Wrapping any API Function - c++

I'm wrapping the Windows API, and I wish to make error checking easy to use, and helpful. Currently, I have a global error object, with a function set to handle a new error. The set function takes four arguments: bool Error::set (const int code, const char * file, const char * const function, const int line); The function uses the file, function, and line arguments to display them in a nicely formatted message.
To ease the setting of errors, there is a macro #define setError() error.set (GetLastError(), __FILE__, __FUNCTION__, __LINE__); This way I'm able to use setError() at any time to respond to an error that an API function has set by adding it after I call that API function.
Unfortunately, this causes the code to look something like this:
SomeAPIFunction();
setError();
AnotherAPIFunction();
setError();
There is also a problem with constructors:
MyClass:MyClass()
: a (SomeAPIFunction), b (AnotherAPIFunction)
{
setError(); //what if both functions set an error?
}
As you can see, by using member initializer syntax, I'm actually limiting myself.
One way to fix this would be to wrap every API function:
int someAPIFunction()
{
int ret = SomeAPIFunction();
setError();
return ret;
}
The function portion of the error message would tell me which function originated the error. Of course, that has to be the worst possible way of dealing with this.
The solution, it seems, is to use variadic templates. The problem is, I have no idea what I'm supposed to be doing to get them working for this. I'd imagine the final code looks something like one of the following:
wrap<int, SomeAPIFunction (5)>();
wrap<int, SomeAPIFunction, 5>();
wrap<int, SomeAPIFunction> (5);
I've read things on beginning variadic templates, but they've all left me clueless of how to set up something like this. Could anyone point me in the right direction?
I found the following on a similar question:
#include <iostream>
template<void f(void)>
struct Wrap {
void operator()() const {
std::cout << "Pre call hook" << std::endl;
f();
}
};
namespace {
void test_func() {
std::cout << "Real function" << std::endl;
}
}
const Wrap<&test_func> wrapped_test_func = {};
int main() {
wrapped_test_func();
return 0;
}
The respondent noted that variadic templates would be a necessity to make this generic enough. It's a start, but I'm lost and grateful of any help on the matter.

I think you'll be able to make it work with this syntax:
wrap(&SomeAPIFunction, arg1, arg2);
The key is to let the compiler use type deduction to determine the template type parameters, since they get pretty messy in a hurry.
The code should look something like:
template<typename TRet, typename... TArgs>
TRet wrap( TRet(WINAPI *api)(TArgs...), TArgs... args )
{
return api(args...);
}
Naturally, you'll want to use a macro to hide the address-of-function operator, use stringizing to store the function name, and store the filename and line number also, passing all of that to the actual variadic function. You'll need variadic macros for that. In fact, could you do all of this just with variadic macros and no templates?

Related

Is there a way to dynamically change the return-type of a function in C++ based on function parameter values?

I am working on a problem that requires me to return different return-types based on my function parameter values that I provide.
I want to do something like this --
In the code below, doSomething() is an already existing function (used by a lot of clients) which takes mode as a function parameter, and returns std::list<ReturnType> already.
Based on the mode value, I had to create another sub-functionality which returns a shared_future<std::list<ReturnType>>.
How can I change this code so that it can return one of the two return types based on the mode value?
Note: ReturnType is a template typename which we are using for the entire class.
Code:
std::shared_future<std::list<ReturnType> > futureValue() {
return functionReturningSharedFuture();
}
std::list<ReturnType> listValue() {
return functionReturningList();
}
std::list<ReturnType> doSomething(int mode) {
if(mode == 1){
// new functionality that I added
return futureValue(); // This (obviously) errors out as of now
}
else{
// already there previously
return listValue();
}
}
int main() {
doSomething(1);
return 0;
}
How can I change this code so that it can return one of the two return types based on the mode value?
Constraints and Issues:
This issue could've been easily solved by function overloading if we provide an extra function parameter (like a true value), but that extra argument is not useful, since we are already using mode. Also, it isn't considered a good design to add variables which have almost no use.
One of the major constraints is that there are clients who are already using this doSomething() expect a std::list<ReturnType>, and so I cannot return boost::any or std::variant or anything similar.
I tried using std::enable_if, but it wasn't working out since we are getting the mode value at runtime.
We can't use template metaprogramming since that would change the way our function is being called on the client-side. Something that we can't afford to do.
Thank you.
This cannot be done.
You can only have one function with a given signature. If you have calling code that already expects this to return a std::list<ReturnType>, that's it; you're done.
If you could guarantee that all existing calling code looks like
auto l = obj.doSomething(1);
then you could potentially change the return type to something which would look like a std::list to any calling code. But if there's any calling code that looks like
std::list<ReturnType> l = obj.doSomething(1);
then that's off the table.
You probably need to rethink your design here.
From the example main, I see doSomething(1);, so maybe at the call site the value of the parameter mode is always known at compile-time. In this case, one option is that you make doSomething a template<int mode> function. I'm thinking about something like this:
#include <iostream>
#include <list>
#include <vector>
// assuming you cannot change this (actually you have changed it in you example, ...)
std::list<int> doSomething(int mode) {
std::cout << "already existing function\n";
return std::list<int>{1,2,3};
}
// then you can put this too
template<int N>
auto doSomething();
template<>
auto doSomething<10>() {
std::cout << "new function\n";
return std::vector<int>{1,2,3};
}
int main() {
auto x = doSomething(3);
auto y = doSomething<10>();
}
Probably another option would be to use a if constexpr intead of if and an auto/decltype(auto) return type in doSomething, but I haven't tried it.

