Linux: Executing child process with piped stdin/stdout - c++

Using Linux and C++, I would like a function that does the following:
string f(string s)
{
string r = system("foo < s");
return r;
}
Obviously the above doesn't work, but you get the idea. I have a string s that I would like to pass as the standard input of a child process execution of application "foo", and then I would like to record its standard output to string r and then return it.
What combination of Linux syscalls or POSIX functions should I use?
I'm using Linux 3.0 and do not need the solution to work with older systems.

The code provided by eerpini does not work as written. Note, for example, that the pipe ends that are closed in the parent are used afterwards. Look at
close(wpipefd[1]);
and the subsequent write to that closed descriptor. This is just transposition, but it shows this code has never been used. Below is a version that I have tested. Unfortunately, I changed the code style, so this was not accepted as an edit of eerpini's code.
The only structural change is that I only redirect the I/O in the child (note the dup2 calls are only in the child path.) This is very important, because otherwise the parent's I/O gets messed up. Thanks to eerpini for the initial answer, which I used in developing this one.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#define PIPE_READ 0
#define PIPE_WRITE 1
int createChild(const char* szCommand, char* const aArguments[], char* const aEnvironment[], const char* szMessage) {
int aStdinPipe[2];
int aStdoutPipe[2];
int nChild;
char nChar;
int nResult;
if (pipe(aStdinPipe) < 0) {
perror("allocating pipe for child input redirect");
return -1;
}
if (pipe(aStdoutPipe) < 0) {
close(aStdinPipe[PIPE_READ]);
close(aStdinPipe[PIPE_WRITE]);
perror("allocating pipe for child output redirect");
return -1;
}
nChild = fork();
if (0 == nChild) {
// child continues here
// redirect stdin
if (dup2(aStdinPipe[PIPE_READ], STDIN_FILENO) == -1) {
exit(errno);
}
// redirect stdout
if (dup2(aStdoutPipe[PIPE_WRITE], STDOUT_FILENO) == -1) {
exit(errno);
}
// redirect stderr
if (dup2(aStdoutPipe[PIPE_WRITE], STDERR_FILENO) == -1) {
exit(errno);
}
// all these are for use by parent only
close(aStdinPipe[PIPE_READ]);
close(aStdinPipe[PIPE_WRITE]);
close(aStdoutPipe[PIPE_READ]);
close(aStdoutPipe[PIPE_WRITE]);
// run child process image
// replace this with any exec* function find easier to use ("man exec")
nResult = execve(szCommand, aArguments, aEnvironment);
// if we get here at all, an error occurred, but we are in the child
// process, so just exit
exit(nResult);
} else if (nChild > 0) {
// parent continues here
// close unused file descriptors, these are for child only
close(aStdinPipe[PIPE_READ]);
close(aStdoutPipe[PIPE_WRITE]);
// Include error check here
if (NULL != szMessage) {
write(aStdinPipe[PIPE_WRITE], szMessage, strlen(szMessage));
}
// Just a char by char read here, you can change it accordingly
while (read(aStdoutPipe[PIPE_READ], &nChar, 1) == 1) {
write(STDOUT_FILENO, &nChar, 1);
}
// done with these in this example program, you would normally keep these
// open of course as long as you want to talk to the child
close(aStdinPipe[PIPE_WRITE]);
close(aStdoutPipe[PIPE_READ]);
} else {
// failed to create child
close(aStdinPipe[PIPE_READ]);
close(aStdinPipe[PIPE_WRITE]);
close(aStdoutPipe[PIPE_READ]);
close(aStdoutPipe[PIPE_WRITE]);
}
return nChild;
}

