How to change the shared library searching order? - c++

When a program needs a shared library (say libabc.so), it will first check the path of "-labc", and then the environment variable LD_LIBRARY_PATH, then the /etc/ld.so.conf . What should I do if I want the program search the /etc/ld.so.conf first?

Specify it explicitly, in the list of files, before any -l option.
Under Unix (including Linux), the libraries are processed in the order
they are given, one after the other. And whether you specify a library
with the -l option or by specifying the actual path doesn't make a
difference; you can invoke g++ with things like:
g++ file1.o file2.o ... /etc/ld.so.conf ... -labc ...

You could unset the LD_LIBRARY_PATH variable.
unset LD_LIBRARY_PATH
As far as i am concerned the purpose of the LD_LIBRARY_PATH variable is to provide a library which does not exists in your ld.so.conf. Also you have to make sure that a library which you provide by including it in /etc/ld.so.conf is in the cache your /etc/ld.so.cache. you have do execute
ldconfig
as super user to update your /etc/ld.so.cache

Related

Using -L and -l flags vs giving library file as input

What's the difference between writing:
g++ test.cc -L/my/dir/ -lname
and
g++ test.cc /my/dir/libname.so ?
Are both correct?
The things that I can think of:
First one is cross platform, g++ from MINGW will look for DLL's
In the second one we explicitly specify we want dynamic linking
The difference is that
g++ test.cc -L/my/dir/ -lname
may succeed even if /my/dir/libname.so does not exist:
It can find libname.so from a system library directory (usually /lib, /usr/lib).
It can find libname.a, and do static linking.
Furthermore, it allows you to link to multiple libraries from the same directory without repeating the parent directory.
The first method looks into /my/dir directory for the library file at link time. However only a short library name libname.so (or whatever it finds according to OS) is written into the image. When the program starts, it will look for the library in some library path, i.e. LD_LIBRARY_PATH on linux. Now you can relocate the executable and the library into different new places and set a correct search path after relocation.
The second method writes the full path of the library into the image: /my/dir/libname.so. When the program starts, it will look for this particular path to get the library. This makes the image non-relocatable, unless the same library path exists in the new environment. The effect is similar to the '-rpath' method.

Cannot open shared object file

I am trying to compile one of the projects found here
USB-I2C/SPI/GPIO Interface Adapter.
I downloaded the i2c_bridge-0.0.1-rc2.tgz package. I installed libusb and that seemed to go well with no issues. I go into the i2c_bridge-0.0.1-rc2/ directory and make. That compiles. I move into the i2c_bridge-0.0.1-rc2/i2c folder and make. It compiles and gives me ./i2c. However, when I run it, it says error while loading shared libraries: libi2cbrdg.so: cannot open shared object file: No such file or directory
The makefile in i2c_bridge-0.0.1-rc2/i2c has the library directory as ../. The libi2cbrdg.so is in this directory (i2c_bridge-0.0.1-rc2). I also copied the file to /usr/local/lib. An ls of the i2c_bridge-0.0.1-rc2/ directory is
i2c i2cbrdg.d i2cbrdg.o libi2cbrdg.a Makefile tests
i2cbrdg.c i2cbrdg.h INSTALL libi2cbrdg.so README u2c4all.sh
(That i2c is a directory)
If I sudo ./i2c, it still gives me the problem.
I had to take away the -Werror and -noWdecrepated (spelling?) options in all the makefiles to get them to compile, but that shouldn't affect this should it?
What else is necessary for it to find the .so file? If anyone can help me find out what is wrong I would be very grateful. If more information is needed I can post it.
You have to distinguish between finding so's at compile-time and at run-time. The -L flag you give at compile-time has nothing to do with localizing the library at run-time. This is rather done via a number of variables and some paths embedded in the library.
The best hot-fix for this problem is often setting LD_LIBRARY_PATH to the directory with the .so file, e.g.:
$ LD_LIBRARY_PATH=.. ./i2c
For a long-term solution, you need to either have a close look at the whole LD system with rpath and runpath, or use libtool (which solves these issues for your portably).
Copying a file to /usr/local/lib is often insufficient because ld caches the available libraries, so you need to re-run ldconfig (as root) after you copied a library to /usr/local/lib.
If you are building the code from source that needs the the library, you can put the path that the library is in in the environment variable LD_RUN_PATH before building, and the linker will save that path into the binary, so that it will automatically be looked for in the right place at runtime.
Linux specific: Alternately, put the library in /lib, /usr/lib, or some other path referenced in your /etc/ld.so.conf or its imported config fragments, and then all you need to do is run /sbin/ldconfig to refresh ld.so (the dynamic linker)'s cache of libraries.
This works for my issue,hope will help anyone.
gcc test.c -Wl,-rpath /usr/local/lib -lfcgi -o test.fcg
And -Wl,-rpath option is the key trick.

How to build a shared library (.so) without hardcoded full dependency paths?

