Related
dynamic_cast is pure evil. Everybody knows it. Only noobs use dynamic_cast. :)
That's what I read about dynamic_cast. Many topics on stackoverflow say "use virtual functions in this case".
I've got some interfaces that reflect capabilities of objects. Let's say:
class IRotatable
{
virtual void set_absolute_angle(float radians) =0;
virtual void rotate_by(float radians) =0;
};
class IMovable
{
virtual void set_position(Position) =0;
};
and a base for a set of classes that may implement them:
class Object
{
virtual ~Object() {}
};
In GUI layer I would like to enable/disable or show/hide buttons depending on which features are implemented by the object selected by the user:
Object *selected_object;
I would do it in such a way (simplified):
button_that_rotates.enabled = (dynamic_cast<IRotatable*>(selected_object) != nullptr);
(...)
void execute_rotation(float angle)
{
if(auto rotatable = dynamic_cast<IRotatable*>(selected_object))
{
rotatable->rotate_by(angle);
}
}
but as other (more experienced ones) say, it is obvious evidence of bad design.
What would be a good design in this case?
And no, I don't want a bunch of virtual functions in my Object. I would like to be able to add new interface and new classes that implement it (and new buttons) without touching Object.
Also virtual function like get_buttons in by Object doesn't seem good for me. My Object knows completely nothing about GUI, buttons and such things.
A function like get_type that returns some enum could also solve a problem, but I don't see why self-implemented substitute of RTTI should be better than the native one (ok, it would be faster, but it doesn't matter in this case).
You've already hit the nail on the head: you're trying to get type information from an "opaque" Object* type. Using dynamic_cast is just a hack to get there. Arguably your problem is actually that C++ doesn't have what you want: good type information. But here's some thoughts.
First, if you're going to a lot of this sort of thing, you may find that you are actually shifting away from typical inheritance and your program may be better suited to a component based design pattern, as is more common in video games. There you often have a somewhat opaque GameObject at the root and want to know what "components" it has. Unity does this sort of thing and they have nice editor windows based on components attached to the GameObject; but C# also has nice type info.
Second, some other part of the might know about the concrete type of the object and can help build your visual display, causing the Object* to no longer be a bottleneck.
Third, if you do go with something like the option you're talking about, I think you will find having type id of some sort vs. the use of dynamic_cast to be more helpful, since you can then build tables to look up types to say, visual builders.
Also, you were wondering why a self-rolled type info vs. RTTI? If you are quite concerned about performance, RTTI is on for all types and that means everything could take a hit; the self-rolled option allows for opt-in (at the cost of complexity). Additionally you won't need to push this onto others if you're writing a library pulled in via source, etc.
I wanted to ask about a specific point made in Effective C++.
It says:
A destructor should be made virtual if a class needs to act like a polymorphic class. It further adds that since std::string does not have a virtual destructor, one should never derive from it. Also std::string is not even designed to be a base class, forget polymorphic base class.
I do not understand what specifically is required in a class to be eligible for being a base class (not a polymorphic one)?
Is the only reason that I should not derive from std::string class is it does not have a virtual destructor? For reusability purpose a base class can be defined and multiple derived class can inherit from it. So what makes std::string not even eligible as a base class?
Also, if there is a base class purely defined for reusability purpose and there are many derived types, is there any way to prevent client from doing Base* p = new Derived() because the classes are not meant to be used polymorphically?
I think this statement reflects the confusion here (emphasis mine):
I do not understand what specifically is required in a class to be eligible for being a base clas (not a polymorphic one)?
In idiomatic C++, there are two uses for deriving from a class:
private inheritance, used for mixins and aspect oriented programming using templates.
public inheritance, used for polymorphic situations only. EDIT: Okay, I guess this could be used in a few mixin scenarios too -- such as boost::iterator_facade -- which show up when the CRTP is in use.
There is absolutely no reason to publicly derive a class in C++ if you're not trying to do something polymorphic. The language comes with free functions as a standard feature of the language, and free functions are what you should be using here.
Think of it this way -- do you really want to force clients of your code to convert to using some proprietary string class simply because you want to tack on a few methods? Because unlike in Java or C# (or most similar object oriented languages), when you derive a class in C++ most users of the base class need to know about that kind of a change. In Java/C#, classes are usually accessed through references, which are similar to C++'s pointers. Therefore, there's a level of indirection involved which decouples the clients of your class, allowing you to substitute a derived class without other clients knowing.
