Is unit testing private methods a good practice? - c++

I am wondering if unit testing private methods is a good practice?
Normally only public interface should be tested.
However, I have found out that during complex calculation, which calls tons of different private methods, it is easier to unit test the private methods first, and then make a simple test for the public interface method.
As an example let's say you have an audio player and you have functions:
void play(){ ... }
void pause(){ ... }
void seek(time t)
{
//All Private methods
checkIfValidTimeRange(...);
moveToFilePos(...);
fillBuffers(...);
}
Normally I would write unit tests for : checkIfValidTimeRange(...), moveToFilePos(...), fillBuffers(...).
But I am not sure if doing so is good practice.

It's not a good practice (yet that doesn't mean you should never do that), and if possible you want to avoid it. Testing private method usually means your design could be better. Let's take a quick look at your player example:
moveToFilePos: sounds more like a responsibility of something doing I\O operations, not a music player's
fillBuffers: more of a memory manager's job rather than music player
checkIfValidTimeRange: again, probably could be moved out of player's scope to some simple validation class (seems like this one might be useful in other places aswell)
At the moment your music player does I/O, memory management and what not else. Is that all really in scope of its responsibilities?

If your private methods are complex enough to warrant testing, you're likely missing some classes where those private methods are turned public.
You certainly can test private methods, but you should take the need to do it as a hint there's something wrong in your design.

IMHO it's a very good idea, I do it all the times. I usually create a helper class which makes the private methods accessable and test it..
Usually it's even easier to test private methods, since they do something very specific. On the other hand you might have a big public method which is a bit harder to test. So it certainly simplifies unit tests.

Which part of your code base is your private methods relying on ?
If somebody changes the way one of the method you are relying on works and thus breaks your method, isn't it worth knowing it ?
Testing is not only for checking that your method behaves as it should, but also to check that changes in other parts of the codebase doesn't break your method.
So unless your method is only using basic constructs of your language, test it !

Related

Two public method calls a private method

I heard some one said that it's better to write Junit test for a private method via a public method. But in this case, I should test private method to avoid the duplicated code. Is it good approach?
This is a mix of subjective taste, best practice I've picked up and gut feeling.
For unit tests I don't mind calling private functions directly, if you by unit testing mean test a specific function and nothing else. I don't mind because it cuts down on wrapper code and it's likely that function usage patterns might be rather unusual compared to production code.
If the testing goes further than that, a whole class or a range of functions, I prefer to only use public methods since that's how other code will be using it.
So, yes you can and a lot of people do test what would normally be private methods in this way. Generally the method is changed to default scope and I recommend adding the #VisibleForTesting annotation provided by Guava.
The problem with this approach is that it does not allow for (or limits the ability of) the code under test to be refactored. A good unit test allows the entire class under test to be completely refactored (while maintaining the same API) without the test failing.
So there is a balance here. Since both public method have the same set of requirements regarding what is happening in the private method it is good practice to fully exercise this set of requirements for each public method.
My suggestion (depending on and balanced by the complexity of the private method) is to create a utility method in your test that configures the private method (sets it up to behave a particular way) and use this method in the tests of the public methods. Do the same for a verify method.
Another option is to create tests that test the private method's functionality and pass in a reflection Method as the entry point. This would allow you to test all functionality via both public methods without repeated code.

