Why don't games use expression templates for math? - c++

I can imagine expression templates doing awful things to compile times for things as pervasive as vectors/matrices/quaternions etc, but if it is such a great speed boost why don't games use it? It's quite obvious that SIMD instructions can exploit data level parallelism to great effect. Expression templates and lazy evaluation together seem to make sense, at least when it comes to eliminating temporaries.
So while libraries like Eigen advertise such features, I don't see this done commonly in middleware (e.g. Havok) or games where things are extremely speed critical. Can anyone shed some light on this? Does it have to do with non-determinism or branch prediction?

I can think of a lot of reasons:
it hurts compile-times. Longer compile-times means that testing any change you made to the code takes longer. It hurts productivity.
it's complex. Most likely, many developers on the team are not familiar with expression templates, and will have a hard time reading and debugging them.
Games often have to work on multiple platforms, with various compilers which may have a wide range of shortcomings, which might for example make advanced template trickery problematic.
It's generally not necessary. You can write efficient code without expression templates. It just gets more verbose, and you have to do more hand-holding for the compiler.
Game developers are extremely skeptical of anything that wasn't already used in games 10 years ago. It's not long ago that several major developers stuck to C: not because C++ wasn't good enough, but because it was "new". Game developers are conservative as hell.
And of course, the obvious question: where would they use expression templates? Is there enough complex math to really make it worthwhile? Games tend to rely on a fairly small number of linear algebra operations, which will typically be heavily hand-tuned in any case.

I want to add one more reason not stated in the above answers. Apologies if it is and I missed it.
Adding templates to math based classes, such as a vec3 class, can change the meaning of operators and lead to functions that are invalid for some template types.
Take for instance,
vec3<int> myVec( 3, 5, 4 );
myVec.Normalize();
What would normalize mean to an integer vector? All of the sudden when we add templates to math constructs, we invalidate many existing functions, such as the example described above.
Also, another thing worth mentioning is that many math constructs are optimized with certain types because optimization is so important in games. GPU's are floating point calculating machines. Doubles take up double the space of floats and are quite a bit slower to compute with, even though it may seem like an obvious use case to a new game developer.
I hope this example makes sense. Templates are a great tool but math constructs in games are just not the right place to use them.

Typically the parts of a game that are both performance sensitive and math heavy and still tend to run on the CPU rather than the GPU are applying the same basic operations to large numbers of elements. Some examples are animation blending, physics calculations, visibility tests, etc.
The best approach to optimizing these sorts of problems on current console hardware is generally to try and batch as much work together as possible and to aim for maximum data locality to avoid expensive cache misses. The actual math can then be optimized using SIMD intrinsics and will typically be carefully hand optimized. The kind of optimizations that expression templates give you can be performed relatively easily during that hand optimization phase but there are various other important optimizations that are also likely to be performed that expression templates won't give you. Often this critical code will have sections with custom optimizations for each target platform and won't be very portable.
I think the reason that expression templates aren't widely used is that they add software complexity (for all the reasons described by jalf) to non performance critical code that doesn't really warrant it while not covering all the optimizations that are necessary for the really performance critical code that shows up at the top of profiles.