However, in C++, classes are value types -- unlike in most other OO languages. The easiest way to see this is what's known as the slicing problem. Basically, consider:
int StringToNumber(std::string copyMeByValue)
{
std::istringstream converter(copyMeByValue);
int result;
if (converter >> result)
{
return result;
}
throw std::logic_error("That is not a number.");
}
If you pass your own string to this method, the copy constructor for std::string will be called to make a copy, not the copy constructor for your derived object -- no matter what child class of std::string is passed. This can lead to inconsistency between your methods and anything attached to the string. The function StringToNumber cannot simply take whatever your derived object is and copy that, simply because your derived object probably has a different size than a std::string -- but this function was compiled to reserve only the space for a std::string in automatic storage. In Java and C# this is not a problem because the only thing like automatic storage involved are reference types, and the references are always the same size. Not so in C++.
Long story short -- don't use inheritance to tack on methods in C++. That's not idiomatic and results in problems with the language. Use non-friend, non-member functions where possible, followed by composition. Don't use inheritance unless you're template metaprogramming or want polymorphic behavior. For more information, see Scott Meyers' Effective C++ Item 23: Prefer non-member non-friend functions to member functions.
EDIT: Here's a more complete example showing the slicing problem. You can see it's output on codepad.org
#include <ostream>
#include <iomanip>
struct Base
{
int aMemberForASize;
Base() { std::cout << "Constructing a base." << std::endl; }
Base(const Base&) { std::cout << "Copying a base." << std::endl; }
~Base() { std::cout << "Destroying a base." << std::endl; }
};
struct Derived : public Base
{
int aMemberThatMakesMeBiggerThanBase;
Derived() { std::cout << "Constructing a derived." << std::endl; }
Derived(const Derived&) : Base() { std::cout << "Copying a derived." << std::endl; }
~Derived() { std::cout << "Destroying a derived." << std::endl; }
};
int SomeThirdPartyMethod(Base /* SomeBase */)
{
return 42;
}
int main()
{
Derived derivedObject;
{
//Scope to show the copy behavior of copying a derived.
Derived aCopy(derivedObject);
}
SomeThirdPartyMethod(derivedObject);
}
To offer the counter side to the general advice (which is sound when there are no particular verbosity/productivity issues evident)...
Scenario for reasonable use
There is at least one scenario where public derivation from bases without virtual destructors can be a good decision:
you want some of the type-safety and code-readability benefits provided by dedicated user-defined types (classes)
an existing base is ideal for storing the data, and allows low-level operations that client code would also want to use
you want the convenience of reusing functions supporting that base class
you understand that any any additional invariants your data logically needs can only be enforced in code explicitly accessing the data as the derived type, and depending on the extent to which that will "naturally" happen in your design, and how much you can trust client code to understand and cooperate with the logically-ideal invariants, you may want members functions of the derived class to reverify expectations (and throw or whatever)
the derived class adds some highly type-specific convenience functions operating over the data, such as custom searches, data filtering / modifications, streaming, statistical analysis, (alternative) iterators
coupling of client code to the base is more appropriate than coupling to the derived class (as the base is either stable or changes to it reflect improvements to functionality also core to the derived class)
put another way: you want the derived class to continue to expose the same API as the base class, even if that means the client code is forced to change, rather than insulating it in some way that allows the base and derived APIs to grow out of sync
you're not going to be mixing pointers to base and derived objects in parts of the code responsible for deleting them
This may sound quite restrictive, but there are plenty of cases in real world programs matching this scenario.
Background discussion: relative merits
Programming is about compromises. Before you write a more conceptually "correct" program:
consider whether it requires added complexity and code that obfuscates the real program logic, and is therefore more error prone overall despite handling one specific issue more robustly,
weigh the practical costs against the probability and consequences of issues, and
consider "return on investment" and what else you could be doing with your time.
If the potential problems involve usage of the objects that you just can't imagine anyone attempting given your insights into their accessibility, scope and nature of usage in the program, or you can generate compile-time errors for dangerous use (e.g. an assertion that derived class size matches the base's, which would prevent adding new data members), then anything else may be premature over-engineering. Take the easy win in clean, intuitive, concise design and code.
Reasons to consider derivation sans virtual destructor
Say you have a class D publicly derived from B. With no effort, the operations on B are possible on D (with the exception of construction, but even if there are a lot of constructors you can often provide effective forwarding by having one template for each distinct number of constructor arguments: e.g. template <typename T1, typename T2> D(const T1& x1, const T2& t2) : B(t1, t2) { }. Better generalised solution in C++0x variadic templates.)
Further, if B changes then by default D exposes those changes - staying in sync - but someone may need to review extended functionality introduced in D to see if it remains valid, and the client usage.
Rephrasing this: there is reduced explicit coupling between base and derived class, but increased coupling between base and client.
