Conditional branches - c++

Why this piece of code compiles?
#include <iostream>
int foo(int x)
{
if(x == 10)
return x*10;
}
int main()
{
int a;
std::cin>>a;
std::cout<<foo(a)<<'\n';
}
The compiler shouldn't give me an error like "not all code paths returns a value"? What happens/returns my function when x isn't equal to ten?

The result is undefined, so the compiler is free to choose -- you probably get what happens to sit at the appropriate stack address where the caller expects the result. Activate compiler warnings, and your compiler will inform you about your omission.

The compiler is not required to give you an error in this circumstance. Many will, some will only issue warnings. Some apparently won't notice.
This is because it's possible that your code ensures outside of this function that the condition will always be true. Therefore, it isn't necessarily bad (though it almost always is, which is why most compilers will issue at least a warning).
The specification will state that the result of exiting a function that should return a value but doesn't is undefined behavior. A value may be returned. Or the program might crash. Or anything might happen. It's undefined.

Related

How are these two pieces of code different?

I tried these lines of code and found out shocking output. I am expecting some reason related to initialisation either in general or in for loop.
1.)
int i = 0;
for(i++; i++; i++){
if(i>10) break;
}
printf("%d",i);
Output - 12
2.)
int i;
for(i++; i++; i++){
if(i>10) break;
}
printf("%d",i);
Output - 1
I expected the statements "int i = 0" and "int i" to be the same.What is the difference between them?
I expected the statements "int i = 0" and "int i" to be the same.
No, that was a wrong expectation on your part. If a variable is declared outside of a function (as a "global" variable), or if it is declared with the static keyword, it's guaranteed to be initialized to 0 even if you don't write = 0. But variables defined inside functions (ordinary "local" variables without static) do not have this guaranteed initialization. If you don't explicitly initialize them, they start out containing indeterminate values.
(Note, though, that in this context "indeterminate" does not mean "random". If you write a program that uses or prints an uninitialized variable, often you'll find that it starts out containing the same value every time you run your program. By chance, it might even be 0. On most machines, what happens is that the variable takes on whatever value was left "on the stack" by the previous function that was called.)
See also these related questions:
Non-static variable initialization
Static variable initialization?
See also section 4.2 and section 4.3 in these class notes.
See also question 1.30 in the C FAQ list.
Addendum: Based on your comments, it sounds like when you fail to initialize i, the indeterminate value it happens to start out with is 0, so your question is now:
"Given the program
#include <stdio.h>
int main()
{
int i; // note uninitialized
printf("%d\n", i); // prints 0
for(i++; i++; i++){
if(i>10) break;
}
printf("%d\n", i); // prints 1
}
what possible sequence of operations could the compiler be emitting that would cause it to compute a final value of 1?"
This can be a difficult question to answer. Several people have tried to answer it, in this question's other answer and in the comments, but for some reason you haven't accepted that answer.
That answer again is, "An uninitialized local variable leads to undefined behavior. Undefined behavior means anything can happen."
The important thing about this answer is that it says that "anything can happen", and "anything" means absolutely anything. It absolutely does not have to make sense.
The second question, as I have phrased it, does not really even make sense, because it contains an inherent contradiction, because it asks, "what possible sequence of operations could the compiler be emitting", but since the program contains Undefined behavior, the compiler isn't even obliged to emit a sensible sequence of operations at all.
If you really want to know what sequence of operations your compiler is emitting, you'll have to ask it. Under Unix/Linux, compile with the -S flag. Under other compilers, I don't know how to view the assembly-language output. But please don't expect the output to make any sense, and please don't ask me to explain it to you (because I already know it won't make any sense).
Because the compiler is allowed to do anything, it might be emitting code as if your program had been written, for example, as
#include <stdio.h>
int main()
{
int i; // note uninitialized
printf("%d\n", i); // prints 0
i++;
printf("%d\n", i); // prints 1
}
"But that doesn't make any sense!", you say. "How could the compiler turn "for(i++; i++; i++) ..." into just "i++"? And the answer -- you've heard it, but maybe you still didn't quite believe it -- is that when a program contains undefined behavior, the compiler is allowed to do anything.
The difference is what you already observed. The first code initializes i the other does not. Using an unitialized value is undefined behaviour (UB) in c++. The compiler assumes UB does not happen in a correct program, and hence is allowed to emit code that does whatever.
Simpler example is:
int i;
i++;
Compiler knows that i++ cannot happen in a correct program, and the compiler does not bother to emit correct output for wrong input, hece when you run this code anything could happen.
For further reading see here: https://en.cppreference.com/w/cpp/language/ub
The is a rule of thumb that (among other things) helps to avoid uninitialized variables. It is called Almost-Always-Auto, and it suggests to use auto almost always. If you write
auto i = 0;
You cannot forget to initialize i, because auto requires an initialzer to be able to deduce the type.
PS: C and C++ are two different languages with different rules. Your second code is UB in C++, but I cannot answer your question for C.