Related

About optimized math functions, ranges and intervals

I'm trying to wrap my head around how people that code math functions for games and rendering engines can use an optimized math function in an efficient way; let me explain that further.
There is an high need for fast trigonometric functions in those fields, at times you can optimize a sin, a cos or other functions by rewriting them in a different form that is valid only for a given interval, often times this means that your approximation of f(x) is just for the first quadrant, meaning 0 <= x <= pi/2 .
Now the input for your f(x) is still about all 4 quadrants, but the real formula only covers 1/4 of that interval, the straightforward solution is to detect the quadrant by analyzing the input and see in which range it belongs to, then you adjust the result of the formula accordingly if the input comes from a quadrant that is not the first quadrant .
This is good in theory but this also presents a couple of really bad problems, especially considering the fact that you are doing all this to steal a couple of cycles from your CPU ( you also get a consistent implementation, that is not platform dependent like an hardcoded fsin in Intel x86 asm that only works on x86 and has a certain error range, all of this may differ on other platforms with other asm instructions ), so you should keep things working at a concurrent and high performance level .
The reason I can't wrap my head around the "switch case" with quadrants solution is:
it just prevents possible optimizations, namely memoization, considering that you usually want to put that switch-case inside the same functions that actually computes the f(x), probably the situation can be improved by implementing the formula for f(x) outside said function, but this is will lead to a doubling in the number of functions to maintain for any given math library
increase probability of more branching with a concurrent execution
generally speaking doesn't lead to better, clean, dry code, and conditional statements are often times a potential source of bugs, I don't really like switch-cases and similar things .
Assuming that I can implement my cross-platform f(x) in C or C++, how the programmers in this field usually address the problem of translating and mapping the inputs, the quadrants to the result via the actual implementation ?
Note: In the below answer I am speaking very generally about code.
Assuming that I can implement my cross-platform f(x) in C or C++, how the programmers in this field usually address the problem of translating and mapping the inputs, the quadrants to the result via the actual implementation ?
The general answer to this is: In the most obvious and simplest way possible that achieves your purpose.
I'm not entirely sure I follow most of your arguments/questions but I have a feeling you are looking for problems where really none exist. Do you truly have the need to re-implement the trigonometric functions? Don't fall into the trap of NIH (Not Invented Here).
the straightforward solution is to detect the quadrant
Yes! I love straightforward code. Code that is perfectly obvious at a glance what it does. Now, sometimes, just sometimes, you have to do some crazy things to get it to do what you want: for performance, or avoiding bugs out of your control. But the first version should be most obvious and simple code that solves your problem. From there you do testing, profiling, and benchmarking and if (only if) you find performance or other issues, then you go into the crazy stuff.
This is good in theory but this also presents a couple of really bad problems,
I would say that this is good in theory and in practice for most cases and I definitely don't see any "bad" problems. Minor issues in specific corner cases or design requirements at most.
A few things on a few of your specific comments:
approximation of f(x) is just for the first quadrant: Yes, and there are multiple reasons for this. One simply is that most trigonometric functions have identities so you can easily use these to reduce range of input parameters. This is important as many numerical techniques only work over a specific range of inputs, or are more accurate/performant for small inputs. Next, for very large inputs you'll have to trim the range anyways for most numerical techniques to work or at least work in a decent amount of time and have sufficient accuracy. For example, look at the Taylor expansion for cos() and see how long it takes to converge sufficiently for large vs small inputs.
it just prevents possible optimizations: Chances are your c++ compiler these days is way better at optimizations than you are. Sometimes it isn't but the general procedure is to let the compiler do its optimization and only do manual optimizations where you have measured and proven that you need it. Theses days it is very non-intuitive to tell what code is faster by just looking at it (you can read all the questions on SO about performance issues and how crazy some of the root causes are).
namely memoization: I've never seen memoization in place for a double function. Just think how many doubles are there between 0 and 1. Now in reduced accuracy situations you can take advantage of it but this is easily implemented as a custom function tailored for that exact situation. Thinking about it, I'm not exactly sure how to implement memoization for a double function that actually means anything and doesn't loose accuracy or performance in the process.
increase probability of more branching with a concurrent execution: I'm not sure I'd implement trigonometric functions in a concurrent manner but I suppose its entirely possible to get some performance benefits. But again, the compiler is generally better at optimizations than you so let it do its jobs and then benchmark/profile to see if you really need to do better.
doesn't lead to better, clean, dry code: I'm not sure what exactly you mean here, or what "dry code" is for that matter. Yes, sometimes you can get into trouble by too many or too complex if/switch blocks but I can't see a simple check for 4 quadrants apply here...it's a pretty basic and simple case.
So for any platform I get the same y for the same values of x: My guess is that getting "exact" values for all 53 bits of double across multiple platforms and systems is not going to be possible. What is the result if you only have 52 bits correct? This would be a great area to do some tests in and see what you get.
I've used trigonometric functions in C for over 20 years and 99% of the time I just use whatever built-in function is supplied. In the rare case I need more performance (or accuracy) as proven by testing or benchmarking, only then do I actually roll my own custom implementation for that specific case. I don't rewrite the entire gamut of <math.h> functions in the hope that one day I might need them.
I would suggest try coding a few of these functions in as many ways as you can find and do some accuracy and benchmark tests. This will give you some practical knowledge and give you some hard data on whether you actually need to reimplement these functions or not. At the very least this should give you some practical experience with implementing these types of functions and chances are answer a lot of your questions in the process.

