First, a screenshot:
As you can see, the tops of the shadows look OK (if you look at the dirt where the tops of the shrubs are projected, it looks more or less correct), but the base of the shadows is way off.
The bottom left corner of the image shows the shadow map I computed. It's a depth-map from the POV of the light, which is also where my character is standing.
Here's another shot, from a different angle:
Any ideas what might be causing it to come out like this? Is the depth of the shrub face too similar to the depth of the ground directly behind it, perhaps? If so, how do I get around that?
I'll post the fragment shader below, leave a comment if there's anything else you need to see.
Fragment Shader
#version 330
in vec2 TexCoord0;
in vec3 Tint0;
in vec4 WorldPos;
in vec4 LightPos;
out vec4 FragColor;
uniform sampler2D TexSampler;
uniform sampler2D ShadowSampler;
uniform bool Blend;
const int MAX_LIGHTS = 16;
uniform int NumLights;
uniform vec3 Lights[MAX_LIGHTS];
const float lightRadius = 100;
float distSq(vec3 v1, vec3 v2) {
vec3 d = v1-v2;
return dot(d,d);
}
float CalcShadowFactor(vec4 LightSpacePos)
{
vec3 ProjCoords = LightSpacePos.xyz / LightSpacePos.w;
vec2 UVCoords;
UVCoords.x = 0.5 * ProjCoords.x + 0.5;
UVCoords.y = 0.5 * ProjCoords.y + 0.5;
float Depth = texture(ShadowSampler, UVCoords).x;
if (Depth < (ProjCoords.z + 0.0001))
return 0.5;
else
return 1.0;
}
void main()
{
float scale;
FragColor = texture2D(TexSampler, TexCoord0.xy);
// transparency
if(!Blend && FragColor.a < 0.5) discard;
// biome blending
FragColor *= vec4(Tint0, 1.0f);
// fog
float depth = gl_FragCoord.z / gl_FragCoord.w;
if(depth>20) {
scale = clamp(1.2-15/(depth-19),0,1);
vec3 destColor = vec3(0.671,0.792,1.00);
vec3 colorDist = destColor - FragColor.xyz;
FragColor.xyz += colorDist*scale;
}
// lighting
scale = 0.30;
for(int i=0; i<NumLights; ++i) {
float dist = distSq(WorldPos.xyz, Lights[i]);
if(dist < lightRadius) {
scale += (lightRadius-dist)/lightRadius;
}
}
scale *= CalcShadowFactor(LightPos);
FragColor.xyz *= clamp(scale,0,1.5);
}
I'm fairly certain this is an offset problem. My shadows look to be about 1 block off, but I can't figure out how to shift them, nor what's causing them to be off.
Looks like "depth map bias" actually:
Not exactly sure how to set this....do I just call glPolygonOffset before rendering the scene? Will try it...
Setting glPolygonOffset to 100,100 amplifies the problem:
I set this just before rendering the shadow map:
GL.Enable(EnableCap.PolygonOffsetFill);
GL.PolygonOffset(100f, 100.0f);
And then disabled it again. I'm not sure if that's how I'm supposed to do it. Increasing the values amplifies the problem....decreasing them to below 1 doesn't seem to improve it though.
Notice also how the shadow map in the lower left changed.
Vertex Shader
#version 330
layout(location = 0) in vec3 Position;
layout(location = 1) in vec2 TexCoord;
layout(location = 2) in mat4 Transform;
layout(location = 6) in vec4 TexSrc; // x=x, y=y, z=width, w=height
layout(location = 7) in vec3 Tint; // x=R, y=G, z=B
uniform mat4 ProjectionMatrix;
uniform mat4 LightMatrix;
out vec2 TexCoord0;
out vec3 Tint0;
out vec4 WorldPos;
out vec4 LightPos;
void main()
{
WorldPos = Transform * vec4(Position, 1.0);
gl_Position = ProjectionMatrix * WorldPos;
LightPos = LightMatrix * WorldPos;
TexCoord0 = vec2(TexSrc.x+TexCoord.x*TexSrc.z, TexSrc.y+TexCoord.y*TexSrc.w);
Tint0 = Tint;
}
While world-aligned cascaded shadow maps are great and used in most new games out there, it's not related to why your shadows have a strange offset with your current implementation.
Actually, it looks like you're sampling from the correct texels on the shadow map just on where the shadows that are occurring are exactly where you'd expect them to be, however your comparison is off.