Since you want bidirectional access to the process, you would have to do what popen does behind the scenes explicitly with pipes. I am not sure if any of this will change in C++, but here is a pure C example :
void piped(char *str){
int wpipefd[2];
int rpipefd[2];
int defout, defin;
defout = dup(stdout);
defin = dup (stdin);
if(pipe(wpipefd) < 0){
perror("Pipe");
exit(EXIT_FAILURE);
}
if(pipe(rpipefd) < 0){
perror("Pipe");
exit(EXIT_FAILURE);
}
if(dup2(wpipefd[0], 0) == -1){
perror("dup2");
exit(EXIT_FAILURE);
}
if(dup2(rpipefd[1], 1) == -1){
perror("dup2");
exit(EXIT_FAILURE);
}
if(fork() == 0){
close(defout);
close(defin);
close(wpipefd[0]);
close(wpipefd[1]);
close(rpipefd[0]);
close(rpipefd[1]);
//Call exec here. Use the exec* family of functions according to your need
}
else{
if(dup2(defin, 0) == -1){
perror("dup2");
exit(EXIT_FAILURE);
}
if(dup2(defout, 1) == -1){
perror("dup2");
exit(EXIT_FAILURE);
}
close(defout);
close(defin);
close(wpipefd[1]);
close(rpipefd[0]);
//Include error check here
write(wpipefd[1], str, strlen(str));
//Just a char by char read here, you can change it accordingly
while(read(rpipefd[0], &ch, 1) != -1){
write(stdout, &ch, 1);
}
}
}
Effectively you do this :
Create pipes and redirect the stdout and stdin to the ends of the two pipes (note that in linux, pipe() creates unidirectional pipes, so you need to use two pipes for your purpose).
Exec will now start a new process which has the ends of the pipes for stdin and stdout.
Close the unused descriptors, write the string to the pipe and then start reading whatever the process might dump to the other pipe.
dup() is used to create a duplicate entry in the file descriptor table. While dup2() changes what the descriptor points to.
Note : As mentioned by Ammo# in his solution, what I provided above is more or less a template, it will not run if you just tried to execute the code since clearly there is a exec* (family of functions) missing, so the child will terminate almost immediately after the fork().

Ammo's code has some error handling bugs. The child process is returning after dup failure instead of exiting. Perhaps the child dups can be replaced with:
if (dup2(aStdinPipe[PIPE_READ], STDIN_FILENO) == -1 ||
dup2(aStdoutPipe[PIPE_WRITE], STDOUT_FILENO) == -1 ||
dup2(aStdoutPipe[PIPE_WRITE], STDERR_FILENO) == -1
)
{
exit(errno);
}
// all these are for use by parent only
close(aStdinPipe[PIPE_READ]);
close(aStdinPipe[PIPE_WRITE]);
close(aStdoutPipe[PIPE_READ]);
close(aStdoutPipe[PIPE_WRITE]);

Related

Do input redirection and capture command output (Custom shell-like program)

I'm writing a custom shell where I try to add support for input, output redirections and pipes just like standard shell. I stuck at point where I cannot do input redirection, but output redirection is perfectly working. My implementation is something like this (only related part), you can assume that (string) input is non-empty
void execute() {
... // stuff before execution and initialization of variables
int *fds;
std::string content;
std::string input = readFromAFile(in_file); // for input redirection
for (int i = 0; i < commands.size(); i++) {
fds = subprocess(commands[i]);
dprintf(fds[1], "%s", input.data()); // write to write-end of pipe
close(fds[1]);
content += readFromFD(fds[0]); // read from read-end of pipe
close(fds[0]);
}
... // stuff after execution
}
int *subprocess(std::string &cmd) {
std::string s;
int *fds = new int[2];
pipe(fds);
pid_t pid = fork();
if (pid == -1) {
std::cerr << "Fork failed.";
}
if (pid == 0) {
dup2(fds[1], STDOUT_FILENO);
dup2(fds[0], STDIN_FILENO);
close(fds[1]);
close(fds[0]);
system(cmd.data());
exit(0); // child terminates
}
return fds;
}
My thought is subprocess returns a pipe (fd_in, fd_out) and parent can write to write-end and read-from read-end afterwards. However when I try an input redirection something like sort < in.txt, the program just hangs. I think there is a deadlock because one waiting other to write, and other one to read, however, after parent writes to write-end it closes, and then read from read-end. How should I consider this case ?
When I did a bit of searching, I saw this answer, which my original thinking was similar except that in the answer it mentions creating two pipes. I did not quite understand this part. Why do we need two separate pipes ?