This is often NOT what you want, but sometimes it is ideal, and other times a non issue (see next paragraph). Changes to the base force more client code changes in places distributed throughout the code base, and sometimes the people changing the base may not even have access to the client code to review or update it correspondingly. Sometimes it is better though: if you as the derived class provider - the "man in the middle" - want base class changes to feed through to clients, and you generally want clients to be able - sometimes forced - to update their code when the base class changes without you needing to be constantly involved, then public derivation may be ideal. This is common when your class is not so much an independent entity in its own right, but a thin value-add to the base.
Other times the base class interface is so stable that the coupling may be deemed a non issue. This is especially true of classes like Standard containers.
Summarily, public derivation is a quick way to get or approximate the ideal, familiar base class interface for the derived class - in a way that's concise and self-evidently correct to both the maintainer and client coder - with additional functionality available as member functions (which IMHO - which obviously differs with Sutter, Alexandrescu etc - can aid usability, readability and assist productivity-enhancing tools including IDEs)
C++ Coding Standards - Sutter & Alexandrescu - cons examined
Item 35 of C++ Coding Standards lists issues with the scenario of deriving from std::string. As scenarios go, it's good that it illustrates the burden of exposing a large but useful API, but both good and bad as the base API is remarkably stable - being part of the Standard Library. A stable base is a common situation, but no more common than a volatile one and a good analysis should relate to both cases. While considering the book's list of issues, I'll specifically contrast the issues' applicability to the cases of say:
a) class Issue_Id : public std::string { ...handy stuff... }; <-- public derivation, our controversial usage
b) class Issue_Id : public string_with_virtual_destructor { ...handy stuff... }; <- safer OO derivation
c) class Issue_Id { public: ...handy stuff... private: std::string id_; }; <-- a compositional approach
d) using std::string everywhere, with freestanding support functions
(Hopefully we can agree the composition is acceptable practice, as it provides encapsulation, type safety as well as a potentially enriched API over and above that of std::string.)
So, say you're writing some new code and start thinking about the conceptual entities in an OO sense. Maybe in a bug tracking system (I'm thinking of JIRA), one of them is say an Issue_Id. Data content is textual - consisting of an alphabetic project id, a hyphen, and an incrementing issue number: e.g. "MYAPP-1234". Issue ids can be stored in a std::string, and there will be lots of fiddly little text searches and manipulation operations needed on issue ids - a large subset of those already provided on std::string and a few more for good measure (e.g. getting the project id component, providing the next possible issue id (MYAPP-1235)).
On to Sutter and Alexandrescu's list of issues...
Nonmember functions work well within existing code that already manipulates strings. If instead you supply a super_string, you force changes through your code base to change types and function signatures to super_string.
The fundamental mistake with this claim (and most of the ones below) is that it promotes the convenience of using only a few types, ignoring the benefits of type safety. It's expressing a preference for d) above, rather than insight into c) or b) as alternatives to a). The art of programming involves balancing the pros and cons of distinct types to achieve reasonable reuse, performance, convenience and safety. The paragraphs below elaborate on this.
Using public derivation, the existing code can implicitly access the base class string as a string, and continue to behave as it always has. There's no specific reason to think that the existing code would want to use any additional functionality from super_string (in our case Issue_Id)... in fact it's often lower-level support code pre-existing the application for which you're creating the super_string, and therefore oblivious to the needs provided for by the extended functions. For example, say there's a non-member function to_upper(std::string&, std::string::size_type from, std::string::size_type to) - it could still be applied to an Issue_Id.
So, unless the non-member support function is being cleaned up or extended at the deliberate cost of tightly coupling it to the new code, then it needn't be touched. If it is being overhauled to support issue ids (for example, using the insight into the data content format to upper-case only leading alpha characters), then it's probably a good thing to ensure it really is being passed an Issue_Id by creating an overload ala to_upper(Issue_Id&) and sticking to either the derivation or compositional approaches allowing type safety. Whether super_string or composition is used makes no difference to effort or maintainability. A to_upper_leading_alpha_only(std::string&) reusable free-standing support function isn't likely to be of much use - I can't recall the last time I wanted such a function.
The impulse to use std::string everywhere isn't qualitatively different to accepting all your arguments as containers of variants or void*s so you don't have to change your interfaces to accept arbitrary data, but it makes for error prone implementation and less self-documenting and compiler-verifiable code.
Interface functions that take a string now need to: a) stay away from super_string's added functionality (unuseful); b) copy their argument to a super_string (wasteful); or c) cast the string reference to a super_string reference (awkward and potentially illegal).