I've added some comments to your code:
vec3 ProjCoords = LightSpacePos.xyz / LightSpacePos.w; // So far so good...
vec2 UVCoords;
UVCoords.x = 0.5 * ProjCoords.x + 0.5; // Right, you're converting X and Y from clip
UVCoords.y = 0.5 * ProjCoords.y + 0.5; // space to texel space...
float Depth = texture(ShadowSampler, UVCoords).x; // I expect we sample a value in [0,1]
if (Depth < (ProjCoords.z + 0.0001)) // Uhoh, we never converted Z's clip space to [0,1]
return 0.5;
else
return 1.0;
So, I suspect you want to compare to ProjCoords.z * 0.5 + 0.5:
if (Depth < (ProjCoords.z * 0.5 + 0.5 + 0.0001))
return 0.5;
else
return 1.0;
Also, that bias factor makes me nervous. Better yet, just take it out for now and deal with it once you get the shadows appearing in the right spots:
const float bias = 0.0;
if (Depth < (ProjCoords.z * 0.5 + 0.5 + bias))
return 0.5;
else
return 1.0;
I might not be entirely right about how to transform ProjCoords.z to match the sampled value, however this is likely the issue. Also, if you do move to cascaded shadow maps (I recommend world-aligned) I'd strongly recommend drawing frustums representing where each shadow map is viewing -- it makes debugging a whole lot easier.
This is called the "deer in headlights" effect of buffer mapped shadows. There are a several ways to minimize this effect. Look for "light space shadow mapping".
NVidia OpenGL SDK has "cascaded shadow maps" example. You might want to check it out (haven't used it myself, though).
How to improve the quality of my shadows?
The problem could be caused by using incorrect matrix while rendering shadows. Your example doesn't demonstrate how light matrices are set. By murphy's law I'll have to assume that bug lies in this missing piece of code - since you decided that this part isn't important, it probably causes the problem. If matrix used while testing the shadow is different from matrix used to render the shadow, you'll get exactly this problem.
I suggest to forget about the whole minecraft thing for a moment, and play around with shadows in simple application. Make a standalone application with floor plane and rotating cube (or teapot or whatever you want), and debug shadow maps there, until you get hang of it. Since you're willing to throw +100 bounty onto the question, you might as well post the complete code of your standalone sample here - if you still get the problem in the sample. Trying to stick technology you aren't familiar with into the middle of working(?) engine isn't a good idea anyway. Take it slow, get used to the technique/technology/effect, then integrate it.
Related
Im currently in the process of writing a Voxel Cone Tracing Rendering Engine with C++ and OpenGL. Everything is going rather fine, except that I'm getting rather strange results for wider cone angles.
Right now, for the purposes of testing, all I am doing is shoot out one singular cone perpendicularly to the fragment normal. I am only calculating 'indirect light'. For reference, here is the rather simple Fragment Shader I'm using:
#version 450 core
out vec4 FragColor;
in vec3 pos_fs;
in vec3 nrm_fs;
uniform sampler3D tex3D;
vec3 indirectDiffuse();
vec3 voxelTraceCone(const vec3 from, vec3 direction);
void main()
{
FragColor = vec4(0, 0, 0, 1);
FragColor.rgb += indirectDiffuse();
}
vec3 indirectDiffuse(){
// singular cone in direction of the normal
vec3 ret = voxelTraceCone(pos_fs, nrm);
return ret;
}
vec3 voxelTraceCone(const vec3 origin, vec3 dir) {
float max_dist = 1f;
dir = normalize(dir);
float current_dist = 0.01f;
float apperture_angle = 0.01f; //Angle in Radians.
vec3 color = vec3(0.0f);
float occlusion = 0.0f;
float vox_size = 128.0f; //voxel map size
while(current_dist < max_dist && occlusion < 1) {
//Get cone diameter (tan = cathetus / cathetus)
float current_coneDiameter = 2.0f * current_dist * tan(apperture_angle * 0.5f);
//Get mipmap level which should be sampled according to the cone diameter
float vlevel = log2(current_coneDiameter * vox_size);
vec3 pos_worldspace = origin + dir * current_dist;
vec3 pos_texturespace = (pos_worldspace + vec3(1.0f)) * 0.5f; //[-1,1] Coordinates to [0,1]
vec4 voxel = textureLod(tex3D, pos_texturespace, vlevel); //get voxel
vec3 color_read = voxel.rgb;
float occlusion_read = voxel.a;
color = occlusion*color + (1 - occlusion) * occlusion_read * color_read;
occlusion = occlusion + (1 - occlusion) * occlusion_read;
float dist_factor = 0.3f; //Lower = better results but higher performance hit
current_dist += current_coneDiameter * dist_factor;
}
return color;
}
The tex3D uniform is the voxel 3d-texture.