no return in function using switch statement

I'm devoloping an application in LINUX with an older gcc version (7.something if I remember correctly).
Recently I tried to run the same application on Windows.
On Windows, I'm using MinGW as a compiler (with gcc 8.1.0) .
I came across this error message while compiling my application on Windows:
warning: control reaches end of non-void function [-Wreturn-type]
the code is similar to the following:
class myClass {
protected:
enum class myEnum{
a,
b,
};
int fun(myClass::myEnum e);
}
and
int myClass::fun(myClass::myEnum e) {
switch (e){
case myEnum::a:{
return 0;
}
case myEnum::b:{
return 1;
}
}
}
I understand what the error message means, I'm just wondering why it was never an issue in LINUX.
Is this piece of code really an issue and do I have to add some dummy return statements?
Is there a branch of this function that will lead to no return statement?
This is a shortcoming of g++ static analyzer. It doesn't get the fact that all enum values are handled in the switch statement correctly.
You can notice here https://godbolt.org/z/LQnBNi that clang doesn't issue any warning for the code in it's current shape, and issues two warnings ("not all enum values are handled in switch" and "controls reach the end on non-void function") when another value is added to the enum.
Keep in mind, that compiler diagnostic is not standardized in any way - compiler are free to report warnings for conforming code, and report warnings (and compile!) for a malformed program.
You have to keep in mind that in C++ enums are not what they are appear to be. They are just ints with some constraints, and can easily assume other values than these indicated. Consider this example:
#include <iostream>
enum class MyEnum {
A = 1,
B = 2
};
int main() {
MyEnum m {}; // initialized to 0
switch(m) {
case MyEnum::A: return 0;
case MyEnum::B: return 0;
}
std::cout << "skipped all cases!" << std::endl;
}
The way around this is to either put a default case with assert(false) as VTT indicated above, or (if you can give everybody the guarantee that no values from outside the indicated set will ever get there) use compiler-specific hint, like __builtin_unreachable() on GCC and clang:
switch(m) {
case MyEnum::A: return 0;
case MyEnum::B: return 0;
default: __builtin_unreachable();
}
Firstly, what you describe is a warning, not an error message. Compilers are not required to issue such warnings, and are still permitted to successfully compile your code - as it is technically valid.
Practically, most modern compilers CAN issue such warnings, but in their default configuration they do not. With gcc, the compiler can be optionally configured to issue such warnings (e.g. using suitable command line options).
The only reason this was "never an issue" under linux is because your chosen compiler was not configured (or used with a suitable command line option) to issue the warning.
Most compilers do extensive analysis of the code, either directly (during parsing the source code) or by analysis of some internal representation of that code. The analysis is needed to determine if the code has diagnosable errors, to work out how to optimise for performance.
Because of such analysis, most compilers can and do detect situations that may be problematical, even if the code does not have diagnosable errors (i.e. it is "correct enough" that the C++ standard does not require a diagnostic).
In this case, there are a number of distinct conclusions that the compiler may reach, depending on how it conducts analysis.
There is a switch. In principle, code after a switch statement may be executed.
The code after the switch reaches the end of the function without a return, and the function returns a value. The result of this is potential undefined behaviour.
If the compiler's analysis gets this far (and the compiler is configured to warn on such things) criteria for issuing a warning are met. Further analysis is then needed if the warning can be suppressed e.g. determine that all possible values of e are represented by a case, and that all cases have a return statement. The thing is, a compiler vendor may elect not to do such analysis, and therefore not suppress warnings, for all sorts of reasons.
Doing more analysis increases compilation times. Vendors compete on claims of their compiler being faster, among other things, so NOT doing some analysis is therefore beneficial in getting lower compilation times;
The compiler vendor may consider it is better to flag potential problems, even if the code is actually correct. Given a choice between giving extraneous warnings, or not warning about some things, the vendor may prefer to give extraneous warnings.
In either of these cases, analysis to determine that the warning can be suppressed will not be done, so the warning will not be suppressed. The compiler will simply not have done enough analysis to determine that all paths of execution through the function encounter a return statement.
In the end, you need to treat compiler warnings as sign of potential problems, and then make a sensible decision about whether the potential problem is worth bothering about. Your options from here include suppressing the warning (e.g. using a command line option that causes the warning to be suppressed), modifying the code to prevent the warning (e.g. adding a return after the switch and/or default case in the switch that returns).
One should be very careful when omitting return statements. It is an undefined behavior:
9.6.3 The return statement [stmt.return]
Flowing off the end of a constructor, a destructor, or a function with a cv void return type is equivalent to a return with no operand. Otherwise, flowing off the end of a function other than main (6.6.1) results in undefined behavior.
It may be tempting to consider that this code is fine because all the valid enumerator values (in this case in range 0..1 [0..(2 ^ M - 1)] with M = 1) are handled in switch however compiler is not required to perform any particular reachability analysis to figure this out prior to jumping into UB zone.
Moreover, example from SergeyA's answer shows that this kind of code is a straight time bomb:
class myClass {
protected:
enum class myEnum{
a,
b,
c
};
int fun(myClass::myEnum e);
};
int myClass::fun(myClass::myEnum e) {
switch (e){
case myEnum::a:{
return 0;
}
case myEnum::b:{
return 1;
}
case myEnum::c:{
return 2;
}
}
}
Just by adding a third enum member (and handling it in switch) the range of valid enumerator values gets extended to 0..3 ([0..(2 ^ M - 1)] with M = 2) and clang happily accepts it without any complaints even though passing 3 into this function will miss the switch because compiler is not required to report UB either.
So the rule of thumb would be to write code in a manner that all paths end either with return throw or [[noreturn]] function. In this particular case I would probably wrote a single return statement with an assertion for unhandled enumerator values:
int myClass::fun(myClass::myEnum e) {
int result{};
switch (e){
case myEnum::a:{
result = 0;
break;
}
case myEnum::b:{
result = 1;
break;
}
default:
{
assert(false);
break;
}
}
return result;
}