This seems to be revisiting the first point - old code that needs to be refactored to use the new functionality, albeit this time client code rather than support code. If the function wants to start treating its argument as an entity for which the new operations are relevant, then it should start taking its arguments as that type and the clients should generate them and accept them using that type. The exact same issues exists for composition. Otherwise, c) can be practical and safe if the guidelines I list below are followed, though it is ugly.
super_string's member functions don't have any more access to string's internals than nonmember functions because string probably doesn't have protected members (remember, it wasn't meant to be derived from in the first place)
True, but sometimes that's a good thing. A lot of base classes have no protected data. The public string interface is all that's needed to manipulate the contents, and useful functionality (e.g. get_project_id() postulated above) can be elegantly expressed in terms of those operations. Conceptually, many times I've derived from Standard containers, I've wanted not to extend or customise their functionality along the existing lines - they're already "perfect" containers - rather I've wanted to add another dimension of behaviour that's specific to my application, and requires no private access. It's because they're already good containers that they're good to reuse.
If super_string hides some of string's functions (and redefining a nonvirtual function in a derived class is not overriding, it's just hiding), that could cause widespread confusion in code that manipulates strings that started their life converted automatically from super_strings.
True for composition too - and more likely to happen as the code doesn't default to passing things through and hence staying in sync, and also true in some situations with run-time polymorphic hierarchies as well. Samed named functions that behave differently in classes that initial appear interchangeable - just nasty. This is effectively the usual caution for correct OO programming, and again not a sufficient reason to abandon the benefits in type safety etc..
What if super_string wants to inherit from string to add more state [explanation of slicing]
Agreed - not a good situation, and somewhere I personally tend to draw the line as it often moves the problems of deletion through a pointer to base from the realm of theory to the very practical - destructors aren't invoked for additional members. Still, slicing can often do what's wanted - given the approach of deriving super_string not to change its inherited functionality, but to add another "dimension" of application-specific functionality....
Admittedly, it's tedious to have to write passthrough functions for the member functions you want to keep, but such an implementation is vastly better and safer than using public or nonpublic inheritance.
Well, certainly agree about the tedium....
Guidelines for successful derivation sans virtual destructor
ideally, avoid adding data members in derived class: variants of slicing can accidentally remove data members, corrupt them, fail to initialise them...
even more so - avoid non-POD data members: deletion via base-class pointer is technically undefined behaviour anyway, but with non-POD types failing to run their destructors is more likely to have non-theoretical problems with resource leaks, bad reference counts etc.
honour the Liskov Substitution Principal / you can't robustly maintain new invariants
for example, in deriving from std::string you can't intercept a few functions and expect your objects to remain uppercase: any code that accesses them via a std::string& or ...* can use std::string's original function implementations to change the value)
derive to model a higher level entity in your application, to extend the inherited functionality with some functionality that uses but doesn't conflict with the base; do not expect or try to change the basic operations - and access to those operations - granted by the base type
be aware of the coupling: base class can't be removed without affecting client code even if the base class evolves to have inappropriate functionality, i.e. your derived class's usability depends on the ongoing appropriateness of the base
sometimes even if you use composition you'll need to expose the data member due to performance, thread safety issues or lack of value semantics - so the loss of encapsulation from public derivation isn't tangibly worse
the more likely people using the potentially-derived class will be unaware of its implementation compromises, the less you can afford to make them dangerous
therefore, low-level widely deployed libraries with many ad-hoc casual users should be more wary of dangerous derivation than localised use by programmers routinely using the functionality at application level and/or in "private" implementation / libraries
Summary
Such derivation is not without issues so don't consider it unless the end result justifies the means. That said, I flatly reject any claim that this can't be used safely and appropriately in particular cases - it's just a matter of where to draw the line.
Personal experience
I do sometimes derive from std::map<>, std::vector<>, std::string etc - I've never been burnt by the slicing or delete-via-base-class-pointer issues, and I've saved a lot of time and energy for more important things. I don't store such objects in heterogeneous polymorphic containers. But, you need to consider whether all the programmers using the object are aware of the issues and likely to program accordingly. I personally like to write my code to use heap and run-time polymorphism only when needed, while some people (due to Java backgrounds, their prefered approach to managing recompilation dependencies or switching between runtime behaviours, testing facilities etc.) use them habitually and therefore need to be more concerned about safe operations via base class pointers.
If you really want to derive from it (not discussing why you want to do it) I think you can prevent Derived class direct heap instantiation by making it's operator new private:
class StringDerived : public std::string {
//...
private:
static void* operator new(size_t size);
static void operator delete(void *ptr);
};
But this way you restrict yourself from any dynamic StringDerived objects.
Not only is the destructor not virtual, std::string contains no virtual functions at all, and no protected members. That makes it very hard for the derived class to modify its functionality.