is there a way to store a generic templated function pointer?

The Goal:
decide during runtime which templated function to use and then use it later without needing the type information.
A Partial Solution:
for functions where the parameter itself is not templated we can do:
int (*func_ptr)(void*) = &my_templated_func<type_a,type_b>;
this line of code can be modified for use in an if statement with different types for type_a and type_b thus giving us a templated function whose types are determined during runtime:
int (*func_ptr)(void*) = NULL;
if (/* case 1*/)
func_ptr = &my_templated_func<int, float>;
else
func_ptr = &my_templated_func<float, float>;
The Remaining Problem:
How do I do this when the parameter is a templated pointer?
for example, this is something along the lines of what I would like to do:
int (*func_ptr)(templated_struct<type_a,type_b>*); // This won't work cause I don't know type_a or type_b yet
if (/* case 1 */) {
func_ptr = &my_templated_func<int,float>;
arg = calloc(sizeof(templated_struct<int,float>, 1);
}
else {
func_ptr = &my_templated_func<float,float>;
arg = calloc(sizeof(templated_struct<float,float>, 1);
}
func_ptr(arg);
except I would like type_a, and type_b to be determined during runtime. I see to parts to the problem.
What is the function pointers type?
How do I call this function?
I think I have the answer for (2): simply cast the parameter to void* and the template function should do an implicit cast using the function definition (lease correct me if this won't work as I think it will).
(1) is where I am getting stuck since the function pointer must include the parameter types. This is different from the partial solution because for the function pointer definition we were able to "ignore" the template aspect of the function since all we really need is the address of the function.
Alternatively there might be a much better way to accomplish my goal and if so I am all ears.
Thanks to the answer by #Jeffrey I was able to come up with this short example of what I am trying to accomplish:
template <typename A, typename B>
struct args_st {
A argA;
B argB;
}
template<typename A, typename B>
void f(struct args_st<A,B> *args) {}
template<typename A, typename B>
void g(struct args_st<A,B> *args) {}
int someFunction() {
void *args;
// someType needs to know that an args_st struct is going to be passed
// in but doesn't need to know the type of A or B those are compiled
// into the function and with this code, A and B are guaranteed to match
// between the function and argument.
someType func_ptr;
if (/* some runtime condition */) {
args = calloc(sizeof(struct args_st<int,float>), 1);
f((struct args_st<int,float> *) args); // this works
func_ptr = &g<int,float>; // func_ptr should know that it takes an argument of struct args_st<int,float>
}
else {
args = calloc(sizeof(struct args_st<float,float>), 1);
f((struct args_st<float,float> *) args); // this also works
func_ptr = &g<float,float>; // func_ptr should know that it takes an argument of struct args_st<float,float>
}
/* other code that does stuff with args */
// note that I could do another if statement here to decide which
// version of g to use (like I did for f) I am just trying to figure out
// a way to avoid that because the if statement could have a lot of
// different cases similarly I would like to be able to just write one
// line of code that calls f because that could eliminate many lines of
// (sort of) duplicate code
func_ptr(args);
return 0; // Arbitrary value
}
Can't you use a std::function, and use lambdas to capture everything you need? It doesn't appear that your functions take parameters, so this would work.
ie
std::function<void()> callIt;
if(/*case 1*/)
{
callIt = [](){ myTemplatedFunction<int, int>(); }
}
else
{
callIt = []() {myTemplatedFunction<float, float>(); }
}
callIt();
If I understand correctly, What you want to do boils down to:
template<typename T>
void f(T)
{
}
int somewhere()
{
someType func_ptr;
int arg = 0;
if (/* something known at runtime */)
{
func_ptr = &f<float>;
}
else
{
func_ptr = &f<int>;
}
func_ptr(arg);
}
You cannot do that in C++. C++ is statically typed, the template types are all resolved at compile time. If a construct allowed you to do this, the compiler could not know which templates must be instanciated with which types.
The alternatives are:
inheritance for runtime polymorphism
C-style void* everywhere if you want to deal yourself with the underlying types
Edit:
Reading the edited question:
func_ptr should know that it takes an argument of struct args_st<float,float>
func_ptr should know that it takes an argument of struct args_st<int,float>
Those are incompatible. The way this is done in C++ is by typing func_ptr accordingly to the types it takes. It cannot be both/all/any.
If there existed a type for func_ptr so that it could take arguments of arbitrary types, then you could pass it around between functions and compilation units and your language would suddenly not be statically typed. You'd end up with Python ;-p
Maybe you want something like this:
#include <iostream>
template <typename T>
void foo(const T& t) {
std::cout << "foo";
}
template <typename T>
void bar(const T& t) {
std::cout << "bar";
}
template <typename T>
using f_ptr = void (*)(const T&);
int main() {
f_ptr<int> a = &bar<int>;
f_ptr<double> b = &foo<double>;
a(1);
b(4.2);
}
Functions taking different parameters are of different type, hence you cannot have a f_ptr<int> point to bar<double>. Otherwise, functions you get from instantiating a function template can be stored in function pointers just like other functions, eg you can have a f_ptr<int> holding either &foo<int> or &bar<int>.