Fast gradient-descent implementation in a C++ library? [duplicate]

I'm looking to run a gradient descent optimization to minimize the cost of an instantiation of variables. My program is very computationally expensive, so I'm looking for a popular library with a fast implementation of GD. What is the recommended library/reference?
GSL is a great (and free) library that already implements common functions of mathematical and scientific interest.
You can peruse through the entire reference manual online. Poking around, this starts to look interesting, but I think we'd need to know more about the problem.
It sounds like you're fairly new to minimization methods. Whenever I need to learn a new set of numeric methods, I usually look in Numerical Recipes. It's a book that provides a nice overview of the most common methods in the field, their tradeoffs, and (importantly) where to look in the literature for more information. It's usually not where I stop, but it's often a helpful starting point.
For example, if your function is costly, then your goal is to minimization the number of evaluations to need to converge. If you have analytical expressions for the gradient, then a gradient-based method will probably work to your advantage, assuming that the function and its gradient are well-behaved (lack singularities) in the domain of interest.
If you don't have analytical gradients, then you're almost always better off using an approach like downhill simplex that only evaluates the function (not its gradients). Numerical gradients are expensive.
Also note that all of these approaches will converge to local minima, so they're fairly sensitive to the point at which you initially start the optimizer. Global optimization is a totally different beast.
As a final thought, almost all of the code you can find for minimization will be reasonably efficient. The real cost of minimization is in the cost function. You should spend time profiling and optimizing your cost function, and select an algorithm that will minimize the number of times you need to call it (methods like downhill simplex, conjugate gradient, and BFGS all shine on different kinds of problems).
In terms of actual code, you can find a lot of nice routines at NETLIB, in addition to the other libraries that have been mentioned. Most of the routines are in FORTRAN 77, but not all; to convert them to C, f2c is quite useful.
One of the best respected libraries for this kind of optimization work is the NAG libraries. These are used all over the world in universities and industry. They're available for C / FORTRAN. They're very non-free, and contain a lot more than just minimisation functions - A lot of general numerical mathematics is covered.
Anyway I suspect this library is overkill for what you need. But here are the parts pertaining to minimisation: Local Minimisation and Global Minimization.
Try CPLEX which is available for free for students.

When should I use ASM calls?