Then why would you derive from it?
Another problem with being non-polymorphic is that if you pass your derived class to a function expecting a string parameter, your extra functionality will just be sliced off and the object will be seen as a plain string again.
Why should one not derive from c++ std string class?
Because it is not necessary. If you want to use DerivedString for functionality extension; I don't see any problem in deriving std::string. The only thing is, you should not interact between both classes (i.e. don't use string as a receiver for DerivedString).
Is there any way to prevent client from doing Base* p = new Derived()
Yes. Make sure that you provide inline wrappers around Base methods inside Derived class. e.g.
class Derived : protected Base { // 'protected' to avoid Base* p = new Derived
const char* c_str () const { return Base::c_str(); }
//...
};
There are two simple reasons for not deriving from a non-polymorphic class:
Technical: it introduces slicing bugs (because in C++ we pass by value unless otherwise specified)
Functional: if it is non-polymorphic, you can achieve the same effect with composition and some function forwarding
If you wish to add new functionalities to std::string, then first consider using free functions (possibly templates), like the Boost String Algorithm library does.
If you wish to add new data members, then properly wrap the class access by embedding it (Composition) inside a class of your own design.
EDIT:
#Tony noticed rightly that the Functional reason I cited was probably meaningless to most people. There is a simple rule of thumb, in good design, that says that when you can pick a solution among several, you should consider the one with the weaker coupling. Composition has weaker coupling that Inheritance, and thus should be preferred, when possible.
Also, composition gives you the opportunity to nicely wrap the original's class method. This is not possible if you pick inheritance (public) and the methods are not virtual (which is the case here).
The C++ standard states that If Base class destructor is not virtual and you delete an object of Base class that points to the object of an derived class then it causes an undefined Behavior.
C++ standard section 5.3.5/3:
if the static type of the operand is different from its dynamic type, the static type shall be a base class of the operand’s dynamic type and the static type shall have a virtual destructor or the behavior is undefined.
To be clear on the Non-polymorphic class & need of virtual destructor
The purpose of making a destructor virtual is to facilitate the polymorphic deletion of objects through delete-expression. If there is no polymorphic deletion of objects, then you don't need virtual destructor's.
Why not to derive from String Class?
One should generally avoid deriving from any standard container class because of the very reason that they don' have virtual destructors, which make it impossible to delete objects polymorphically.
As for the string class, the string class doesn't have any virtual functions so there is nothing that you can possibly override. The best you can do is hide something.
If at all you want to have a string like functionality you should write a class of your own rather than inherit from std::string.
As soon as you add any member (variable) into your derived std::string class, will you systematically screw the stack if you attempt to use the std goodies with an instance of your derived std::string class? Because the stdc++ functions/members have their stack pointers[indexes] fixed [and adjusted] to the size/boundary of the (base std::string) instance size.
Right?
Please, correct me if I am wrong.
This is not a question about how they work and declared, this I think is pretty much clear to me. The question is about why to implement this?
I suppose the practical reason is to simplify bunch of other code to relate and declare their variables of base type, to handle objects and their specific methods from many other subclasses?
Could this be done by templating and typechecking, like I do it in Objective C? If so, what is more efficient? I find it confusing to declare object as one class and instantiate it as another, even if it is its child.
SOrry for stupid questions, but I havent done any real projects in C++ yet and since I am active Objective C developer (it is much smaller language thus relying heavily on SDK's functionalities, like OSX, iOS) I need to have clear view on any parallel ways of both cousins.
Yes, this can be done with templates, but then the caller must know what the actual type of the object is (the concrete class) and this increases coupling.
With virtual functions the caller doesn't need to know the actual class - it operates through a pointer to a base class, so you can compile the client once and the implementor can change the actual implementation as much as it wants and the client doesn't have to know about that as long as the interface is unchanged.
Virtual functions implement polymorphism. I don't know Obj-C, so I cannot compare both, but the motivating use case is that you can use derived objects in place of base objects and the code will work. If you have a compiled and working function foo that operates on a reference to base you need not modify it to have it work with an instance of derived.
You could do that (assuming that you had runtime type information) by obtaining the real type of the argument and then dispatching directly to the appropriate function with a switch of shorts, but that would require either manually modifying the switch for each new type (high maintenance cost) or having reflection (unavailable in C++) to obtain the method pointer. Even then, after obtaining a method pointer you would have to call it, which is as expensive as the virtual call.