Child process is blocked by full pipe, cannot read in parent process

I have roughly created the following code to call a child process:
// pipe meanings
const int READ = 0;
const int WRITE = 1;
int fd[2];
// Create pipes
if (pipe(fd))
{
throw ...
}
p_pid = fork();
if (p_pid == 0) // in the child
{
close(fd[READ]);
if (dup2(fd[WRITE], fileno(stdout)) == -1)
{
throw ...
}
close(fd[WRITE]);
// Call exec
execv(argv[0], const_cast<char*const*>(&argv[0]));
_exit(-1);
}
else if (p_pid < 0) // fork has failed
{
throw
}
else // in th parent
{
close(fd[WRITE]);
p_stdout = new std::ifstream(fd[READ]));
}
Now, if the subprocess does not write too much to stdout, I can wait for it to finish and then read the stdout from p_stdout. If it writes too much, the write blocks and the parent waits for it forever.
To fix this, I tried to wait with WNOHANG in the parent, if it is not finished, read all available output from p_stdout using readsome, sleep a bit and try again. Unfortunately, readsome never reads anything:
while (true)
{
if (waitid(P_PID, p_pid, &info, WEXITED | WNOHANG) != 0)
throw ...;
else if (info.si_pid != 0) // waiting has succeeded
break;
char tmp[1024];
size_t sizeRead;
sizeRead = p_stdout->readsome(tmp, 1024);
if (sizeRead > 0)
s_stdout.write(tmp, sizeRead);
sleep(1);
}
The question is: Why does this not work and how can I fix it?
edit: If there is only child, simply using read instead of readsome would probably work, but the process has multiple children and needs to react as soon as one of them terminates.
As sarnold suggested, you need to change the order of your calls. Read first, wait last. Even if your method worked, you might miss the last read. i.e. you exit the loop before you read the last set of bytes that was written.
The problem might be is that ifstream is non-blocking. I've never liked iostreams, even in my C++ projects, I always liked the simplicity of C's stdio functions (i.e. FILE*, fprintf, etc). One way to get around this is to read if the descriptor is readable. You can use select to determine if there is data waiting on that pipe. You're going to need select if you are going to read from multiple children anyway, so might as well learn it now.
As for a quick isreadable function, try something like this (please note I haven't tried compiling this):
bool isreadable(int fd, int timeoutSecs)
{
struct timeval tv = { timeoutSecs, 0 };
fd_set readSet;
FD_ZERO(&readSet);
return select(fds, &readSet, NULL, NULL, &tv) == 1;
}
Then in your parent code, do something like:
while (true) {
if (isreadable(fd[READ], 1)) {
// read fd[READ];
if (bytes <= 0)
break;
}
}
wait(pid);
I'd suggest re-writing the code so that it doesn't call waitpid(2) until after read(2) calls on the pipe return 0 to signify end-of-file. Once you get the end-of-file return from your read calls, you know the child is dead, and you can finally waitpid(2) for it.
Another option is to de-couple the reading from the reaping even further and perform the wait calls in a SIGCHLD signal handler asynchronously to the reading operations.

popen simultaneous read and write [duplicate]