Under a regular Phong shader (under which the voxel values are calculated) the scene looks like this:
For reference, this is what the voxel map (tex3D) (128x128x128) looks like when visualized:
Now we get to the actual problem I'm having. If I apply the shader above to the scene, I get following results:
For very small cone angles (apperture_angle=0.01) I get roughly what you might expect: The voxelized scene is essentially 'reflected' perpendicularly on each surface:
Now if I increase the apperture angle to, for example 30 degrees (apperture_angle=0.52), I get this really strange 'wavy'-looking result:
I would have expected a much more similar result to the earlier one, just less specular. Instead I get mostly the outline of each object reflected in a specular manner with some occasional pixels inside the outline. Considering this is meant to be the 'indirect lighting' in the scene, it won't look exactly good even if I add the direct light.
I have tried different values for max_dist, current_dist etc. aswell as shooting several cones instead of just one. The result remains similar, if not worse.
Does someone know what I'm doing wrong here, and how to get actual remotely realistic indirect light?
I suspect that the textureLod function somehow yields the wrong result for any LOD levels above 0, but I haven't been able to confirm this.
The Mipmaps of the 3D texture were not being generated correctly.
In addition there was no hardcap on vlevel leading to all textureLod calls returning a #000000 color that accessed any mipmaplevel above 1.
Initial situation
I want to visualize simulation data in openGL.
My data consists of particle positions (x, y, z) where each particle has some properties (like density, temperature, ...) which will be used for coloring. Those (SPH) particles (100k to several millions), grouped together, actually represent planets, in case you wonder. I want to render those particles as small 3D spheres and add ambient, diffuse and specular lighting.
Status quo and questions
In MY case: In which coordinate frame do I do the lightning calculations? Which way is the "best" to pass the various components through the pipeline?
I saw that it is common to do it in view space which is also very intuitive. However: The normals at the different fragment positions are calculated in the fragment shader in clip space coordinates (see appended fragment shader). Can I actually convert them "back" into view space to do the lightning calculations in view space for all the fragments? Would there be any advantage compared to doing it in clip space?
It would be easier to get the normals in view space if I would use meshes for each sphere but I think with several million particles this would decrease performance drastically, so better do it with sphere intersection, would you agree?
PS: I don't need a model matrix since all the particles are already in place.
//VERTEX SHADER
#version 330 core
layout (location = 0) in vec3 position;
layout (location = 2) in float density;
uniform float radius;
uniform vec3 lightPos;
uniform vec3 viewPos;
out vec4 lightDir;
out vec4 viewDir;
out vec4 viewPosition;
out vec4 posClip;
out float vertexColor;
// transformation matrices
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
lightDir = projection * view * vec4(lightPos - position, 1.0f);
viewDir = projection * view * vec4(viewPos - position, 1.0f);
viewPosition = projection * view * vec4(lightPos, 1.0f);
posClip = projection * view * vec4(position, 1.0f);
gl_Position = posClip;
gl_PointSize = radius;
vertexColor = density;
}
I know that projective divion happens for the gl_Position variable, does that actually happen to ALL vec4's which are passed from the vertex to the fragment shader? If not, maybe the calculations in the fragment shader would be wrong?
And the fragment shader where the normals and diffuse/specular lightning calculations in clip space:
//FRAGMENT SHADER
#version 330 core
in float vertexColor;
in vec4 lightDir;
in vec4 viewDir;
in vec4 posClip;
in vec4 viewPosition;
uniform vec3 lightColor;
vec4 colormap(float x); // returns vec4(r, g, b, a)
out vec4 vFragColor;
void main(void)
{
// AMBIENT LIGHT
float ambientStrength = 0.0;
vec3 ambient = ambientStrength * lightColor;
// Normal calculation done in clip space (first from texture (gl_PointCoord 0 to 1) coord to NDC( -1 to 1))
vec3 normal;
normal.xy = gl_PointCoord * 2.0 - vec2(1.0); // transform from 0->1 point primitive coords to NDC -1->1
float mag = dot(normal.xy, normal.xy); // sqrt(x=1) = sqrt(x)
if (mag > 1.0) // discard fragments outside sphere
discard;
normal.z = sqrt(1.0 - mag); // because x^2 + y^2 + z^2 = 1
// DIFFUSE LIGHT
float diff = max(0.0, dot(vec3(lightDir), normal));
vec3 diffuse = diff * lightColor;
// SPECULAR LIGHT
float specularStrength = 0.1;
vec3 viewDir = normalize(vec3(viewPosition) - vec3(posClip));
vec3 reflectDir = reflect(-vec3(lightDir), normal);
float shininess = 64;
float spec = pow(max(dot(vec3(viewDir), vec3(reflectDir)), 0.0), shininess);
vec3 specular = specularStrength * spec * lightColor;
vFragColor = colormap(vertexColor / 8) * vec4(ambient + diffuse + specular, 1);
}
Now this actually "kind of" works but i have the feeling that also the sides of the sphere which do NOT face the light source are being illuminated, which shouldn't happen. How can I fix this?