I'm planning on writing a game with C++, and it will be extremely CPU-intensive (pathfinding,genetic algorithms, neural networks, ...)
So I've been thinking about how to tackle this situation best so that it would run smoothly.
(let this top section of this question be side information, I don't want it to restrict the main question, but it would be nice if you could give me side notes as well)
Is it worth it to learn how to work with ASM, so I can make ASM calls in C++,
can it give me a significant/notable performance advantage?
In what situations should I use it?
Almost never:
You only want to be using it once you've profiled your C++ code and have identified a particular section as a bottleneck.
And even then, you only want to do it once you've exhausted all C++ optimization options.
And even then, you only want to be using ASM for tight, inner loops.
And even then, it takes quite a lot of effort and skill to beat a C++ compiler on a modern platform.
If your not an experienced assembly programmer, I doubt you will be able to optimize assembly code better than your compiler.
Also note that assembly is not portable. If you decide to go this way, you will have to write different assembly for all the architectures you decide to support.
Short answer: it depends, most likely you won't need it.
Don't start optimizing prematurely. Write code that is also easy to read and to modify. Separate logical sections into modules. Write something that is easy to extend.
Do some profiling.
You can't tell where your bottlenecks are unless you profile your code. 99% of the time you won't get that much performance gain by writing asm. There's a high chance you might even worsen your performance. Optimizers nowadays are very good at what they do. If you do have a bottleneck, it will most probably be because of some poorly chosen algorithm or at least something that can be remedied at a high-level.
My suggestion is, even if you do learn asm, which is a good thing, don't do it just so you can optimize.
Profile profile profile....
A legitimate use case for going low-level (although sometimes a compiler can infer it for you) is to make use of SIMD instructions such as SSE. I would assume that at least some of the algorithms you mention will benefit from parallel processing.
However, you don't need to write actual assembly, instead you can simply use intrinsic functions. See, e.g. this.
Don't get ahead of yourself.
I've posted a sourceforge project showing how a simulation program was massively speeded up (over 700x).
This was not done by assuming in advance what needed to be made fast.
It was done by "profiling", which I put in quotes because the method I use is not to employ a profiler.
Rather I rely on random pausing, a method known and used to good effect by some programmers.
It proceeds through a series of iterations.
In each iteration a large source of time-consumption is identified and fixed, resulting in a certain speedup ratio.
As you proceed through multiple iterations, these speedup ratios multiply together (like compound interest).
That's how you get major speedup.
If, and only if, you get to a point where some code is taking a large fraction of time, and it doesn't contain any function calls, and you think you can write assembly code better than the compiler does, then go for it.
P.S. If you're wondering, the difference between using a profiler and random pausing is that profilers look for "bottlenecks", on the assumption that those are localized things. They look for routines or lines of code that are responsible for a large percent of overall time.
What they miss is problems that are diffuse.
For example, you could have 100 routines, each taking 1% of time.
That is, no bottlenecks.
However, there could be an activity being done within many or all of those routines, accounting for 1/3 of the time, that could be done better or not at all.
Random pausing will see that activity with a small number of samples, because you don't summarize, you examine the samples.
In other words, if you took 9 samples, on average you would notice the activity on 3 of them.
That tells you it's big.
So you can fix it and get your 3/2 speedup ratio.
"To understand recursion, you must first understand recursion." That quote comes to mind when I consider my response to your question, which is "until you understand when to use assembly, you should never use assembly." After you have completely implemented your soution, extensively profiled its performance and determined precise bottlenecks, and experimented with several alternative solutions, then you can begin to consider using assembly. If you code a single line of assembly before you have a working and extensively profiled program, you have made a mistake.
If you need to ask than you don't need it.