I need to build two 3rd party shared libraries, so their .so files will be reused by other projects. However, after build one of these libraries contains hardcoded path to another. This path is invalid on other machines and causes linker warnings. How can I prevent the full path from being embedded in the resulting .so files?
Details:
First library source: ~/dev/A
Second library source: ~/dev/B
Both of them have configure script to generate make files. Library B depends on A. So, first I build A:
$ ~/dev/A/configure --prefix=~/dev/A-install
$ make && make install
Then I build B:
$ ~/dev/B/configure --prefix=~/dev/B-install --with-A=~/dev/A-install
$ make && make install
Then I want to upload the contents of ~/dev/A-install and ~/dev/B-install to our file server, so other teams and build machines can use the binaries. But they get linker warnings when they try to use B:
/usr/bin/ld: warning: libA.so.2, needed by /.../deps/B/lib/libB.so, not found (try using -rpath or -rpath-link)
When I run ldd libB.so it gives:
...
libA.so.2 => /home/alex/dev/A-install/lib/libA.so.2
Obviously this path exists only on my machine and cannot be found on other machines.
How can I remove full hardcoded path from libB.so?
Thanks.
You have to use --prefix value that will be valid in the runtime environment for both packages!
Than you override prefix or DESTDIR (prefix replaces the prefix, DESTDIR is prepended to it, but works more reliably) on the make command-line when installing. Like:
~/dev/A$ ./configure
~/dev/A$ make
~/dev/A$ make install prefix=~/dev/A-install
~/dev/B$ ./configure --with-A=~/dev/A-install
~/dev/B$ make
~/dev/B$ make install prefix=~/dev/B-install
or (which is preferred and is how all package-building tools use it):
~/dev/A$ ./configure
~/dev/A$ make
~/dev/A$ make install DESTDIR=~/dev/A-install
~/dev/B$ ./configure --with-A=~/dev/A-install/usr/local
~/dev/B$ make
~/dev/B$ make install prefix=~/dev/B-install
because this way you are installing to ~/dev/A-install/$prefix, so with default prefix ~/dev/A-install/usr/local. The advantage of this later option is, that if you redefine some specific installation paths without refering to prefix (say --sysconfdir=/etc), DESTDIR will still get prepended to it, while it won't be affected by prefix.
-Wl,-rpath,~/deps/A/lib:~/deps/B/lib:~/dev/MyApp/bin
This linker option is responsible for saving the path inside the library. You need somehow to remove this.
See with ./configure --help if there's some option that could influence this. Another option is to edit manually the makefile and remove this option.
== edit2 ==
One more thing
-L~/deps/A/lib -L~/deps/B/lib ~/deps/A/lib/libA.so ~/deps/B/lib/libB.so
If libA.so and libB.so don't have SONAME, linking them like "~/deps/A/lib/libA.so" will also cause saving the path. Soname is set using -Wl,-soname,<soname> linker option when building shared library.
If soname is set in the shared library, linking it using "~/deps/A/lib/libA.so" form is ok.
Like Jan mentioned in the comments, the better way is using "-Llibrary/path -llibrary_name" without rpath.
-L~/deps/A/lib -L~/deps/B/lib -lA -lB
When I run ldd libB.so it gives:
libA.so.2 => /home/alex/dev/A-install/lib/libA.so.2
The low-level solution to this problem is to use the option "-soname=libA.so" when you link the libA.so library. By having SONAME defined for a shared object, the linker will not embed absolute paths when linking against that shared object.
The OP is using "configure", so this isn't an easy solution to implement unless he is willing to go into the bowels of the Makefile generated by the configure script.
Shared libraries and executables have a list of directories to look for shared libraries, in addition to the list in the operating system's configuration. RPATH is used to add shared library search paths, used at runtime.
If you want a relative path to be used in RPATH, there is a special syntax that most Linux/UNIX (but not AIX) systems support - $ORIGIN or ${ORIGIN}.
$ORIGIN will expand at runtime to the directory where the binary resides - either the library or executable.
So if you put executable binaries in prefix/bin/ and shared libraries in prefix/lib/ you can add an entry to RPATH like ${ORIGIN}/../lib and this will expand at runtime to prefix/bin/../lib/
It's often a little trick to get the syntax correct in a Makefile, because you have to escape the $ in ORIGIN so it will not be expanded. It's typical to do this in a Makefile:
g++ -Wl,-rpath=\$${ORIGIN}/../lib
Both Make and the shell will want to look in your environment for a variable called ORIGIN - so it needs to be double-escaped.
I just got caught out thinking I had the same problem.
None of the above answers helped me.
Whenever I tried
ldd libB.so
I would get in the output:
libA.so.1 => /home/me/localpath/lib/libA.so.1.0
and so I thought I had a hardcoded path. Turns out that I had forgotten I had LD_LIBRARY_PATH set for local testing. Clearing LD_LIBRARY_PATH meant that ldd found the correct installed library in /usr/lib/
Perhaps using the -rpath and -soname options to ld could help (assuming a binutils or binutils.gold package for ld on a recent Linux system)?