This question already has answers here:
Can popen() make bidirectional pipes like pipe() + fork()?
(6 answers)
Closed 3 years ago.
Is it possible to read and write to a file descriptor returned by popen. I have an interactive process I'd like to control through C. If this isn't possible with popen, is there any way around it?
As already answered, popen works in one direction. If you need to read and write, You can create a pipe with pipe(), span a new process by fork() and exec functions and then redirect its input and outputs with dup2(). Anyway I prefer exec over popen, as it gives you better control over the process (e.g. you know its pid)
EDITED:
As comments suggested, a pipe can be used in one direction only. Therefore you have to create separate pipes for reading and writing. Since the example posted before was wrong, I deleted it and created a new, correct one:
#include<unistd.h>
#include<sys/wait.h>
#include<sys/prctl.h>
#include<signal.h>
#include<stdlib.h>
#include<string.h>
#include<stdio.h>
int main(int argc, char** argv)
{
pid_t pid = 0;
int inpipefd[2];
int outpipefd[2];
char buf[256];
char msg[256];
int status;
pipe(inpipefd);
pipe(outpipefd);
pid = fork();
if (pid == 0)
{
// Child
dup2(outpipefd[0], STDIN_FILENO);
dup2(inpipefd[1], STDOUT_FILENO);
dup2(inpipefd[1], STDERR_FILENO);
//ask kernel to deliver SIGTERM in case the parent dies
prctl(PR_SET_PDEATHSIG, SIGTERM);
//replace tee with your process
execl("/usr/bin/tee", "tee", (char*) NULL);
// Nothing below this line should be executed by child process. If so,
// it means that the execl function wasn't successfull, so lets exit:
exit(1);
}
// The code below will be executed only by parent. You can write and read
// from the child using pipefd descriptors, and you can send signals to
// the process using its pid by kill() function. If the child process will
// exit unexpectedly, the parent process will obtain SIGCHLD signal that
// can be handled (e.g. you can respawn the child process).
//close unused pipe ends
close(outpipefd[0]);
close(inpipefd[1]);
// Now, you can write to outpipefd[1] and read from inpipefd[0] :
while(1)
{
printf("Enter message to send\n");
scanf("%s", msg);
if(strcmp(msg, "exit") == 0) break;
write(outpipefd[1], msg, strlen(msg));
read(inpipefd[0], buf, 256);
printf("Received answer: %s\n", buf);
}
kill(pid, SIGKILL); //send SIGKILL signal to the child process
waitpid(pid, &status, 0);
}
The reason popen() and friends don't offer bidirectional communication is that it would be deadlock-prone, due to buffering in the subprocess. All the makeshift pipework and socketpair() solutions discussed in the answers suffer from the same problem.
Under UNIX, most commands cannot be trusted to read one line and immediately process it and print it, except if their standard output is a tty. The reason is that stdio buffers output in userspace by default, and defers the write() system call until either the buffer is full or the stdio stream is closed (typically because the program or script is about to exit after having seen EOF on input). If you write to such a program's stdin through a pipe, and now wait for an answer from that program's stdout (without closing the ingress pipe), the answer is stuck in the stdio buffers and will never come out - This is a deadlock.
You can trick some line-oriented programs (eg grep) into not buffering by using a pseudo-tty to talk to them; take a look at libexpect(3). But in the general case, you would have to re-run a different subprocess for each message, allowing to use EOF to signal the end of each message and cause whatever buffers in the command (or pipeline of commands) to be flushed. Obviously not a good thing performance-wise.
See more info about this problem in the perlipc man page (it's for bi-directional pipes in Perl but the buffering considerations apply regardless of the language used for the main program).