What are the functions in the standard library that can be implemented faster with programming hacks? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
I have recently read an article about fast sqrt calculation. Therefore, I have decided to ask SO community and its experts to help me find out, which STL algorithms or mathematical calculations can be implemented faster with programming hacks?
It would be great if you can give examples or links.
Thanks in advance.
System library developers have more concerns than just performance in mind:
Correctness and standards compliance: Critical!
General use: No optimisations are introduced, unless they benefit the majority of users.
Maintainability: Good hand-written assembly code can be faster, but you don't see much of it. Why?
Portability: Decent libraries should be portable to more than just Windows/x86/32bit.
Many optimisation hacks that you see around violate one or more of the requirements above.
In addition, optimisations that will be useless or even break when the next generation CPU comes around the corner are not a welcome thing.
If you don't have profiler evidence on it being really useful, don't bother optimising the system libraries. If you do, work on your own algorithms and code first, anyway...
EDIT:
I should also mention a couple of other all-encompassing concerns:
The cost/effort to profit/result ratio: Optimisations are an investment. Some of them are seemingly-impressive bubbles. Others are deeper and more effective in the long run. Their benefits must always be considered in relation to the cost of developing and maintaining them.
The marketing people: No matter what you think, you'll end up doing whatever they want - or think they want.
Probably all of them can be made faster for a specific problem domain.
Now the real question is, which ones should you hack to make faster? None, until the profiler tells you to.
Several of the algorithms in <algorithm> can be optimized for vector<bool>::[const_]iterator. These include:
find
count
fill
fill_n
copy
copy_backward
move // C++0x
move_backward // C++0x
swap_ranges
rotate
equal
I've probably missed some. But all of the above algorithms can be optimized to work on many bits at a time instead of just one bit at a time (as would a naive implementation).
This is an optimization that I suspect is sorely missing from most STL implementations. It is not missing from this one:
http://libcxx.llvm.org/
This is where you really need to listen to project managers and MBAs. What you're suggesting is re-implementing parts of the STL and or standard C library. There is an associated cost in terms of time to implement and maintenance burden of doing so, so you shouldn't do it unless you really, genuinely need to, as John points out. The rule is simple: is this calculation you're doing slowing you down (a.k.a. you are bound by the CPU)? If not, don't create your own implementation just for the sake of it.
Now, if you're really interested in fast maths, there are a few places you can start. The gnu multi-precision library implements many algorithms from modern computer arithmetic and semi numerical algorithms that are all about doing maths on arbitrary precision integers and floats insanely fast. The guys who write it optimise in assembly per build platform - it is about as fast as you can get in single core mode. This is the most general case I can think of for optimised maths i.e. that isn't specific to a certain domain.
Bringing my first paragraph and second in with what thkala has said, consider that GMP/MPIR have optimised assembly versions per cpu architecture and OS they support. Really. It's a big job, but it is what makes those libraries so fast on a specific small subset of problems that are programming.
Sometimes domain specific enhancements can be made. This is about understanding the problem in question. For example, when doing finite field arithmetic under rijndael's finite field you can, based on the knowledge that the characteristic polynomial is 2 with 8 terms, assume that your integers are of size uint8_t and that addition/subtraction are equivalent to xor operations. How does this work? Well basically if you add or subtract two elements of the polynomial, they contain either zero or one. If they're both zero or both one, the result is always zero. If they are different, the result is one. Term by term, that is equivalent to xor across a 8-bit binary string, where each bit represents a term in the polynomial. Multiplication is also relatively efficient. You can bet that rijndael was designed to take advantage of this kind of result.
That's a very specific result. It depends entirely on what you're doing to make things efficient. I can't imagine many STL functions are purely optimised for cpu speed, because amongst other things STL provides: collections via templates, which are about memory, file access which is about storage, exception handling etc. In short, being really fast is a narrow subset of what STL does and what it aims to achieve. Also, you should note that optimisation has different views. For example, if your app is heavy on IO, you are IO bound. Having a massively efficient square root calculation isn't really helpful since "slowness" really means waiting on the disk/OS/your file parsing routine.
In short, you as a developer of an STL library are trying to build an "all round" library for many different use cases.
But, since these things are always interesting, you might well be interested in bit twiddling hacks. I can't remember where I saw that, but I've definitely stolen that link from somebody else on here.
Almost none. The standard library is designed the way it is for a reason.
Taking sqrt, which you mention as an example, the standard library version is written to be as fast as possible, without sacrificing numerical accuracy or portability.
The article you mention is really beyond useless. There are some good articles floating around the 'net, describing more efficient ways to implement square roots. But this article isn't among them (it doesn't even measure whether the described algorithms are faster!) Carmack's trick is slower than std::sqrt on a modern CPU, as well as being less accurate.
It was used in a game something like 12 years ago, when CPUs had very different performance characteristics. It was faster then, but CPU's have changed, and today, it's both slower and less accurate than the CPU's built-in sqrt instruction.
You can implement a square root function which is faster than std::sqrt without losing accuracy, but then you lose portability, as it'll rely on CPU features not present on older CPU's.
Speed, accuracy, portability: choose any two. The standard library tries to balance all three, which means that the speed isn't as good as it could be if you were willing to sacrifice accuracy or portability, and accuracy is good, but not as good as it could be if you were willing to sacrifice speed, and so on.
In general, forget any notion of optimizing the standard library. The question you should be asking is whether you can write more specialized code.
The standard library has to cover every case. If you don't need that, you might be able to speed up the cases that you do need. But then it is no longer a suitable replacement for the standard library.
Now, there are no doubt parts of the standard library that could be optimized. the C++ IOStreams library in particular comes to mind. It is often naively, and very inefficiently, implemented. The C++ committee's technical report on C++ performance has an entire chapter dedicated to exploring how IOStreams could be implemented to be faster.
But that's I/O, where performance is often considered to be "unimportant".
For the rest of the standard library, you're unlikely to find much room for optimization.