Disclaimer: I have already provided an answer that directly addresses the question. In this answer, I would like to side-step the question and render it moot.
As a rule of thumb, the following code structure is an inferior design in most procedural languages (not just C++).
if ( conditionA ) {
// Do task 1A
}
else {
// Do task 1B
}
// Do common tasks
if ( conditionA ) {
// Do task 2A
}
else {
// Do task 2B
}
You seem to have recognized the drawbacks in this design, as you are trying to eliminate the need for a second if-else in someFunction(). However, your solution is not as clean as it could be.
It is usually better (for code readability and maintainability) to move the common tasks to a separate function, rather than trying to do everything in one function. This gives a code structure more like the following, where the common tasks have been moved to the function foo().
if ( conditionA ) {
// Do task 1A
foo( /* arguments might be needed */ );
// Do task 2A
}
else {
// Do task 1B
foo( /* arguments might be needed */ );
// Do task 2B
}
As a demonstration of the utility of this rule of thumb, let's apply it to someFunction(). ... and eliminate the need for dynamic memory allocation ... and a bit of cleanup ... unfortunately, addressing that nasty void* is out-of-scope ... I'll leave it up to the reader to evaluate the end result. The one feature I will point out is that there is no longer a reason to consider storing a "generic templated function pointer", rendering the asked question moot.
// Ideally, the parameter's type would not be `void*`.
// I leave that for a future refinement.
void foo(void * args) {
/* other code that does stuff with args */
}
int someFunction(bool condition) {
if (/* some runtime condition */) {
args_st<int,float> args;
foo(&args);
f(&args); // Next step: pass by reference instead of passing a pointer
}
else {
args_st<float,float> args;
foo(&args);
f(&args); // Next step: pass by reference instead of passing a pointer
}
return 0;
}
Your choice of manual memory management and over-use of the keyword struct suggests you come from a C background and have not yet really converted to C++ programming. As a result, there are many areas for improvement, and you might find that your current approach should be tossed. However, that is a future step. There is a learning process involved, and incremental improvements to your current code is one way to get there.
First, I'd like to get rid of the C-style memory management. Most of the time, using calloc in C++ code is wrong. Let's replace the raw pointer with a smart pointer. A shared_ptr looks like it will help the process along.
// Instead of a raw pointer to void, use a smart pointer to void.
std::shared_ptr<void> args;
// Use C++ memory management, not calloc.
args = std::make_shared<args_st<int,float>>();
// or
args = std::make_shared<args_st<float,float>>();
This is still not great, as it still uses a pointer to void, which is rarely needed in C++ code unless interfacing with a library written in C. It is, though, an improvement. One side effect of using a pointer to void is the need for casts to get back to the original type. This should be avoided. I can address this in your code by defining correctly-typed variables inside the if statement. The args variable will still be used to hold your pointer once the correctly-typed variables go out of scope.
More improvements along this vein can come later.
The key improvement I would make is to use the functional std::function instead of a function pointer. A std::function is a generalization of a function pointer, able to do more albeit with more overhead. The overhead is warranted here in the interest of robust code.
An advantage of std::function is that the parameter to g() does not need to be known by the code that invokes the std::function. The old style of doing this was std::bind, but lambdas provide a more readable approach. Not only do you not have to worry about the type of args when it comes time to call your function, you don't even need to worry about args.
int someFunction() {
// Use a smart pointer so you do not have to worry about releasing the memory.
std::shared_ptr<void> args;
// Use a functional as a more convenient alternative to a function pointer.
// Note the lack of parameters (nothing inside the parentheses).
std::function<void()> func;
if ( /* some runtime condition */ ) {
// Start with a pointer to something other than void.
auto real_args = std::make_shared<args_st<int,float>>();
// An immediate function call:
f(real_args.get());
// Choosing a function to be called later:
// Note that this captures a pointer to the data, not a copy of the data.
// Hence changes to the data will be reflected when this is invoked.
func = [real_args]() { g(real_args.get()); };
// It's only here, as real_args is about to go out of scope, where
// we lose the type information.
args = real_args;
}
else {
// Similar to the above, so I'll reduce the commentary.
auto real_args = std::make_shared<args_st<float,float>>();
func = [real_args]() { g(real_args.get()); };
args = real_args;
}
/* other code that does stuff with args */
/* This code is probably poor C++ style, but that can be addressed later. */
// Invoke the function.
func();
return 0;
}
Your next step probably should be to do some reading on these features so you understand what this code does. Then you should be in a better position to leverage the power of C++.