You want something often called popen2. Here's a basic implementation without error checking (found by a web search, not my code):
// http://media.unpythonic.net/emergent-files/01108826729/popen2.c
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include "popen2.h"
int popen2(const char *cmdline, struct popen2 *childinfo) {
pid_t p;
int pipe_stdin[2], pipe_stdout[2];
if(pipe(pipe_stdin)) return -1;
if(pipe(pipe_stdout)) return -1;
//printf("pipe_stdin[0] = %d, pipe_stdin[1] = %d\n", pipe_stdin[0], pipe_stdin[1]);
//printf("pipe_stdout[0] = %d, pipe_stdout[1] = %d\n", pipe_stdout[0], pipe_stdout[1]);
p = fork();
if(p < 0) return p; /* Fork failed */
if(p == 0) { /* child */
close(pipe_stdin[1]);
dup2(pipe_stdin[0], 0);
close(pipe_stdout[0]);
dup2(pipe_stdout[1], 1);
execl("/bin/sh", "sh", "-c", cmdline, NULL);
perror("execl"); exit(99);
}
childinfo->child_pid = p;
childinfo->to_child = pipe_stdin[1];
childinfo->from_child = pipe_stdout[0];
close(pipe_stdin[0]);
close(pipe_stdout[1]);
return 0;
}
//#define TESTING
#ifdef TESTING
int main(void) {
char buf[1000];
struct popen2 kid;
popen2("tr a-z A-Z", &kid);
write(kid.to_child, "testing\n", 8);
close(kid.to_child);
memset(buf, 0, 1000);
read(kid.from_child, buf, 1000);
printf("kill(%d, 0) -> %d\n", kid.child_pid, kill(kid.child_pid, 0));
printf("from child: %s", buf);
printf("waitpid() -> %d\n", waitpid(kid.child_pid, NULL, 0));
printf("kill(%d, 0) -> %d\n", kid.child_pid, kill(kid.child_pid, 0));
return 0;
}
#endif
popen() can only open the pipe in read or write mode, not both. Take a look at this thread for a workaround.
In one of netresolve backends I'm talking to a script and therefore I need to write to its stdin and read from its stdout. The following function executes a command with stdin and stdout redirected to a pipe. You can use it and adapt it to your liking.
static bool
start_subprocess(char *const command[], int *pid, int *infd, int *outfd)
{
int p1[2], p2[2];
if (!pid || !infd || !outfd)
return false;
if (pipe(p1) == -1)
goto err_pipe1;
if (pipe(p2) == -1)
goto err_pipe2;
if ((*pid = fork()) == -1)
goto err_fork;
if (*pid) {
/* Parent process. */
*infd = p1[1];
*outfd = p2[0];
close(p1[0]);
close(p2[1]);
return true;
} else {
/* Child process. */
dup2(p1[0], 0);
dup2(p2[1], 1);
close(p1[0]);
close(p1[1]);
close(p2[0]);
close(p2[1]);
execvp(*command, command);
/* Error occured. */
fprintf(stderr, "error running %s: %s", *command, strerror(errno));
abort();
}
err_fork:
close(p2[1]);
close(p2[0]);
err_pipe2:
close(p1[1]);
close(p1[0]);
err_pipe1:
return false;
}
https://github.com/crossdistro/netresolve/blob/master/backends/exec.c#L46
(I used the same code in Can popen() make bidirectional pipes like pipe() + fork()?)
Use forkpty (it's non-standard, but the API is very nice, and you can always drop in your own implementation if you don't have it) and exec the program you want to communicate with in the child process.
Alternatively, if tty semantics aren't to your liking, you could write something like forkpty but using two pipes, one for each direction of communication, or using socketpair to communicate with the external program over a unix socket.
You can't use popen to use two-way pipes.
In fact, some OSs don't support two-way pipes, in which case a socket-pair (socketpair) is the only way to do it.
popen works for me in both directions (read and write)
I have been using a popen() pipe in both directions..
Reading and writing a child process stdin and stdout with the file descriptor returned by popen(command,"w")
It seems to work fine..
I assumed it would work before I knew better, and it does.
According posts above this shouldn't work.. which worries me a little bit.
gcc on raspbian (raspbery pi debian)