Some weird effect: In this moment the light source is actually BEHIND the left planet (it just peaks out a little bit at the top left), bit still there are diffuse and specular effects going on. This side should be actually pretty dark! =(
Also at this moment I get some glError: 1282 error in the fragment shader and I don't know where it comes from since the shader program actually compiles and runs, any suggestions? :)
The things that you are drawing aren't actually spheres. They just look like them from afar. This is absolutely ok if you are fine with that. If you need geometrically correct spheres (with correct sizes and with a correct projection), you need to do proper raycasting. This seems to be a comprehensive guide on this topic.
1. What coordinate system?
In the end, it is up to you. The coordinate system just needs to fulfill some requirements. It must be angle-preserving (because lighting is all about angles). And if you need distance-based attenuation, it should also be distance-preserving. The world and the view coordinate systems usually fulfill these requirements. Clip space is not suited for lighting calculations as neither angles nor distances are preserved. Furthermore, gl_PointCoord is in none of the usual coordinate systems. It is its own coordinate system and you should only use it together with other coordinate systems if you know their relation.
2. Meshes or what?
Meshes are absolutely not suited to render spheres. As mentioned above, raycasting or some screen-space approximation are better choices. Here is an example shader that I used in my projects:
#version 330
out vec4 result;
in fData
{
vec4 toPixel; //fragment coordinate in particle coordinates
vec4 cam; //camera position in particle coordinates
vec4 color; //sphere color
float radius; //sphere radius
} frag;
uniform mat4 p; //projection matrix
void main(void)
{
vec3 v = frag.toPixel.xyz - frag.cam.xyz;
vec3 e = frag.cam.xyz;
float ev = dot(e, v);
float vv = dot(v, v);
float ee = dot(e, e);
float rr = frag.radius * frag.radius;
float radicand = ev * ev - vv * (ee - rr);
if(radicand < 0)
discard;
float rt = sqrt(radicand);
float lambda = max(0, (-ev - rt) / vv); //first intersection on the ray
float lambda2 = (-ev + rt) / vv; //second intersection on the ray
if(lambda2 < lambda) //if the first intersection is behind the camera
discard;
vec3 hit = lambda * v; //intersection point
vec3 normal = (frag.cam.xyz + hit) / frag.radius;
vec4 proj = p * vec4(hit, 1); //intersection point in clip space
gl_FragDepth = ((gl_DepthRange.diff * proj.z / proj.w) + gl_DepthRange.near + gl_DepthRange.far) / 2.0;
vec3 vNormalized = -normalize(v);
float nDotL = dot(vNormalized, normal);
vec3 c = frag.color.rgb * nDotL + vec3(0.5, 0.5, 0.5) * pow(nDotL, 120);
result = vec4(c, frag.color.a);
}
3. Perspective division
Perspective division is not applied to your attributes. The GPU does perspective division on the data that you pass via gl_Position on the way to transforming them to screen space. But you will never actually see this perspective-divided position unless you do it yourself.
4. Light in the dark
This might be the result of you mixing different coordinate systems or doing lighting calculations in clip space. Btw, the specular part is usually not multiplied by the material color. This is light that gets reflected directly at the surface. It does not penetrate the surface (which would absorb some colors depending on the material). That's why those highlights are usually white (or whatever light color you have), even on black objects.
First of all, I must apologize for posting yet another question on this subject (there are a lot already!). I did search for other related questions and answers, but unfortunately none of them showed me the solution. Now I'm desperate! :D
It is worth mentioning that the code posted below gives a satisfying 'bumpy' effect. It is the scene enlightenment that seems to be wrong.
The scene: is dead simple! A cube in the center, a light source rotating around it (parallel to the ground) and above.