I need high performance. Will there be a difference if I use C or C++?

I need to write a program (a project for university) that solves (approx) an NP-hard problem.
It is a variation of Linear ordering problems.
In general, I will have very large inputs (as Graphs) and will try to find the best solution
(based on a function that will 'rate' each solution)
Will there be a difference if I write this in C-style code (one main, and functions)
or build a Solver class, create an instance and invoke a 'run' method from a main (similar to Java)
Also, there will be alot of floating point math going on in each iteration.
Thanks!
No.
The biggest performance gains/flaws will be on the algorithm you implement, and how much unneeded work you perform (Unneeded work could be everything from recalculating a previous value that could have been cached, to using too many malloc/free's vs using memory pools,
passing large immutable data by value instead of reference)
The biggest roadblock to optimal code is no longer the language (for properly compiled languages), but rather the programmer.
No, unless you are using virtual functions.
Edit: If you have a case where you need run-time dynamism, then yes, virtual functions are as fast or faster than a manually constructed if-else statement. However, if you drop in the virtual keyword in front of a method, but you don't actually need the polymorphism, then you will be paying an unnecessary overhead. The compiler won't optimize it away at compile time. I am just pointing this out because it's one of the features of C++ that breaks the 'zero-overhead principle` (quoting Stroustrup).
As a side note, since you mention heavy use of fp math:
The following gcc flags may help you speed things up (I'm sure there are equivalent ones for visual C++, but I don't use it): -mfpmath=sse, -ffast-math and -mrecip (The last two are 'slightly dangerous', meaning that they could give you weird results in edge cases in exchange for the speed. The first one reduces precision by a bit -- you have 64-bit doubles instead of 80-bit ones -- but this extra precision is often unneeded.) These flags would work equally well for C and C++ compilers.
Depending on your processor, you may also find that simulating true INFINITY with a large-but-not-infinite value gives you a good speed boost. This is because true INFINITY has to be handled as a special case by the processor.
Rule of thumb - do not optimize until you know what to optimize. So start with C++ and have some working prototype. Then profile it and rewrite bottle necks in assembly. But as others noted, chosen algorithm will have much greater impact than the language.
When speaking of performance, anything you can do in C can be done in C++.
For example, virtual methods are known to be “slow”, but if it's really a problem, you can still resort to C idioms.
C++ also brings templates, which lead to better performance than using void* for generic programming.
The Solver class will be constructed once, I take it, and the run method executed once... in that kind of environment, you won't see a difference. Instead, here are things to watch out for:
Memory management is hellishly expensive. If you need to do lots of little malloc()s, the operating system will eat your lunch. Make a determined effort to re-use whatever data structures you create if you know you'll be doing the same kind of thing again soon!
Instantiating classes generally means... allocating memory! Again, there's practically no cost for instantiating a handful of objects and re-using them. But beware of creating objects only to tear them down and rebuild them soon after!
Choose the right flavor of floating point for your architecture, insofar as the problem permits. It's possible that double will end up being faster than float, although it will need more memory. You should experiment to fine-tune this. Ideally, you'll use a #define or typedef to specify the type so you can change it easily in one place.
Integer calculations are probably faster than floating point. Depending on the numeric range of your data, you may also consider doing it with integers treated as fixed-point decimals. If you need 3 decimal places, you could use ints and just consider them "milli-somethings". You'll have to remember to shift decimals after division and multiplication... but no big deal. If you use any math functions beyond the basic arithmetic, of course, that would of course kill this possibility.
Since both are compiled, and the compilers now are very good at how to handle C++, I think the only problem would come from how well optimized your code is. I think it would be easier to write slower code in C++, but that depends on which style your model fits into best.