What is this C++ warning - control reaches end of non-void function

I am writing this function definition.
#include<iostream>
int abs_fun(int x);
int main()
{
int i =abs_fun(0);
std::cout<<i;
return 0;
}
int abs_fun(int x)
{
if (x<0)
return -x;
else if(x>=0) //warning
return x;
}
I am compiling the code using g++ -Wall -Wconversion -Wextra p4.cpp -o p4 and getting warning at the end of abs_fun() as warning: control reaches end of non-void function [-Wreturn-type] } If I just write else instead of else if, then warning goes away. Any suggestions why does warning appear?
Because the compiler is not smart enough (or just doesn't bother trying) to understand that one of the returns is always reached.
In the case of an if and else, if both the if and else branch return you can be sure that something returns in all cases.
In your case, it requires an analyses to determine that the conditions fully cover all possible use cases which the compiler is not required to do. In this case it's pretty straight forward, but consider more complicated conditions. If such simple conditions were required to be analyzed, it would be a case of "where do we draw the line?" in terms of what complexity should the compiler be expected to analyze.
The problem is that all control paths should either throw exception or return some value. Doing otherwise is undefined behavior, so compiler wants to warn you about that. In your case, compiler cannot prove that all execution paths lead to return/exception.
Why?
Because doing the check is expensive. Sometimes it might not even be possible. As a result, compiler just doesn't have such feature.
In which cases?
Well, this is more about discrete math.

Is this compiler optimization inconsistency entirely explained by undefined behaviour?