How to compile-time detect functions that overloaded important template?

Suppose we have a template:
template <class T>
void VeryImportantFunction(T t) {
// something
}
Somewhere it is called with something like:
// ..
int a = 12345;
VeryImportantFunction(a);
// ..
It is very big project with tons of source code, and occasionally somewhere in deep of the code appears a new header with overloaded function:
void VeryImportantFunction(int t) {
// totally another behavior
}
And code fragment above will call overloaded function, because it have more priority.
Can we somehow disable or in another way compile-time detect functions that can overload our important template?
Your question is unclear, but here's my take on it.
If you want to hit the template overload, you can simply invoke the function by explicitly specifying the template parameters:
int a = 12345;
VeryImportantFunction<int>(a);
If you want this from happening again in the future, then make VeryImportantFunction either a lambda or a struct - those cannot be overloaded "externally":
inline const auto VeryImportantFunction = [](auto x){ /* ... */ };
// no one can overload this!
If you want to know all the overloads of VeryImportantFunction without external tooling, then call it in a completely wrong way - the compiler error will likely show all considered overloads:
VeryImportantFunction(5, 5, 5, 5);
// error... will likely show all candidates
Write
inline void VeryImportantFunction(int t)
{
VeryImportantFunction<int>(t); // call the template function
}
immediately after your template definition.
Then if someone has written their own version of void VeryImportantFunction(int t), you'll get a compiler error.