As to the cost associated to a virtual call, basically (in all implementations with a virtual method table) a call to a virtual function foo applied on object o: o.foo() is translated to o.vptr[ 3 ](), where 3 is the position of foo in the virtual table, and that is a compile time constant. This basically is a double indirection:
From the object o obtain the pointer to the vtable, index that table to obtain the pointer to the function and then call. The extra cost compared with a direct non-polymorphic call is just the table lookup. (In fact there can be other hidden costs when using multiple inheritance, as the implicit this pointer might have to be shifted), but the cost of the virtual dispatch is very small.
I don't know the first thing about Objective-C, but here's why you want to "declare an object as one class and instantiate it as another": the Liskov Substitution Principle.
Since a PDF is a document, and an OpenOffice.org document is a document, and a Word Document is a document, it's quite natural to write
Document *d;
if (ends_with(filename, ".pdf"))
d = new PdfDocument(filename);
else if (ends_with(filename, ".doc"))
d = new WordDocument(filename);
else
// you get the point
d->print();
Now, for this to work, print would have to be virtual, or be implemented using virtual functions, or be implemented using a crude hack that reinvents the virtual wheel. The program need to know at runtime which of various print methods to apply.
Templating solves a different problem, where you determine at compile time which of the various containers you're going to use (for example) when you want to store a bunch of elements. If you operate on those containers with template functions, then you don't need to rewrite them when you switch containers, or add another container to your program.
A virtual function is important in inheritance. Think of an example where you have a CMonster class and then a CRaidBoss and CBoss class that inherit from CMonster.
Both need to be drawn. A CMonster has a Draw() function, but the way a CRaidBoss and a CBoss are drawn is different. Thus, the implementation is left to them by utilizing the virtual function Draw.
Well, the idea is simply to allow the compiler to perform checks for you.
It's like a lot of features : ways to hide what you don't want to have to do yourself. That's abstraction.
Inheritance, interfaces, etc. allow you to provide an interface to the compiler for the implementation code to match.
If you didn't have the virtual function mecanism, you would have to write :
class A
{
void do_something();
};
class B : public A
{
void do_something(); // this one "hide" the A::do_something(), it replace it.
};
void DoSomething( A* object )
{
// calling object->do_something will ALWAYS call A::do_something()
// that's not what you want if object is B...
// so we have to check manually:
B* b_object = dynamic_cast<B*>( object );
if( b_object != NULL ) // ok it's a b object, call B::do_something();
{
b_object->do_something()
}
else
{
object->do_something(); // that's a A, call A::do_something();
}
}
Here there are several problems :
you have to write this for each function redefined in a class hierarchy.
you have one additional if for each child class.
you have to touch this function again each time you add a definition to the whole hierarcy.
it's visible code, you can get it wrong easily, each time
So, marking functions virtual does this correctly in an implicit way, rerouting automatically, in a dynamic way, the function call to the correct implementation, depending on the final type of the object.
You dont' have to write any logic so you can't get errors in this code and have an additional thing to worry about.
It's the kind of thing you don't want to bother with as it can be done by the compiler/runtime.
The use of templates is also technically known as polymorphism from theorists. Yep, both are valid approach to the problem. The implementation technics employed will explain better or worse performance for them.
For example, Java implements templates, but through template erasure. This means that it is only apparently using templates, under the surface is plain old polymorphism.
C++ has very powerful templates. The use of templates makes code quicker, though each use of a template instantiates it for the given type. This means that, if you use an std::vector for ints, doubles and strings, you'll have three different vector classes: this means that the size of the executable will suffer.
Is it bad design to check if an object is of a particular type by having some sort of ID data member in it?
class A
{
private:
bool isStub;
public:
A(bool isStubVal):isStub(isStubVal){}
bool isStub(){return isStub;}
};
class A1:public A
{
public:
A1():A(false){}
};
class AStub:public A
{
public:
AStub():A(true){}
};
EDIT 1:
Problem is A holds a lot of virtual functions, which A1 doesn't override but the stub needs to, for indidicating that you are working on a stub instead of an actual object. Here maintainability is the question, for every function that i add to A, i need to override it in stub. forgetting it means dangerous behaviour as A's virtual function gets executed with stub's data. Sure I can add an abstract class ABase and let A and Astub inherit from them. But the design has become rigid enough to allow this refactor.
A reference holder to A is held in another class B. B is initialized with the stub reference, but later depending on some conditions, the reference holder in B is reinitialized with the A1,A2 etc.. So when i do this BObj.GetA(), i can check in GetA() if the refholder is holding a stub and then give an error in that case. Not doing that check means, i would have to override all functions of A in AStub with the appropriate error conditions.
Generally, yes. You're half OO, half procedural.
What are you going to do once you determine the object type? You probably should put that behavior in the object itself (perhaps in a virtual function), and have different derived classes implement that behavior differently. Then you have no reason to check the object type at all.