My approach is to start from my basic light shader, which gives me adequate outputs (or so I think!). The first step is to modify it to do the calculations in tangent space, then use the normal extracted from a texture.
I tried to comment the code nicely, but in short I have two questions:
1) Doing only basic lighting (no normal mapping), I expect the scene to look exactly the same, with or without transforming my vectors into tangent space with the TBN matrix. Am I wrong?
2) Why do I get incorrect enlightenment?
A couple of screenshots to give you an idea (EDITED) - following LJ's comment, I am no longer summing normals and tangent per vertex/face. Interestingly, it highlights the issue (see on the capture, I have marked how the light moves).
Basically it is as if the cube was rotated 90 degrees to the left, or, as if the light was turing vertically instead of horizontally
Result with normal mapping:
Version with simple light:
Vertex shader:
// Information about the light.
// Here we care essentially about light.Position, which
// is set to be something like vec3(cos(x)*9, 5, sin(x)*9)
uniform Light_t Light;
uniform mat4 W; // The model transformation matrix
uniform mat4 V; // The camera transformation matrix
uniform mat4 P; // The projection matrix
in vec3 VS_Position;
in vec4 VS_Color;
in vec2 VS_TexCoord;
in vec3 VS_Normal;
in vec3 VS_Tangent;
out vec3 FS_Vertex;
out vec4 FS_Color;
out vec2 FS_TexCoord;
out vec3 FS_LightPos;
out vec3 FS_ViewPos;
out vec3 FS_Normal;
// This method calculates the TBN matrix:
// I'm sure it is not optimized vertex shader code,
// to have this seperate method, but nevermind for now :)
mat3 getTangentMatrix()
{
// Note: here I must say am a bit confused, do I need to transform
// with 'normalMatrix'? In practice, it seems to make no difference...
mat3 normalMatrix = transpose(inverse(mat3(W)));
vec3 norm = normalize(normalMatrix * VS_Normal);
vec3 tang = normalize(normalMatrix * VS_Tangent);
vec3 btan = normalize(normalMatrix * cross(VS_Normal, VS_Tangent));
tang = normalize(tang - dot(tang, norm) * norm);
return transpose(mat3(tang, btan, norm));
}
void main()
{
// Set the gl_Position and pass color + texcoords to the fragment shader
gl_Position = (P * V * W) * vec4(VS_Position, 1.0);
FS_Color = VS_Color;
FS_TexCoord = VS_TexCoord;
// Now here we start:
// This is where supposedly, multiplying with the TBN should not
// change anything to the output, as long as I apply the transformation
// to all of them, or none.
// Typically, removing the 'TBN *' everywhere (and not using the normal
// texture later in the fragment shader) is exactly the code I use for
// my basic light shader.
mat3 TBN = getTangentMatrix();
FS_Vertex = TBN * (W * vec4(VS_Position, 1)).xyz;
FS_LightPos = TBN * Light.Position;
FS_ViewPos = TBN * inverse(V)[3].xyz;
// This line is actually not needed when using the normal map:
// I keep the FS_Normal variable for comparison purposes,
// when I want to switch to my basic light shader effect.
// (see later in fragment shader)
FS_Normal = TBN * normalize(transpose(inverse(mat3(W))) * VS_Normal);
}
And the fragment shader:
struct Textures_t
{
int SamplersCount;
sampler2D Samplers[4];
};
struct Light_t
{
int Active;
float Ambient;
float Power;
vec3 Position;
vec4 Color;
};
uniform mat4 W;
uniform mat4 V;
uniform Textures_t Textures;
uniform Light_t Light;
in vec3 FS_Vertex;
in vec4 FS_Color;
in vec2 FS_TexCoord;
in vec3 FS_LightPos;
in vec3 FS_ViewPos;
in vec3 FS_Normal;
out vec4 frag_Output;
vec4 getPixelColor()
{
return Textures.SamplersCount >= 1
? texture2D(Textures.Samplers[0], FS_TexCoord)
: FS_Color;
}
vec3 getTextureNormal()
{
// FYI: the normal texture is always at index 1
vec3 bump = texture(Textures.Samplers[1], FS_TexCoord).xyz;
bump = 2.0 * bump - vec3(1.0, 1.0, 1.0);
return normalize(bump);
}
vec4 getLightColor()
{
// This is the one line that changes between my basic light shader
// and the normal mapping one:
// - If I don't do 'TBN *' earlier and use FS_Normal here,
// the enlightenment seems fine (see second screenshot)
// - If I do multiply by TBN (including on FS_Normal), I would expect
// the same result as without multiplying ==> not the case: it looks
// very similar to the result with normal mapping
// (just has no bumpy effect of course)
// - If I use the normal texture (along with TBN of course), then I get
// the result you see in the first screenshot.