Unit testing: private methods and how to refactor

I like unit testing, it is proving its worth immensely for the last year and a half or so ive used it. However I always have a problem or rather a niggle with private methods (and protected).
I don't want to make them public or use internals visible to attribute. I want a clean and crisp solution - that is testable and i'd be proud to let someone else look at.
I am coming to the conclusion that if a private method really needs testing independantly then maybe it should be moved out onto another interface and use association to expose the functionality to the calling method. I believe this in essence to be the Facade pattern.
Is this really the best way to go about this?
Or more objectively ... are there any other approaches I have totally overlooked?
Edit: Are we talking about a specific language?
I am working in C#. I had kept code out of the question as i was looking for something abstract. Coming back to it today i realise that is perhaps folly due to languages really being that different.
So some code:
public class CopmlexClass
{
public void SomeMethod()
{ }
private void workerMethod()
{ }
}
would get re factored into
public class CopmlexClass
{
public void SomeMethod()
{ }
public IComplexClassWorker Worker { get; set; }
}
public interface IComplexClassWorker
{
void WorkerMethod();
}
In fact id probably prefer to use constructor injection and not even expose the property
My question is: is that the best way? what are the alternatives bar reflection / internals visible to attribute?
A private method which needs to be tested independently can be the result of the following:
your class is doing too much - its public methods implement functionality which is too complex to be unit tested as a whole, and/or
the effects of calling the specific private method can't be directly sensed from outside the class.
Both cases are usually a clear call to extract another class containing some private method(s) of the original class, turned into public, thus made directly testable. (The sometimes challenging part is to find logically cohesive chunks of functionality which can form useful classes on their own right. You may not always get a perfect result at first - in refactoring, sometimes one needs to make a compromise, a small step into some not-yet-clearly-defined direction. In the long term, such a step may open up new possibilities, call attention to other similar code parts, or the new class may start to attract code bits from other places, eventually forming a coherent class. Or turning into something completely new, but better than what you originally envisioned.)
Exposing the private method via another interface / facade is IMO not going to solve the problem in the long term, only muddles the waters. Classes should have a well defined, complete and minimal interface. Exposing private methods in any way may open up ways to compromise the internal state of the object, which is a Bad Thing.
When we started writing unit tests in our team a couple of years ago we started with the rules you set out above - i.e. we test the public interface of an assembly.
We expected one advantage to be in detecting unreachable code. If the code coverage tools detect code blocks which not being tested, then either tests are missing or the code is unreachable and should be removed.
But in practice we haven't stuck to them. We have a very modular design - more than 30 projects in our main solution (most having a matching unit tests project). We now usually give the test project access to the internals of the project under test.
I think one problem is that we are not automatically using code coverage to detect missing tests or unreachable code. Because this is a manual process, it doesn't get done.

How to write jUnit tests for private methods [duplicate]