error while loading shared libraries

I have a project organized as
\bin\cmain
\lib\libxmlrpc_client++.a
\lib\libxmlrpc_client++.so.4
\lib\libxmlrpc_client++.so.4.16
My c program cmain need to dynamically link clib.so.4. While I compile the code, I use -L.../lib to indicate directory lib and use -lxmlrpc_client++. However, my code get error while loading shared libraries:
libxmlrpc_client++.so.4: cannot open shared object file: No such file or directory
Any ideas to fix this?
PS: Problem solved, a good reference to the problem: http://gcc.gnu.org/ml/gcc-help/2005-12/msg00017.html
You need to tell the dynamic linker where to look for the libraries. Assuming this is some sort of UNIX/Linux system, this can be done either via setting the LD_LIBRARY_PATH environment variable before executing the program:
export LD_LIBRARY_PATH=/path/to/lib
./run-my-program
or by setting the run-time linker path during compile time:
gcc -L/path/to/lib -Wl,-rpath,/path/to/lib -lxmlrpc_client++ ...
./run-my-program
Both approaches have problems. Google for "why LD_LIBRARY_PATH is bad". The command-line options for setting the run-time linker path varies from one compiler to another.
You should use -Llib instead of -L..
Is that softlink broken? ls -l, make sure your pointing to the correct file.
Example Error :
[root#localhost ~]# ./conn 127.0.0.1 6379 opencc ./conn: error while
loading shared libraries: libhiredis.so.1.0.3-dev: cannot open shared
object file: No such file or directory
Solution
The problem was the libhiredis wasn't in the ldconfig path. While the build process was correct and it copied everything to the correct directory ldconfig did not know about its location.
You can use ldconfig -p to see all library ldconfig currently know about.
You can add the path to ldconfig with
sudo echo "/usr/local/lib" > /etc/ld.so.conf.d/local.conf
&
sudo ldconfig

How do I get rid of LD_LIBRARY_PATH at run-time?

I am building a C++ application that uses Intel's IPP library. This library is installed by default in /opt and requires you to set LD_LIBRARY_PATH both for compiling and for running your software (if you choose the shared library linking, which I did). I already modified my configure.ac/Makefile.am so that I do not need to set that variable when compiling, but I still can't find the shared library at run-time; how do I do that?
I'm compiling with the -Wl, -R/path/to/libdir flag using g++
Update 1:
Actually my binary program has some IPP libraries correctly linked, but just one is not:
$ ldd myprogram
linux-vdso.so.1 => (0x00007fffa93ff000)
libippacem64t.so.6.0 => /opt/intel/ipp/6.0.2.076/em64t/sharedlib/libippacem64t.so.6.0 (0x00007f22c2fa3000)
libippsem64t.so.6.0 => /opt/intel/ipp/6.0.2.076/em64t/sharedlib/libippsem64t.so.6.0 (0x00007f22c2d20000)
libippcoreem64t.so.6.0 => /opt/intel/ipp/6.0.2.076/em64t/sharedlib/libippcoreem64t.so.6.0 (0x00007f22c2c14000)
[...]
libiomp5.so => not found
libiomp5.so => not found
libiomp5.so => not found
Of course the library is there:
$ locate libiomp5.so
/opt/intel/ipp/6.0.2.076/em64t/sharedlib/libiomp5.so
By /path/to/lib do you mean path to the directory containing the library, or the path to the actual file?
The -R option given a directory argument is treated like -rpath by ld, which is the option you're actually wanting here. It adds the given directory to the runtime library search path. That should work, as long as you give it the directory and not filename. I'm fairly confident about that, having done it myself, and because it's one of the hints given by libtool:
Libraries have been installed in:
/path/to/library-directory
If you ever happen to want to link against installed libraries
in a given directory, LIBDIR, you must either use libtool, and
specify the full pathname of the library, or use the `-LLIBDIR'
flag during linking and do at least one of the following:
add LIBDIR to the `LD_LIBRARY_PATH' environment variable
during execution
add LIBDIR to the `LD_RUN_PATH' environment variable
during linking
use the `-Wl,-rpath -Wl,LIBDIR' linker flag
have your system administrator add LIBDIR to `/etc/ld.so.conf'
(I paste this here since conceivably one of the other options could be more desirable - for example LD_RUN_PATH can save you makefile modification)
As suggested by Richard Pennington, the missing library is not used directly by my application, but it is used by the shared libraries I use. Since I cannot recompile IPP, the solution to my problem is to add -liomp5 when compiling, using the -R option for the linker. This actually adds the rpath for libiomp5.so fixing the problem!
You can check if the path to the library is being picked up from your -R flag by running the ldd command or the readelf command on your binary. The LD_LIBRARY_PATH environment variable is an override, so shouldn't be necessary normally.
You should use the -R option if possible.
If not, rename your executable and create a launch script that runs your executable, and in there set LD_LIBRARY_PATH just for that scope.
Depending on platform, you can modify ld.so.conf via /etc/ld.so.conf.d (Redhat/Fedora come to mind) which makes deploying changes to ld.so "easier" from a deployment scenario.
Besides all the useful hints posted here.. you're not trying to use a 64-bit specific library on a 32-bit system (or viceversa, depending on other conditions), are you?
bash:
export LD_LIBRARY_PATH=/path/to/lib
tcsh:
setenv LD_LIBRARY_PATH /path/to/lib
Try configuring your ldconfig through ld.so.conf so it searches your /opt/... directory by default.