vec3 N = getTextureNormal(); // Instead of 'normalize(FS_Normal);'
// Everything from here on is the same as my basic light shader
vec3 L = normalize(FS_LightPos - FS_Vertex);
vec3 E = normalize(FS_ViewPos - FS_Vertex);
vec3 R = normalize(reflect(-L, N));
// Ambient color: light color times ambient factor
vec4 ambient = Light.Color * Light.Ambient;
// Diffuse factor: product of Normal to Light vectors
// Diffuse color: light color times the diffuse factor
float dfactor = max(dot(N, L), 0);
vec4 diffuse = clamp(Light.Color * dfactor, 0, 1);
// Specular factor: product of reflected to camera vectors
// Note: applies only if the diffuse factor is greater than zero
float sfactor = 0.0;
if(dfactor > 0)
{
sfactor = pow(max(dot(R, E), 0.0), 8.0);
}
// Specular color: light color times specular factor
vec4 specular = clamp(Light.Color * sfactor, 0, 1);
// Light attenuation: square of the distance moderated by light's power factor
float atten = 1 + pow(length(FS_LightPos - FS_Vertex), 2) / Light.Power;
// The fragment color is a factor of the pixel and light colors:
// Note: attenuation only applies to diffuse and specular components
return getPixelColor() * (ambient + (diffuse + specular) / atten);
}
void main()
{
frag_Output = Light.Active == 1
? getLightColor()
: getPixelColor();
}
That's it! I hope you have enough information and of course, your help will be greatly appreciated! :) Take care.
I am experiancing a very similar problem, and i can not explain why the lighting doesn't work right, but i can answer your first question and at the very least explain how i somehow got lighting working acceptably (though your problem may not necesarrily be the same is mine).
Firstly in theory if you tangents and bitangents are calculated correctly, then you should get exactly the same lighting result when doing the calculation in tangentspace with a tangentspace normal [0,0,1].
Secondly while it is common knowledge that you should transform your normals from model to cameraspace by multiplying by inverse transpose model-view matrix as explained by this tutorial, i found that the problem with the lighting being transformed wrong can be solved if you transform the normal tangent by the model-view matrix rather than the inverse transpose model-view. Ie use normalMatrix = mat3(W); instead of normalMatrix = transpose(inverse(mat3(W)));.
In my case this did »fix« the problems with the light, but i don't know why this fixed it, but i make no guarantee that it does not (in fact i assume that it does) introduce other problems with the shading
I'm writing a clone of Wolfenstein 3D using only core OpenGL 3.3 for university and I've run into a bit of a problem with the sprites, namely getting them to scale correctly based on distance.
From what I can tell, previous versions of OGL would in fact do this for you, but that functionality has been removed, and all my attempts to reimplement it have resulted in complete failure.
My current implementation is passable at distances, not too shabby at mid range and bizzare at close range.
The main problem (I think) is that I have no understanding of the maths I'm using.
The target size of the sprite is slightly bigger than the viewport, so it should 'go out of the picture' as you get right up to it, but it doesn't. It gets smaller, and that's confusing me a lot.
I recorded a small video of this, in case words are not enough. (Mine is on the right)
Can anyone direct me to where I'm going wrong, and explain why?
Code:
C++
// setup
glPointParameteri(GL_POINT_SPRITE_COORD_ORIGIN, GL_LOWER_LEFT);
glEnable(GL_PROGRAM_POINT_SIZE);
// Drawing
glUseProgram(StaticsProg);
glBindVertexArray(statixVAO);
glUniformMatrix4fv(uStatixMVP, 1, GL_FALSE, glm::value_ptr(MVP));
glDrawArrays(GL_POINTS, 0, iNumSprites);
Vertex Shader
#version 330 core
layout(location = 0) in vec2 pos;
layout(location = 1) in int spriteNum_;
flat out int spriteNum;
uniform mat4 MVP;
const float constAtten = 0.9;
const float linearAtten = 0.6;
const float quadAtten = 0.001;
void main() {
spriteNum = spriteNum_;
gl_Position = MVP * vec4(pos.x + 1, pos.y, 0.5, 1); // Note: I have fiddled the MVP so that z is height rather than depth, since this is how I learned my vectors.
float dist = distance(gl_Position, vec4(0,0,0,1));
float attn = constAtten / ((1 + linearAtten * dist) * (1 + quadAtten * dist * dist));
gl_PointSize = 768.0 * attn;
}
Fragment Shader
#version 330 core
flat in int spriteNum;
out vec4 color;
uniform sampler2DArray Sprites;
void main() {
color = texture(Sprites, vec3(gl_PointCoord.s, gl_PointCoord.t, spriteNum));
if (color.a < 0.2)
discard;
}
First of all, I don't really understand why you use pos.x + 1.