Dynamically creating a map at compile-time

I'm implementing Lua in a game engine. All of the functions being exported to Lua have headers that start with luavoid, luaint or luabool just for quick reference of the expected parameters, and so I can see at a glance that this function is being exported.
#define luavoid(...) void
luavoid(std::string s) TextMsg()
{
std::string s;
ExtractLuaParams(1, s);
::TextMsg(s.c_str());
}
To actually export a function to Lua, they're added to a dictionary. On startup, the map is used to call lua_register.
std::unordered_map<std::string, ScriptCall> _callMap = {
{ "TextMsg", TextMsg },
...
}
There will be a lot of functions exported. Rather than have to maintain this map manually, I'd like to automate its creation.
My first instinct was something with macros at compile-time. I gave up on it initially and started writing a program to parse the code (as a pre-build event), since all the functions can be text-matched with the luaX macros. It would create a header file with the map automatically generated.
Then I went back to doing it at compile-time after figuring out a way to do it. I came up with this solution as an example before I finally implement it in the game:
using MapType = std::unordered_map<std::string, int>;
template <MapType& m>
struct MapMaker
{
static int MakePair(std::string s, int n)
{
m[s] = n;
return n;
}
};
#define StartMap(map) MapType map
#define AddMapItem(map, s, n) int map##s = MapMaker<map>::MakePair(#s, n)
StartMap(myMap);
AddMapItem(myMap, abc, 1);
AddMapItem(myMap, def, 2);
AddMapItem(myMap, ghi, 3);
void main()
{
for (auto& x : myMap)
{
std::cout << x.first.c_str() << "->" << x.second << std::endl;
}
}
It works.
My question is, how horrible is this and can it be improved? All I want in the end is a list mapping a a string to a function. Is there a better way to create a map or should I just go with the text-parsing method?
Be gentle(-ish). This is my first attempt at coding with templates like this. I assume this falls under template metaprogramming.
how horrible is this and can it be improved?
Somewhere between hideous and horrendous. (Some questions better left unasked.) And yes...
All I want in the end is a list mapping a a string to a function. Is there a better way to create a map or should I just go with the text-parsing method?
The simplest thing to do is:
#define ADDFN(FN) { #FN, FN }
std::unordered_map<std::string, ScriptCall> _callMap = {
ADDFN(TextMsg),
...
};
This uses the macros to automate the repetition in the string literal function names and identifiers - there's nothing further substantive added by your implementation.
That said, you could experiment with automating things further than your implementation, perhaps something like this:
#define LUAVOID(FN, ...) \
void FN(); \
static auto addFN ## __LINE__ = myMap.emplace(#FN, FN); \
void FN()
LUAVOID(TextMsg, string s)
{
...
}
See it running here.
The idea here is that the macro generates a function declaration so that it can register the function, then a definition afterwards. __LINE__ likely suffices for uniqueness of the identifiers - assuming you have one file doing this, and that your compiler substitutes a numeric literal (which all compilers I've used do, but I can't remember if the Standard mandates that). The emplace function has a non-void return type so can be used directly to insert to the map.
Be gentle(-ish). This is my first attempt at coding with templates like this.
Sorry.
I assume this falls under template metaprogramming.
It's arguable. Many C++ programmers (myself included) think of "metaprogramming" as involving more advanced template usage - such as variable-length lists of parameters, recursive instantiations, and specialisation - but many others consider all template usage to be "metaprogramming" since the templates provide instructions for how to create instantiations, which is technically sufficient to constitute metaprogramming.

How to check if a function exists in C/C++?