Capturing stdout from a system() command optimally [duplicate]

This question already has answers here:
How do I execute a command and get the output of the command within C++ using POSIX?
(12 answers)
Closed 7 years ago.
I'm trying to start an external application through system() - for example, system("ls"). I would like to capture its output as it happens so I can send it to another function for further processing. What's the best way to do that in C/C++?
From the popen manual:
#include <stdio.h>
FILE *popen(const char *command, const char *type);
int pclose(FILE *stream);
Try the popen() function. It executes a command, like system(), but directs the output into a new file. A pointer to the stream is returned.
FILE *lsofFile_p = popen("lsof", "r");
if (!lsofFile_p)
{
return -1;
}
char buffer[1024];
char *line_p = fgets(buffer, sizeof(buffer), lsofFile_p);
pclose(lsofFile_p);
EDIT: misread question as wanting to pass output to another program, not another function. popen() is almost certainly what you want.
System gives you full access to the shell. If you want to continue using it, you can
redirect it's output to a temporary file, by system("ls > tempfile.txt"), but choosing a secure temporary file is a pain. Or, you can even redirect it through another program: system("ls | otherprogram");
Some may recommend the popen() command. This is what you want if you can process the output yourself:
FILE *output = popen("ls", "r");
which will give you a FILE pointer you can read from with the command's output on it.
You can also use the pipe() call to create a connection in combination with fork() to create new processes, dup2() to change the standard input and output of them, exec() to run the new programs, and wait() in the main program to wait for them. This is just setting up the pipeline much like the shell would. See the pipe() man page for details and an example.
The functions popen() and such don't redirect stderr and such; I wrote popen3() for that purpose.
Here's a bowdlerised version of my popen3():
int popen3(int fd[3],const char **const cmd) {
int i, e;
int p[3][2];
pid_t pid;
// set all the FDs to invalid
for(i=0; i<3; i++)
p[i][0] = p[i][1] = -1;
// create the pipes
for(int i=0; i<3; i++)
if(pipe(p[i]))
goto error;
// and fork
pid = fork();
if(-1 == pid)
goto error;
// in the parent?
if(pid) {
// parent
fd[STDIN_FILENO] = p[STDIN_FILENO][1];
close(p[STDIN_FILENO][0]);
fd[STDOUT_FILENO] = p[STDOUT_FILENO][0];
close(p[STDOUT_FILENO][1]);
fd[STDERR_FILENO] = p[STDERR_FILENO][0];
close(p[STDERR_FILENO][1]);
// success
return 0;
} else {
// child
dup2(p[STDIN_FILENO][0],STDIN_FILENO);
close(p[STDIN_FILENO][1]);
dup2(p[STDOUT_FILENO][1],STDOUT_FILENO);
close(p[STDOUT_FILENO][0]);
dup2(p[STDERR_FILENO][1],STDERR_FILENO);
close(p[STDERR_FILENO][0]);
// here we try and run it
execv(*cmd,const_cast<char*const*>(cmd));
// if we are there, then we failed to launch our program
perror("Could not launch");
fprintf(stderr," \"%s\"\n",*cmd);
_exit(EXIT_FAILURE);
}
// preserve original error
e = errno;
for(i=0; i<3; i++) {
close(p[i][0]);
close(p[i][1]);
}
errno = e;
return -1;
}
The most efficient way is to use stdout file descriptor directly, bypassing FILE stream:
pid_t popen2(const char *command, int * infp, int * outfp)
{
int p_stdin[2], p_stdout[2];
pid_t pid;
if (pipe(p_stdin) == -1)
return -1;
if (pipe(p_stdout) == -1) {
close(p_stdin[0]);
close(p_stdin[1]);
return -1;
}
pid = fork();
if (pid < 0) {
close(p_stdin[0]);
close(p_stdin[1]);
close(p_stdout[0]);
close(p_stdout[1]);
return pid;
} else if (pid == 0) {
close(p_stdin[1]);
dup2(p_stdin[0], 0);
close(p_stdout[0]);
dup2(p_stdout[1], 1);
dup2(::open("/dev/null", O_WRONLY), 2);
/// Close all other descriptors for the safety sake.
for (int i = 3; i < 4096; ++i) {
::close(i);
}
setsid();
execl("/bin/sh", "sh", "-c", command, NULL);
_exit(1);
}
close(p_stdin[0]);
close(p_stdout[1]);
if (infp == NULL) {
close(p_stdin[1]);
} else {
*infp = p_stdin[1];
}
if (outfp == NULL) {
close(p_stdout[0]);
} else {
*outfp = p_stdout[0];
}
return pid;
}
To read output from child use popen2() like this:
int child_stdout = -1;
pid_t child_pid = popen2("ls", 0, &child_stdout);
if (!child_pid) {
handle_error();
}
char buff[128];
ssize_t bytes_read = read(child_stdout, buff, sizeof(buff));
To both write and read:
int child_stdin = -1;
int child_stdout = -1;
pid_t child_pid = popen2("grep 123", &child_stdin, &child_stdout);
if (!child_pid) {
handle_error();
}
const char text = "1\n2\n123\n3";
ssize_t bytes_written = write(child_stdin, text, sizeof(text) - 1);
char buff[128];
ssize_t bytes_read = read(child_stdout, buff, sizeof(buff));
The functions popen() and pclose() could be what you're looking for.
Take a look at the glibc manual for an example.
In Windows, instead of using system(), use CreateProcess, redirect the output to a pipe and connect to the pipe.
I'm guessing this is also possible in some POSIX way?
Actually, I just checked, and:
popen is problematic, because the process is forked. So if you need to wait for the shell command to execute, then you're in danger of missing it. In my case, my program closed even before the pipe got to do it's work.
I ended up using system call with tar command on linux. The return value from system was the result of tar.
So: if you need the return value, then not no only is there no need to use popen, it probably won't do what you want.
In this page: capture_the_output_of_a_child_process_in_c describes the limitations of using popen vs. using fork/exec/dup2/STDOUT_FILENO approach.
I'm having problems capturing tshark output with popen.
And I'm guessing that this limitation might be my problem:
It returns a stdio stream as opposed to a raw file descriptor, which
is unsuitable for handling the output asynchronously.
I'll come back to this answer if I have a solution with the other approach.
I'm not entirely certain that its possible in standard C, as two different processes don't typically share memory space. The simplest way I can think of to do it would be to have the second program redirect its output to a text file (programname > textfile.txt) and then read that text file back in for processing. However, that may not be the best way.