When it comes down to it, I doubt there will be any real difference, assuming both are well-written, any libraries you use, how well written they are, if you are measuring on the same computer.
Function call vs. member function call overhead is unlikely to be the limiting factor, compared to file input and the algorithm itself. C++ iostreams are not necessarily super high speed. C has 'restrict' if you're really optimizing, in C++ it's easier to inline function calls. Overall, C++ offers more options for organizing your code clearly, but if it's not a big program, or you're just going to write it in a similar manner whether it's C or C++, then the portability of C libraries becomes more important.
As long as you don't use any virtual functions etc. you won't note any considerable performance differences. Early C++ was compiled to C, so as long as you know the pinpoints where this creates any considerable overhead (such as with virtual functions) you can clearly calculate for the differences.
In addition I want to note that using C++ can give you a lot to gain if you use the STL and Boost Libraries. Especially the STL provides very efficient and proven implementations of the most important data structures and algorithms, so you can save a lot of development time.
Effectively it also depends on the compiler you will be using and how it will optimize the code.
first, writing in C++ doesn't imply using OOP, look at the STL algorithms.
second, C++ can be even slightly faster at runtime (the compilation times can be terrible compared to C, but that's because modern C++ tends to rely heavily on abstractions that tax the compiler).
edit: alright, see Bjarne Stroustrup's discussion of qsort and std::sort, and the article that FAQ mentions (Learning Standard C++ as a New Language), where he shows that C++-style code can be not only shorter and more readable (because of higher abstractions), but also somewhat faster.
Another aspect:
C++ templates can be an excellent tool to generate type-specific /
optimized code variations.
For example, C qsort requires a function call to the comparator, whereas std::sort can inline the functor passed. This can make a significant difference when compare and swap themselves are cheap.
Note that you could generate "custom qsorts" optimized for various types with a barrage of defines or a code generator, or by hand - you could do these optimizations in C, too, but at much higher cost.
(It's not a general weapon, templates help only in sepcific scenarios - usually a single algorithm applied to different data types or with differing small pieces of code injected.)
Good answers. I would put it like this:
Make the algorithm as efficient as possible in terms of its formal structure.
C++ will be as fast as C, except that it will tempt you to do dumb things, like constructing objects that you don't have to, so don't take the bait. Things like STL container classes and iterators may look like the latest-and-greatest thing, but they will kill you in a hotspot.
Even so, single-step it at the disassembly level. You should see it very directly working on your problem. If it is spending lots of cycles getting in and out of routines, try some in-lining (or macros). If it is wandering off into memory allocation and freeing, for much of the time, put a stop to that. If it's got inner loops where the loop overhead is a large percentage, try unrolling the loop.
That's how you can make it about as fast as possible.
I would go with C++ definitely. If you are careful about your design and avoid creating heavy objects inside hotspots you should not see any performance difference but the code is going to be much simpler to understand, maintain, and expand.
Use templates and classes judiciously. avoid unnecessary object creation by passing objects by reference. Avoid excessive memory allocation, if needed, allocate memory in advance of hotspots. Use restrict keyword on memory pointers to tell compiler whenever pointers overlap or not.
As far as optimization, pay careful attention to memory alignment. Assuming you are working on Intel processor, you can make use of vector instructions, provided you tell the compiler through pragma's about your memory alignment and aliased pointers. you can also use vector instructions directly via intrinsics.
you can also automatically create hotspot code using templates and let compiler optimize it out if you have things like short loops of different sizes. To find out performance and to drill down to your bottlenecks, Intel vtune or oprofile are extremely helpful.
hope that helps
I do some DSP coding, where it still pays off to go to assembly language sometimes. I'd say use C or C++, either one, and be prepared to go to assembly language when you need to, especially to exploit SIMD instructions.