Certain situations in my code, I end up invoking the function only if that function is defined, or else I should not. How can I achieve this?
like:
if (function 'sum' exists ) then invoke sum ()
Maybe the other way around to ask this question is how to determine if function is defined at runtime and if so, then invoke?
When you declare 'sum' you could declare it like:
#define SUM_EXISTS
int sum(std::vector<int>& addMeUp) {
...
}
Then when you come to use it you could go:
#ifdef SUM_EXISTS
int result = sum(x);
...
#endif
I'm guessing you're coming from a scripting language where things are all done at runtime. The main thing to remember with C++ is the two phases:
Compile time
Preprocessor runs
template code is turned into real source code
source code is turned in machine code
runtime
the machine code is run
So all the #define and things like that happen at compile time.
....
If you really wanted to do it all at runtime .. you might be interested in using some of the component architecture products out there.
Or maybe a plugin kind of architecture is what you're after.
Using GCC you can:
void func(int argc, char *argv[]) __attribute__((weak)); // weak declaration must always be present
// optional definition:
/*void func(int argc, char *argv[]) {
printf("FOUND THE FUNCTION\n");
for(int aa = 0; aa < argc; aa++){
printf("arg %d = %s \n", aa, argv[aa]);
}
}*/
int main(int argc, char *argv[]) {
if (func){
func(argc, argv);
} else {
printf("did not find the function\n");
}
}
If you uncomment func it will run it otherwise it will print "did not find the function\n".
While other replies are helpful advices (dlsym, function pointers, ...), you cannot compile C++ code referring to a function which does not exist. At minimum, the function has to be declared; if it is not, your code won't compile. If nothing (a compilation unit, some object file, some library) defines the function, the linker would complain (unless it is weak, see below).
But you should really explain why you are asking that. I can't guess, and there is some way to achieve your unstated goal.
Notice that dlsym often requires functions without name mangling, i.e. declared as extern "C".
If coding on Linux with GCC, you might also use the weak function attribute in declarations. The linker would then set undefined weak symbols to null.
addenda
If you are getting the function name from some input, you should be aware that only a subset of functions should be callable that way (if you call an arbitrary function without care, it will crash!) and you'll better explicitly construct that subset. You could then use a std::map, or dlsym (with each function in the subset declared extern "C"). Notice that dlopen with a NULL path gives a handle to the main program, which you should link with -rdynamic to have it work correctly.
You really want to call by their name only a suitably defined subset of functions. For instance, you probably don't want to call this way abort, exit, or fork.
NB. If you know dynamically the signature of the called function, you might want to use libffi to call it.
I suspect that the poster was actually looking for something more along the lines of SFINAE checking/dispatch. With C++ templates, can define to template functions, one which calls the desired function (if it exists) and one that does nothing (if the function does not exist). You can then make the first template depend on the desired function, such that the template is ill-formed when the function does not exist. This is valid because in C++ template substitution failure is not an error (SFINAE), so the compiler will just fall back to the second case (which for instance could do nothing).
See here for an excellent example: Is it possible to write a template to check for a function's existence?
use pointers to functions.
//initialize
typedef void (*PF)();
std::map<std::string, PF> defined_functions;
defined_functions["foo"]=&foo;
defined_functions["bar"]=&bar;
//if defined, invoke it
if(defined_functions.find("foo") != defined_functions.end())
{
defined_functions["foo"]();
}
If you know what library the function you'd like to call is in, then you can use dlsym() and dlerror() to find out whether or not it's there, and what the pointer to the function is.
Edit: I probably wouldn't actually use this approach - instead I would recommend Matiu's solution, as I think it's much better practice. However, dlsym() isn't very well known, so I thought I'd point it out.
You can use #pragma weak for the compilers that support it (see the weak symbol wikipedia entry).
This example and comment is from The Inside Story on Shared Libraries and Dynamic Loading:
#pragma weak debug
extern void debug(void);
void (*debugfunc)(void) = debug;
int main() {
printf(“Hello World\n”);
if (debugfunc) (*debugfunc)();
}
you can use the weak pragma to force the linker to ignore unresolved
symbols [..] the program compiles and links whether or not debug()
is actually defined in any object file. When the symbol remains
undefined, the linker usually replaces its value with 0. So, this
technique can be a useful way for a program to invoke optional code
that does not require recompiling the entire application.
So another way, if you're using c++11 would be to use functors:
You'll need to put this at the start of your file:
#include <functional>
The type of a functor is declared in this format:
std::function< return_type (param1_type, param2_type) >
You could add a variable that holds a functor for sum like this:
std::function<int(const std::vector<int>&)> sum;