Next, like Nathan said, you shouldn't use the clip-space point, but the eye-space point. This means you only use the modelview-transformed point (without projection) to compute the distance.
uniform mat4 MV; //modelview matrix
vec3 eyePos = MV * vec4(pos.x, pos.y, 0.5, 1);
Furthermore I don't completely understand your attenuation computation. At the moment a higher constAtten value means less attenuation. Why don't you just use the model that OpenGL's deprecated point parameters used:
float dist = length(eyePos); //since the distance to (0,0,0) is just the length
float attn = inversesqrt(constAtten + linearAtten*dist + quadAtten*dist*dist);
EDIT: But in general I think this attenuation model is not a good way, because often you just want the sprite to keep its object space size, which you have quite to fiddle with the attenuation factors to achieve that I think.
A better way is to input its object space size and just compute the screen space size in pixels (which is what gl_PointSize actually is) based on that using the current view and projection setup:
uniform mat4 MV; //modelview matrix
uniform mat4 P; //projection matrix
uniform float spriteWidth; //object space width of sprite (maybe an per-vertex in)
uniform float screenWidth; //screen width in pixels
vec4 eyePos = MV * vec4(pos.x, pos.y, 0.5, 1);
vec4 projCorner = P * vec4(0.5*spriteWidth, 0.5*spriteWidth, eyePos.z, eyePos.w);
gl_PointSize = screenWidth * projCorner.x / projCorner.w;
gl_Position = P * eyePos;
This way the sprite always gets the size it would have when rendered as a textured quad with a width of spriteWidth.
EDIT: Of course you also should keep in mind the limitations of point sprites. A point sprite is clipped based of its center position. This means when its center moves out of the screen, the whole sprite disappears. With large sprites (like in your case, I think) this might really be a problem.
Therefore I would rather suggest you to use simple textured quads. This way you circumvent this whole attenuation problem, as the quads are just transformed like every other 3d object. You only need to implement the rotation toward the viewer, which can either be done on the CPU or in the vertex shader.
Based on Christian Rau's answer (last edit), I implemented a geometry shader that builds a billboard in ViewSpace, which seems to solve all my problems:
Here are the shaders: (Note that I have fixed the alignment issue that required the original shader to add 1 to x)
Vertex Shader
#version 330 core
layout (location = 0) in vec4 gridPos;
layout (location = 1) in int spriteNum_in;
flat out int spriteNum;
// simple pass-thru to the geometry generator
void main() {
gl_Position = gridPos;
spriteNum = spriteNum_in;
}
Geometry Shader
#version 330 core
layout (points) in;
layout (triangle_strip, max_vertices = 4) out;
flat in int spriteNum[];
smooth out vec3 stp;
uniform mat4 Projection;
uniform mat4 View;
void main() {
// Put us into screen space.
vec4 pos = View * gl_in[0].gl_Position;
int snum = spriteNum[0];
// Bottom left corner
gl_Position = pos;
gl_Position.x += 0.5;
gl_Position = Projection * gl_Position;
stp = vec3(0, 0, snum);
EmitVertex();
// Top left corner
gl_Position = pos;
gl_Position.x += 0.5;
gl_Position.y += 1;
gl_Position = Projection * gl_Position;
stp = vec3(0, 1, snum);
EmitVertex();
// Bottom right corner
gl_Position = pos;
gl_Position.x -= 0.5;
gl_Position = Projection * gl_Position;
stp = vec3(1, 0, snum);
EmitVertex();
// Top right corner
gl_Position = pos;
gl_Position.x -= 0.5;
gl_Position.y += 1;
gl_Position = Projection * gl_Position;
stp = vec3(1, 1, snum);
EmitVertex();
EndPrimitive();
}
Fragment Shader
#version 330 core
smooth in vec3 stp;
out vec4 colour;
uniform sampler2DArray Sprites;
void main() {
colour = texture(Sprites, stp);
if (colour.a < 0.2)
discard;
}
I don't think you want to base the distance calculation in your vertex shader on the projected position. Instead just calculate the position relative to your view, i.e. use the model-view matrix instead of the model-view-projection one.