During a discussion I had with a couple of colleagues the other day I threw together a piece of code in C++ to illustrate a memory access violation.
I am currently in the process of slowly returning to C++ after a long spell of almost exclusively using languages with garbage collection and, I guess, my loss of touch shows, since I've been quite puzzled by the behaviour my short program exhibited.
The code in question is as such:
#include <iostream>
using std::cout;
using std::endl;
struct A
{
int value;
};
void f()
{
A* pa; // Uninitialized pointer
cout<< pa << endl;
pa->value = 42; // Writing via an uninitialized pointer
}
int main(int argc, char** argv)
{
f();
cout<< "Returned to main()" << endl;
return 0;
}
I compiled it with GCC 4.9.2 on Ubuntu 15.04 with -O2 compiler flag set. My expectations when running it were that it would crash when the line, denoted by my comment as "writing via an uninitialized pointer", got executed.
Contrary to my expectations, however, the program ran successfully to the end, producing the following output:
0
Returned to main()
I recompiled the code with a -O0 flag (to disable all optimizations) and ran the program again. This time, the behaviour was as I expected:
0
Segmentation fault
(Well, almost: I didn't expect a pointer to be initialized to 0.) Based on this observation, I presume that when compiling with -O2 set, the fatal instruction got optimized away. This makes sense, since no further code accesses the pa->value after it's set by the offending line, so, presumably, the compiler determined that its removal would not modify the observable behaviour of the program.
I reproduced this several times and every time the program would crash when compiled without optimization and miraculously work, when compiled with -O2.
My hypothesis was further confirmed when I added a line, which outputs the pa->value, to the end of f()'s body:
cout<< pa->value << endl;
Just as expected, with this line in place, the program consistently crashes, regardless of the optimization level, with which it was compiled.
This all makes sense, if my assumptions so far are correct.
However, where my understanding breaks somewhat is in case where I move the code from the body of f() directly to main(), like so:
int main(int argc, char** argv)
{
A* pa;
cout<< pa << endl;
pa->value = 42;
cout<< pa->value << endl;
return 0;
}
With optimizations disabled, this program crashes, just as expected. With -O2, however, the program successfully runs to the end and produces the following output:
0
42
And this makes no sense to me.
This answer mentions "dereferencing a pointer that has not yet been definitely initialized", which is exactly what I'm doing, as one of the sources of undefined behaviour in C++.
So, is this difference in the way optimization affects the code in main(), compared to the code in f(), entirely explained by the fact that my program contains UB, and thus compiler is technically free to "go nuts", or is there some fundamental difference, which I don't know of, between the way code in main() is optimized, compared to code in other routines?
Your program has undefined behaviour. This means that anything may happen. The program is not covered at all by the C++ Standard. You should not go in with any expectations.
It's often said that undefined behaviour may "launch missiles" or "cause demons to fly out of your nose", to reinforce that point. The latter is more far-fetched but the former is feasible, imagine your code is on a nuclear launch site and the wild pointer happens to write a piece of memory that starts global thermouclear war..
Writing unknown pointers has always been something which could have unknown consequences. What's nastier is a currently-fashionable philosophy which suggests that compilers should assume that programs will never receive inputs that cause UB, and should thus optimize out any code which would test for such inputs if such tests would not prevent UB from occurring.
Thus, for example, given:
uint32_t hey(uint16_t x, uint16_t y)
{
if (x < 60000)
launch_missiles();
else
return x*y;
}
void wow(uint16_t x)
{
return hey(x,40000);
}
a 32-bit compiler could legitimately replace wow with an unconditional call to
launch_missiles without regard for the value of x, since x "can't possibly" be greater than 53687 (any value beyond that would cause the calculation of x*y to overflow. Even though the authors of C89 noted that the majority of compilers of that era would calculate the correct result in a situation like the above, since the Standard doesn't impose any requirements on compilers, hyper-modern philosophy regards it as "more efficient" for compilers to assume programs will never receive inputs that would necessitate reliance upon such things.

Dealing with int arrays in c++ 2

Hi guys could anyone explain why does this program correctly even being a bit starnge:
int main()
{
int array[7]={5,7,57,77,55,2,1};
for(int i=0;i<10;i++)
cout<<i[array]<<", "; //array[i]
cout<<endl;
return 0;
}
why does the program compile correctly??
An expression (involving fundamental types) such as this:
x[y]
is converted at compile time to this:
*(x + y)
x + y is the same as y + x
Therefore: *(x + y) is the same as *(y + x)
Therefore: x[y] is the same as y[x]
In your program, you are trying to index an array out of its bounds. This will probably lead to a Segmentation Violation error, meaning that in your program, there is an attempt from the CPU to access memory that can not be physically addressed (think that it is not allocated for the array, as it is out of its bounds). This error is a runtime error, meaning that it is not in the responsibility of the compiler to check it but will it will be raised from the Operating System, having become notified by the hardware. Compiler's 'error' responsibilities are lexical and syntactical errors checking, in order to compile correctly your code into machine code and finally, binary.
For more information about Segmentation Violation error or Segmentation Fault, as commonly known, look here:
http://en.wikipedia.org/wiki/Segmentation_fault
You've come across Undefined Behavior. This means that the compiler is allowed to do whatever it wants with your program -- including compiling it without warnings or errors. Furthermore, it can produce any code it wants to for the case of undefined behavior, including assuming that it does not occur (a common optimization). Accessing an array out-of-bounds is an example of undefined behavior. Signed integer overflow, data races, and invalid pointer creation/use are others.
Theoretically, the compiler could emit code that invoked the shell and performed rm -rf /* (delete every file you have permission to delete)! Of course, no reasonable compiler would do this, but you get the idea.
Simply put, a program with undefined behavior is not a valid C++ program. This is true for the entirety of the program, not just after the undefined behavior. A compiler would have been perfectly free to compile your program to a no-op.
Adding to Benjamin Lindley, Compile the below code and you will see how the address are calculated:
int main()
{
int array[7]={5,7,57,77,55,2,1};
cout<<&(array[0])<<endl;
cout<<&(array[1])<<endl;
return 0;
}
output:(for me);-)
0x28ff20
0x28ff24
Its just &(array+0) and &(array+1)..