In your specific example you have a "stub" class. Instead of doing...
if(!stub)
{
dosomething;
}
Just call
object->DoSomething();
and have the implemention in AStub be a empty
Generally yes. Usually you want not to query the object, but to expect it to BEHAVE the proper way. What you suggest is basically a primitive RTTI, and this is generally frowned upon, unless there are better options.
The OO way would be to Stub the functionality, not check for it. However, in the case of a lot of functions to "stub" this may not seem optimal.
Hence, this depends on what you want the class to really do.
Also note, that in this case you don't waste space:
class A
{
public:
virtual bool isStub() = 0;
};
class A1:public A
{
public:
virtual bool isStub() { return false; };
};
class AStub:public A
{
public:
virtual bool isStub() { return true; };
};
... buuut you have a virtual function -- what usually is not a problem, unless it's a performance bottleneck.
If you want to find out the type of object at runtime you can use a dynamic_cast. You must have a pointer or reference to the object, and then check the result of the dynamic_cast. If it is not NULL, then the object is the correct type.
With polymorphic classes you can use the typeofoperator to perform RTTI. Most of the time you shouldn't need to. Without polymorphism, there's no language facility to do so, but you should need to even less often.
One caveat. Obviously your type is going to be determined at construction time. If your determination of 'type' is a dynamic quantity you can't solve this problem with the C++ type system. In that case you need to have some function. But in this case it is better to use the overridable/dynamic behavior as Terry suggested.
Can you provide some better information as what you are trying to accomplish?
This sort of thing is fine. It's generally better to put functionality in the object, so that there's no need to switch on type -- this makes the calling code simpler and localises future changes -- but there's a lot to be said for being able to check the types.
There will always be exceptions to the general case, even with the best will in the world, and being able to quickly check for the odd specific case can make the difference between having something fixed by one change in one place, a quick project-specific hack in the project-specific code, and having to make more invasive, wide-reaching changes (extra functions in the base class at the very least) -- possibly pushing project-specific concerns into shared or framework code.
For a quick solution to the problem, use dynamic_cast. As others have noted, this lets one check that an object is of a given type -- or a type derived from that (an improvement over the straightforward "check IDs" approach). For example:
bool IsStub( const A &a ) {
return bool( dynamic_cast< const AStub * >( &a ) );
}
This requires no setup, and without any effort on one's part the results will be correct. It is also template-friendly in a very straightforward and obvious manner.
Two other approaches may also suit.
If the set of derived types is fixed, or there are a set of derived types that get commonly used, one might have some functions on the base class that will perform the cast. The base class implementations return NULL:
class A {
virtual AStub *AsStub() { return NULL; }
virtual OtherDerivedClass *AsOtherDerivedClass() { return NULL; }
};
Then override as appropriate, for example:
class AStub : public A {
AStub *AsStub() { return this; }
};
Again, this allows one to have objects of a derived type treated as if they were their base type -- or not, if that would be preferable. A further advantage of this is that one need not necessarily return this, but could return a pointer to some other object (a member variable perhaps). This allows a given derived class to provide multiple views of itself, or perhaps change its role at runtime.
This approach is not especially template friendly, though. It would require a bit of work, with the result either being a bit more verbose or using constructs with which not everybody is familiar.
Another approach is to reify the object type. Have an actual object that represents the type, that can be retrieved by both a virtual function and a static function. For simple type checking, this is not much better than dynamic_cast, but the cost is more predictable across a wide range of compilers, and the opportunities for storing useful data (proper class name, reflection information, navigable class hierarchy information, etc.) are much greater.
This requires a bit of infrastructure (a couple of macros, at least) to make it easy to add the virtual functions and maintain the hierarchy data, but it provides good results. Even if this is only used to store class names that are guaranteed to be useful, and to check for types, it'll pay for itself.
With all this in place, checking for a particular type of object might then go something like this example:
bool IsStub( const A &a ) {
return a.GetObjectType().IsDerivedFrom( AStub::GetClassType() );
}
(IsDerivedFrom might be table-driven, or it could simply loop through the hierarchy data. Either of these may or may not be more efficient than dynamic_cast, but the approximate runtime cost is at least predictable.)
As with dynamic_cast, this approach is also obviously amenable to automation with templates.
In the general case it might not be a good design, but in some specific cases it is a reasonable design choice to provide an isStub() method for the use of a specific client that would otherwise need to use RTTI. One such case is lazy loading:
class LoadingProxy : IInterface
{
private:
IInterface m_delegate;
IInterface loadDelegate();
public:
LoadingProxy(IInterface delegate) : m_delegate(delegate){}
int useMe()
{
if (m_delegate.isStub())
{
m_delegate = loadDelegate();
}
return m_delegate.useMe();
}
};
The problem with RTTI is that it is relatively expensive (slow) compared with a virtual method call, so that if your useMe() function is simple/quick, RTTI determines the performance. On one application that I worked on, using RTTI tests to determine if lazy loading was needed was one of the performance bottlenecks identified by profiling.