Think about it this way -- in projected space, as an object gets closer to you, its distance in the horizontal and vertical directions becomes exaggerated. You can see this in the way the lamps move away from the center toward the top of the screen as you approach them. That exaggeration of those dimensions is going to make the distance get larger when you get really close, which is why you're seeing the object shrink.
At least in OpenGL ES 2.0, there is a maximum size limitation on gl_PointSize imposed by the OpenGL implementation. You can query the size with ALIASED_POINT_SIZE_RANGE.
I have a query regarding refraction.
I am using a texture image for refraction(refertest_car.png).
But somehow the texture is getting multiplied and givinga distorted image(Refer Screenshot.png)
i am using following shader.
attribute highp vec4 vertex;
attribute mediump vec3 normal;
uniformhighp mat4 matrix;
uniformhighp vec3 diffuse_color;
uniformhighp mat3 matrixIT;
uniformmediump mat4 matrixMV;
uniformmediump vec3 EyePosModel;
uniformmediump vec3 LightDirModel;
varyingmediump vec4 color;
constmediump float cShininess = 3.0;
constmediump float cRIR = 1.015;
varyingmediump vec2 RefractCoord;
vec3 SpecularColor= vec3(1.0,1.0,1.0);
voidmain(void)
{
vec3 toLight = normalize(vec3(1.0,1.0,1.0));
mediump vec3 eyeDirModel = normalize(vertex.xyz -EyePosModel);
mediump vec3 refractDir =refract(eyeDirModel,normal, cRIR);
refractDir = (matrix * vec4(refractDir, 0.0)).xyw;
RefractCoord = 0.5 * (refractDir.xy / refractDir.z) + 0.5;
vec3 normal_cal = normalize(matrixIT *normal );
float NDotL = max(dot(normal_cal, toLight), 0.0);
vec4 ecPosition = normalize(matrixMV * vertex);
vec3 eyeDir = vec3(1.0,1.0,1.0);
float NDotH = 0.0;
vec3 SpecularLight = vec3(0.0,0.0,0.0);
if(NDotL > 0.0)
{
vec3 halfVector = normalize( eyeDirModel + LightDirModel);
float NDotH = max(dot(normal_cal, halfVector), 0.0);
float specular =pow(NDotH,3.0);
SpecularLight = specular * SpecularColor;
}
color = vec4((NDotL * diffuse_color.xyz) + (SpecularLight.xyz) ,1.0);
gl_Position = matrix * vertex;
}
And
varyingmediump vec2 RefractCoord;
uniformsampler2D sTexture;
varyingmediump vec4 color;
voidmain(void)
{
lowp vec3 refractColor = texture2D(sTexture,RefractCoord).rgb;
gl_FragColor = vec4(color.xyz + refractColor,1.0);
}
Can anyone let me know the solution to this problem?
Thanks for any help.
Sorry guys i am not able to attach image.
It seems that you are calculating the refraction vector incorrectly. Hovewer, the answer to your question is already in it's title. If you are looking at ellipsoid, the rays from the view span a cone, wrapping the ellipsoid. But after the refraction, the cone may be much wider, reaching beyond the edges of your images, therefore giving texture coordinates larger than 0 - 1 and leading to texture being wrapped. So we need to take care of that as well.
First, the refraction coordinate should be calculated in vertex shader as follows:
vec3 eyeDirModel = normalize(-vertex * matrix);
vec3 refractDir = refract(eyeDirModel, normal, cRIR);
RefractCoord = normalize((matrix * vec4(refractDir, 0.0)).xyz); // no dehomog!
RefractCoord now contains refracted eye-space vectors. This counts on "matrix" being modelview matrix (that is not clear from your code, but i suspect it is). You could possibly skip normalization if you wish the shader to run faster, it shouldn't cause noticeable errors. Now a little bit of modification to your fragment shader.
vec3 refractColor = texture2D(sTexture, normalize(RefractCoord).xy * .5 + .5).rgb;
Here, using normalize() makes sure that the texture coordinates do not cause the texture to repeat.
Note that using 2D texture for refractions should be only justified by generating it on the fly (as e.g. Half-Life 2 does), otherwise one should probably use cube-map texture, which does the normalization for you and gives you color based on 3D direction - which is what you need.
Hope this helps ... (and, oh yeah, i wrote this from memory, in case there are any errors, please comment).