How to pass file back and foward between parent and children using pipe

I'm trying to open a file with the parent then, send it to the child. I want the child to look for specific word and send the line from the text file back to the parent.
With my Code right now, I can send the text file to the children but I cant check the file and send it back to the parent.
int fd[2];
pid_t cpid;
pipe(fd);
if ((cpid = fork()) == -1)
{
cout << "ERROR" << endl;
exit(1);
}
// child process
if (cpid == 0)
{
// don't need the write-side of this
close(fd[WRITE_FD]);
std::string s;
char ch;
while (read(fd[READ_FD], &ch, 1) > 0)
{
if (ch != 0)
s.push_back(ch);
else
{
//std::cout << s << " "; //'\n'; //print the txt
while(getline(s, ch, '.'))
{
printf("%s\n", toSend.c_str());
}
s.clear();
}
}
// finished with read-side
close(fd[READ_FD]);
}
// parent process
else
{
// don't need the read-side of this
close(fd[READ_FD]);
fstream fileWords ("words.txt");
string toSend;
while (fileWords >> toSend)
{
// send word including terminator
write(fd[WRITE_FD], toSend.c_str(), toSend.length()+1);
}
// finished with write-side
close(fd[WRITE_FD]);
wait(NULL);
}
return EXIT_SUCCESS;
Pipes are intended for unidirectional communication. If you try to use a pipe for bidirectional communication, it's almost certain that programs will end up reading their own output back into themselves (or similar undesired behavior), rather than successfully communicating with each other. There's two similar approaches that would work for bidirectional communication:
Create two pipes, and give each process the read end of one and the write end of the other. Then there's no ambiguity about where data will end up.
Use a socket instead of a pipe. The socketpair function makes this easy: just do socketpair(AF_UNIX, SOCK_STREAM, 0, fd) in place of pipe(fd). Sockets work just like pipes, but are bidirectional (writes to either of the FD's always get read by the other FD).