However, as many other answers have said, the application code should not need to worry about whether it has a stub or a usable instance. The test should be in one place/layer in the application. Unless you might need multiple LoadingProxy implementations there might be a case for making isStub() a friend function.
I have an interface class similar to:
class IInterface
{
public:
virtual ~IInterface() {}
virtual methodA() = 0;
virtual methodB() = 0;
};
I then implement the interface:
class AImplementation : public IInterface
{
// etc... implementation here
}
When I use the interface in an application is it better to create an instance of the concrete class AImplementation. Eg.
int main()
{
AImplementation* ai = new AIImplementation();
}
Or is it better to put a factory "create" member function in the Interface like the following:
class IInterface
{
public:
virtual ~IInterface() {}
static std::tr1::shared_ptr<IInterface> create(); // implementation in .cpp
virtual methodA() = 0;
virtual methodB() = 0;
};
Then I would be able to use the interface in main like so:
int main()
{
std::tr1::shared_ptr<IInterface> test(IInterface::create());
}
The 1st option seems to be common practice (not to say its right). However, the 2nd option was sourced from "Effective C++".
One of the most common reasons for using an interface is so that you can "program against an abstraction" rather then a concrete implementation.
The biggest benefit of this is that it allows changing of parts of your code while minimising the change on the remaining code.
Therefore although we don't know the full background of what you're building, I would go for the Interface / factory approach.
Having said this, in smaller applications or prototypes I often start with concrete classes until I get a feel for where/if an interface would be desirable. Interfaces can introduce a level of indirection that may just not be necessary for the scale of app you're building.
As a result in smaller apps, I find I don't actually need my own custom interfaces. Like so many things, you need to weigh up the costs and benefits specific to your situation.
There is yet another alternative which you haven't mentioned:
int main(int argc, char* argv[])
{
//...
boost::shared_ptr<IInterface> test(new AImplementation);
//...
return 0;
}
In other words, one can use a smart pointer without using a static "create" function. I prefer this method, because a "create" function adds nothing but code bloat, while the benefits of smart pointers are obvious.
There are two separate issues in your question:
1. How to manage the storage of the created object.
2. How to create the object.
Part 1 is simple - you should use a smart pointer like std::tr1::shared_ptr to prevent memory leaks that otherwise require fancy try/catch logic.
Part 2 is more complicated.
You can't just write create() in main() like you want to - you'd have to write IInterface::create(), because otherwise the compiler will be looking for a global function called create, which isn't what you want. It might seem like having the 'std::tr1::shared_ptr test' initialized with the value returned by create() might seem like it'd do what you want, but that's not how C++ compilers work.
As to whether using a factory method on the interface is a better way to do this than just using new AImplementation(), it's possible it'd be helpful in your situation, but beware of speculative complexity - if you're writing the interface so that it always creates an AImplementation and never a BImplementation or a CImplementation, it's hard to see what the extra complexity buys you.
"Better" in what sense?
The factory method doesn't buy you much if you only plan to have, say, one concrete class. (But then again, if you only plan to have one concrete class, do you really need the interface class at all? Maybe yes, if you're using COM.) In any case, if you can forsee a small, fixed limit on the number of concrete classes, then the simpler implementation may be the "better" one, on the whole.
But if there may be many concrete classes, and if you don't want to have the base class be tightly coupled to them, then the factory pattern may be useful.
And yes, this can help reduce coupling -- if the base class provides some means for the derived classes to register themselves with the base class. This would allow the factory to know which derived classes exist, and how to create them, without needing compile-time information about them.
Use the 1st method. Your factory method in the 2nd option would have to be implemented per-concrete class and this is not possible to do in the interface. I.e., IInterface::create() has no idea exactly which concrete class you actually wish to instantiate.
A static method cannot be virtual, and implementing a non-static create() method in your concrete classes has not really won you anything in this case.
Factory methods are certainly useful, but this is not the correct use.
Which item in Effective C++ recommends the 2nd option? I don't see it in mine (though I don't also have the second book). That may clear up a mis-understanding.
I would go with the first option just because it's more common and more understandable. It's really up to you, but if your working on a commercial app then I would ask what my peers what they use.
I do have a very simple question there:
Are you sure you want to use a pointer ?
This question might seem unlogical but people coming from a Java background use new much often than required. In your example, creating the variable on the stack would be amply sufficient.