How do I use JUnit to test a class that has internal private methods, fields or nested classes?
It seems bad to change the access modifier for a method just to be able to run a test.
If you have somewhat of a legacy Java application, and you're not allowed to change the visibility of your methods, the best way to test private methods is to use reflection.
Internally we're using helpers to get/set private and private static variables as well as invoke private and private static methods. The following patterns will let you do pretty much anything related to the private methods and fields. Of course, you can't change private static final variables through reflection.
Method method = TargetClass.getDeclaredMethod(methodName, argClasses);
method.setAccessible(true);
return method.invoke(targetObject, argObjects);
And for fields:
Field field = TargetClass.getDeclaredField(fieldName);
field.setAccessible(true);
field.set(object, value);
Notes:
TargetClass.getDeclaredMethod(methodName, argClasses) lets you look into private methods. The same thing applies for
getDeclaredField.
The setAccessible(true) is required to play around with privates.
The best way to test a private method is via another public method. If this cannot be done, then one of the following conditions is true:
The private method is dead code
There is a design smell near the class that you are testing
The method that you are trying to test should not be private
When I have private methods in a class that are sufficiently complicated that I feel the need to test the private methods directly, that is a code smell: my class is too complicated.
My usual approach to addressing such issues is to tease out a new class that contains the interesting bits. Often, this method and the fields it interacts with, and maybe another method or two can be extracted in to a new class.
The new class exposes these methods as 'public', so they're accessible for unit testing. The new and old classes are now both simpler than the original class, which is great for me (I need to keep things simple, or I get lost!).
Note that I'm not suggesting that people create classes without using their brain! The point here is to use the forces of unit testing to help you find good new classes.
I have used reflection to do this for Java in the past, and in my opinion it was a big mistake.
Strictly speaking, you should not be writing unit tests that directly test private methods. What you should be testing is the public contract that the class has with other objects; you should never directly test an object's internals. If another developer wants to make a small internal change to the class, which doesn't affect the classes public contract, he/she then has to modify your reflection based test to ensure that it works. If you do this repeatedly throughout a project, unit tests then stop being a useful measurement of code health, and start to become a hindrance to development, and an annoyance to the development team.
What I recommend doing instead is using a code coverage tool, such as Cobertura, to ensure that the unit tests you write provide decent coverage of the code in private methods. That way, you indirectly test what the private methods are doing, and maintain a higher level of agility.
From this article: Testing Private Methods with JUnit and SuiteRunner (Bill Venners), you basically have 4 options:
Don't test private methods.
Give the methods package access.
Use a nested test class.
Use reflection.
Generally a unit test is intended to exercise the public interface of a class or unit. Therefore, private methods are implementation detail that you would not expect to test explicitly.
Just two examples of where I would want to test a private method:
Decryption routines - I would not
want to make them visible to anyone to see just for
the sake of testing, else anyone can
use them to decrypt. But they are
intrinsic to the code, complicated,
and need to always work (the obvious exception is reflection which can be used to view even private methods in most cases, when SecurityManager is not configured to prevent this).
Creating an SDK for community
consumption. Here public takes on a
wholly different meaning, since this
is code that the whole world may see
(not just internal to my application). I put
code into private methods if I don't
want the SDK users to see it - I
don't see this as code smell, merely
as how SDK programming works. But of
course I still need to test my
private methods, and they are where
the functionality of my SDK actually
lives.
I understand the idea of only testing the "contract". But I don't see one can advocate actually not testing code—your mileage may vary.
So my trade-off involves complicating the JUnit tests with reflection, rather than compromising my security and SDK.
The private methods are called by a public method, so the inputs to your public methods should also test private methods that are called by those public methods. When a public method fails, then that could be a failure in the private method.
In the Spring Framework you can test private methods using this method:
ReflectionTestUtils.invokeMethod()
For example:
ReflectionTestUtils.invokeMethod(TestClazz, "createTest", "input data");
Another approach I have used is to change a private method to package private or protected then complement it with the #VisibleForTesting annotation of the Google Guava library.
This will tell anybody using this method to take caution and not access it directly even in a package. Also a test class need not be in same package physically, but in the same package under the test folder.
For example, if a method to be tested is in src/main/java/mypackage/MyClass.java then your test call should be placed in src/test/java/mypackage/MyClassTest.java. That way, you got access to the test method in your test class.
To test legacy code with large and quirky classes, it is often very helpful to be able to test the one private (or public) method I'm writing right now.
I use the junitx.util.PrivateAccessor-package for Java. It has lots of helpful one-liners for accessing private methods and private fields.
import junitx.util.PrivateAccessor;
PrivateAccessor.setField(myObjectReference, "myCrucialButHardToReachPrivateField", myNewValue);
PrivateAccessor.invoke(myObjectReference, "privateMethodName", java.lang.Class[] parameterTypes, java.lang.Object[] args);
