely useful. Also, including the pthread_join() function
in no way precludes a programmer from coding such complex waits. Thus,
while not a primitive, including pthread_join() in this volume of
POSIX.1-2008 was considered valuable.
The pthread_join() function provides a simple mechanism allowing an
application to wait for a thread to terminate. After the thread
terminates, the application may then choose to clean up resources that
were used by the thread. For instance, after pthread_join() returns,
any application-provided stack storage could be reclaimed.
The pthread_join() or pthread_detach() function should eventually be
called for every thread that is created with the detachstate attribute
set to PTHREAD_CREATE_JOINABLE so that storage associated with the
thread may be reclaimed.
The interaction between pthread_join() and cancellation is
well-defined for the following reasons:
The pthread_join() function, like all other non-async-cancel-safe
functions, can only be called with deferred cancelability type.
Cancellation cannot occur in the disabled cancelability state.
Thus, only the default cancelability state need be considered. As
specified, either the pthread_join() call is canceled, or it succeeds,
but not both. The difference is obvious to the application, since
either a cancellation handler is run or pthread_join() returns. There
are no race conditions since pthread_join() was called in the deferred
cancelability state.
If an implementation detects that the value specified by the thread
argument to pthread_join() does not refer to a joinable thread, it is
recommended that the function should fail and report an [EINVAL]
error.
If an implementation detects that the value specified by the thread
argument to pthread_join() refers to the calling thread, it is
recommended that the function should fail and report an [EDEADLK]
error.
If an implementation detects use of a thread ID after the end of its
lifetime, it is recommended that the function should fail and report
an [ESRCH] error.
QThread::wait() is not what you need. This function is exactly what you mentioned, it waits for thread termination.
bool QThread::wait ( unsigned long time = ULONG_MAX )
Blocks the thread until either of these conditions is met:
The thread associated with this QThread object has finished execution (i.e. when it
returns from run()). This function will return true if the thread has finished. It also
returns true if the thread has not been started yet.
time milliseconds has elapsed. If time is ULONG_MAX (the default), then the wait will
never timeout (the thread must return from run()). This function will return false if the
wait timed out.
If you need to synchronize two threads (Your main thread and created thread) then I recommend using signals and slots to signal which one is ready (trigger a isReady bool) and have a while (!isReady) { sleep(1ms); processEvents(); } loop going. May not be the best way but should work.

QMetaObject::invokeMethod returns true, but method is never called

I'm trying to run a method on the GUI thread using QMetaObject::invokeMethod, which returns true. But, if I use Qt::QueuedConnection my method never gets called (even if invokeMethod returns true).
This is what I'm using:
QMetaObject::invokeMethod(this, "draw_widgets", Qt::QueuedConnection)
I don't get any error messages or anything...
If I use Qt::AutoConnection or Qt::DirectConnection the method does get called, but from the same thread of course. Not from the GUI thread, which is what I need.
draw_widgets is a public slot of type void draw_widgets()
and my class inherits QObject and uses the Q_OBJECT macro as well.
I would appreciate any help on this, or on how to check why the method is not being called.
Thanks.
The "true" is telling you the message was successfully queued. That doesn't mean the queued message was ever processed...
Let us say your program has 10 threads (Thread1-Thread10). You queue a message from Thread7. Which thread will it be queued to? And when will items on this queue be processed?
The answer is that every QObject has something called Thread Affinity, and this is the thread where a queued slot will be run. The default affinity is to the thread where the object was created (but you can change it with QObject::moveToThread().)
If you want to queue something to the GUI thread, then the object specified by your this pointer should have the GUI thread's affinity. You can check this with the QObject::thread() method.
But in any case, no matter what thread you queue to... you must have some kind of message pump running on that thread. Look at for instance QThread::exec(). If your thread affinity is to the GUI then presumably this is already the case because you are running the app's exec.
(As a sidenote, direct calls to QMetaObject::invokeMethod are usually unnecessary. You can create a signal and tie it to a slot, then emit the signal in lieu of the invoke.)