To make things easy, let shorten the param type:
using Numbers = const std::vectorn<int>&;
Then you could fill in the functor var with any one of:
A lambda:
sum = [](Numbers x) { return std::accumulate(x.cbegin(), x.cend(), 0); } // std::accumulate comes from #include <numeric>
A function pointer:
int myFunc(Numbers nums) {
int result = 0;
for (int i : nums)
result += i;
return result;
}
sum = &myFunc;
Something that 'bind' has created:
struct Adder {
int startNumber = 6;
int doAdding(Numbers nums) {
int result = 0;
for (int i : nums)
result += i;
return result;
}
};
...
Adder myAdder{2}; // Make an adder that starts at two
sum = std::bind(&Adder::doAdding, myAdder);
Then finally to use it, it's a simple if statement:
if (sum)
return sum(x);
In summary, functors are the new pointer to a function, however they're more versatile. May actually be inlined if the compiler is sure enough, but generally are the same as a function pointer.
When combined with std::bind and lambda's they're quite superior to old style C function pointers.
But remember they work in c++11 and above environments. (Not in C or C++03).
In C++, a modified version of the trick for checking if a member exists should give you what you're looking for, at compile time instead of runtime:
#include <iostream>
#include <type_traits>
namespace
{
template <class T, template <class...> class Test>
struct exists
{
template<class U>
static std::true_type check(Test<U>*);
template<class U>
static std::false_type check(...);
static constexpr bool value = decltype(check<T>(0))::value;
};
template<class U, class = decltype(sum(std::declval<U>(), std::declval<U>()))>
struct sum_test{};
template <class T>
void validate_sum()
{
if constexpr (exists<T, sum_test>::value)
{
std::cout << "sum exists for type " << typeid(T).name() << '\n';
}
else
{
std::cout << "sum does not exist for type " << typeid(T).name() << '\n';
}
}
class A {};
class B {};
void sum(const A& l, const A& r); // we only need to declare the function, not define it
}
int main(int, const char**)
{
validate_sum<A>();
validate_sum<B>();
}
Here's the output using clang:
sum exists for type N12_GLOBAL__N_11AE
sum does not exist for type N12_GLOBAL__N_11BE
I should point out that weird things happened when I used an int instead of A (sum() has to be declared before sum_test for the exists to work, so maybe exists isn't the right name for this). Some kind of template expansion that didn't seem to cause problems when I used A. Gonna guess it's ADL-related.
This answer is for global functions, as a complement to the other answers on testing methods. This answer only applies to global functions.
First, provide a fallback dummy function in a separate namespace. Then determine the return type of the function-call, inside a template parameter. According to the return-type, determine if this is the fallback function or the wanted function.
If you are forbidden to add anything in the namespace of the function, such as the case for std::, then you should use ADL to find the right function in the test.
For example, std::reduce() is part of c++17, but early gcc compilers, which should support c++17, don't define std::reduce(). The following code can detect at compile-time whether or not std::reduce is declared. See it work correctly in both cases, in compile explorer.
#include <numeric>
namespace fallback
{
// fallback
std::false_type reduce(...) { return {}; }
// Depending on
// std::recuce(Iter from, Iter to) -> decltype(*from)
// we know that a call to std::reduce(T*, T*) returns T
template <typename T, typename Ret = decltype(reduce(std::declval<T*>(), std::declval<T*>()))>
using return_of_reduce = Ret;
// Note that due to ADL, std::reduce is called although we don't explicitly call std::reduce().
// This is critical, since we are not allowed to define any of the above inside std::
}
using has_reduce = fallback::return_of_reduce<std::true_type>;
// using has_sum = std::conditional_t<std::is_same_v<fallback::return_of_sum<std::true_type>,
// std::false_type>,
// std::false_type,
// std::true_type>;
#include <iterator>
int main()
{
if constexpr (has_reduce::value)
{
// must have those, so that the compile will find the fallback
// function if the correct one is undefined (even if it never
// generates this code).
using namespace std;
using namespace fallback;
int values[] = {1,2,3};
return reduce(std::begin(values), std::end(values));
}
return -1;
}
In cases, unlike the above example, when you can't control the return-type, you can use other methods, such as std::is_same and std::contitional.
For example, assume you want to test if function int sum(int, int) is declared in the current compilation unit. Create, in a similar fashion, test_sum_ns::return_of_sum. If the function exists, it will be int and std::false_type otherwise (or any other special type you like).
using has_sum = std::conditional_t<std::is_same_v<test_sum_ns::return_of_sum,
std::false_type>,
std::false_type,
std::true_type>;
Then you can use that type:
if constexpr (has_sum::value)
{
int result;
{
using namespace fallback; // limit this only to the call, if possible.
result = sum(1,2);
}
std::cout << "sum(1,2) = " << result << '\n';
}
NOTE: You must have to have using namespace, otherwise the compiler will not find the fallback function inside the if constexpr and will complain. In general, you should avoid using namespace since future changes in the symbols inside the namespace may break your code. In this case there is no other way around it, so at least limit it to the smallest scope possible, as in the above example