Having tried Cem Catikkas' solution using reflection for Java, I'd have to say his was a more elegant solution than I have described here. However, if you're looking for an alternative to using reflection, and have access to the source you're testing, this will still be an option.
There is possible merit in testing private methods of a class, particularly with test-driven development, where you would like to design small tests before you write any code.
Creating a test with access to private members and methods can test areas of code which are difficult to target specifically with access only to public methods. If a public method has several steps involved, it can consist of several private methods, which can then be tested individually.
Advantages:
Can test to a finer granularity
Disadvantages:
Test code must reside in the same
file as source code, which can be
more difficult to maintain
Similarly with .class output files, they must remain within the same package as declared in source code
However, if continuous testing requires this method, it may be a signal that the private methods should be extracted, which could be tested in the traditional, public way.
Here is a convoluted example of how this would work:
// Import statements and package declarations
public class ClassToTest
{
private int decrement(int toDecrement) {
toDecrement--;
return toDecrement;
}
// Constructor and the rest of the class
public static class StaticInnerTest extends TestCase
{
public StaticInnerTest(){
super();
}
public void testDecrement(){
int number = 10;
ClassToTest toTest= new ClassToTest();
int decremented = toTest.decrement(number);
assertEquals(9, decremented);
}
public static void main(String[] args) {
junit.textui.TestRunner.run(StaticInnerTest.class);
}
}
}
The inner class would be compiled to ClassToTest$StaticInnerTest.
See also: Java Tip 106: Static inner classes for fun and profit
As others have said... don't test private methods directly. Here are a few thoughts:
Keep all methods small and focused (easy to test, easy to find what is wrong)
Use code coverage tools. I like Cobertura (oh happy day, it looks like a new version is out!)
Run the code coverage on the unit tests. If you see that methods are not fully tested add to the tests to get the coverage up. Aim for 100% code coverage, but realize that you probably won't get it.
If using Spring, ReflectionTestUtils provides some handy tools that help out here with minimal effort. For example, to set up a mock on a private member without being forced to add an undesirable public setter:
ReflectionTestUtils.setField(theClass, "theUnsettableField", theMockObject);
Private methods are consumed by public ones. Otherwise, they're dead code. That's why you test the public method, asserting the expected results of the public method and thereby, the private methods it consumes.
Testing private methods should be tested by debugging before running your unit tests on public methods.
They may also be debugged using test-driven development, debugging your unit tests until all your assertions are met.
I personally believe it is better to create classes using TDD; creating the public method stubs, then generating unit tests with all the assertions defined in advance, so the expected outcome of the method is determined before you code it. This way, you don't go down the wrong path of making the unit test assertions fit the results. Your class is then robust and meets requirements when all your unit tests pass.
If you're trying to test existing code that you're reluctant or unable to change, reflection is a good choice.
If the class's design is still flexible, and you've got a complicated private method that you'd like to test separately, I suggest you pull it out into a separate class and test that class separately. This doesn't have to change the public interface of the original class; it can internally create an instance of the helper class and call the helper method.
If you want to test difficult error conditions coming from the helper method, you can go a step further. Extract an interface from the helper class, add a public getter and setter to the original class to inject the helper class (used through its interface), and then inject a mock version of the helper class into the original class to test how the original class responds to exceptions from the helper. This approach is also helpful if you want to test the original class without also testing the helper class.
Testing private methods breaks the encapsulation of your class because every time you change the internal implementation you break client code (in this case, the tests).
So don't test private methods.
The answer from JUnit.org FAQ page:
But if you must...
If you are using JDK 1.3 or higher, you can use reflection to subvert
the access control mechanism with the aid of the PrivilegedAccessor.
For details on how to use it, read this article.
If you are using JDK 1.6 or higher and you annotate your tests with
#Test, you can use Dp4j to inject reflection in your test methods. For
details on how to use it, see this test script.
P.S. I'm the main contributor to Dp4j. Ask me if you need help. :)
If you want to test private methods of a legacy application where you can't change the code, one option for Java is jMockit, which will allow you to create mocks to an object even when they're private to the class.
PowerMockito is made for this.
Use a Maven dependency:
<dependency>
<groupId>org.powermock</groupId>
<artifactId>powermock-core</artifactId>
<version>2.0.7</version>
<scope>test</scope>
</dependency>
Then you can do
import org.powermock.reflect.Whitebox;
...
MyClass sut = new MyClass();
SomeType rval = Whitebox.invokeMethod(sut, "myPrivateMethod", params, moreParams);
I tend not to test private methods. There lies madness. Personally, I believe you should only test your publicly exposed interfaces (and that includes protected and internal methods).
If you're using JUnit, have a look at junit-addons. It has the ability to ignore the Java security model and access private methods and attributes.
Here is my generic function to test private fields:
protected <F> F getPrivateField(String fieldName, Object obj)
throws NoSuchFieldException, IllegalAccessException {
Field field =
obj.getClass().getDeclaredField(fieldName);
field.setAccessible(true);
return (F)field.get(obj);
}
Please see below for an example;
The following import statement should be added:
import org.powermock.reflect.Whitebox;
Now you can directly pass the object which has the private method, method name to be called, and additional parameters as below.
Whitebox.invokeMethod(obj, "privateMethod", "param1");
I would suggest you refactoring your code a little bit. When you have to start thinking about using reflection or other kind of stuff, for just testing your code, something is going wrong with your code.
You mentioned different types of problems. Let's start with private fields. In case of private fields I would have added a new constructor and injected fields into that. Instead of this:
public class ClassToTest {
private final String first = "first";
private final List<String> second = new ArrayList<>();
...
}
I'd have used this:
public class ClassToTest {
private final String first;
private final List<String> second;
public ClassToTest() {
this("first", new ArrayList<>());
}
public ClassToTest(final String first, final List<String> second) {
this.first = first;
this.second = second;
}
...
}
This won't be a problem even with some legacy code. Old code will be using an empty constructor, and if you ask me, refactored code will look cleaner, and you'll be able to inject necessary values in test without reflection.
Now about private methods. In my personal experience when you have to stub a private method for testing, then that method has nothing to do in that class. A common pattern, in that case, would be to wrap it within an interface, like Callable and then you pass in that interface also in the constructor (with that multiple constructor trick):
public ClassToTest() {
this(...);
}
public ClassToTest(final Callable<T> privateMethodLogic) {
this.privateMethodLogic = privateMethodLogic;
}
Mostly all that I wrote looks like it's a dependency injection pattern. In my personal experience it's really useful while testing, and I think that this kind of code is cleaner and will be easier to maintain. I'd say the same about nested classes. If a nested class contains heavy logic it would be better if you'd moved it as a package private class and have injected it into a class needing it.
There are also several other design patterns which I have used while refactoring and maintaining legacy code, but it all depends on cases of your code to test. Using reflection mostly is not a problem, but when you have an enterprise application which is heavily tested and tests are run before every deployment everything gets really slow (it's just annoying and I don't like that kind of stuff).
There is also setter injection, but I wouldn't recommended using it. I'd better stick with a constructor and initialize everything when it's really necessary, leaving the possibility for injecting necessary dependencies.
A private method is only to be accessed within the same class. So there is no way to test a “private” method of a target class from any test class. A way out is that you can perform unit testing manually or can change your method from “private” to “protected”.
And then a protected method can only be accessed within the same package where the class is defined. So, testing a protected method of a target class means we need to define your test class in the same package as the target class.
If all the above does not suits your requirement, use the reflection way to access the private method.
As many above have suggested, a good way is to test them via your public interfaces.
If you do this, it's a good idea to use a code coverage tool (like EMMA) to see if your private methods are in fact being executed from your tests.
Today, I pushed a Java library to help testing private methods and fields. It has been designed with Android in mind, but it can really be used for any Java project.
If you got some code with private methods or fields or constructors, you can use BoundBox. It does exactly what you are looking for.
Here below is an example of a test that accesses two private fields of an Android activity to test it:
#UiThreadTest
public void testCompute() {
// Given
boundBoxOfMainActivity = new BoundBoxOfMainActivity(getActivity());
// When
boundBoxOfMainActivity.boundBox_getButtonMain().performClick();
// Then
assertEquals("42", boundBoxOfMainActivity.boundBox_getTextViewMain().getText());
}
BoundBox makes it easy to test private/protected fields, methods and constructors. You can even access stuff that is hidden by inheritance. Indeed, BoundBox breaks encapsulation. It will give you access to all that through reflection, but everything is checked at compile time.
It is ideal for testing some legacy code. Use it carefully. ;)
First, I'll throw this question out: Why do your private members need isolated testing? Are they that complex, providing such complicated behaviors as to require testing apart from the public surface? It's unit testing, not 'line-of-code' testing. Don't sweat the small stuff.
If they are that big, big enough that these private members are each a 'unit' large in complexity—consider refactoring such private members out of this class.
If refactoring is inappropriate or infeasible, can you use the strategy pattern to replace access to these private member functions / member classes when under unit test? Under unit test, the strategy would provide added validation, but in release builds it would be simple passthrough.
I want to share a rule I have about testing which particularly is related to this topic:
I think that you should never adapt production code in order to
indulge easer writing of tests.
There are a few suggestions in other posts saying you should adapt the original class in order to test a private method - please red this warning first.
If we change the accessibility of a method/field to package private or protected, just in order to have it accessible to tests, then we defeat the purpose of existence of private access directive.
Why should we have private fields/methods/classes at all when we want to have test-driven development? Should we declare everything as package private, or even public then, so we can test without any effort?—I don't think so.
From another point of view: Tests should not burden performance and execution of the production application.
If we change production code just for the sake of easier testing, that may burden performance and the execution of the application in some way.
If someone starts to change private access to package private, then a developer may eventually come up to other "ingenious ideas" about adding even more code to the original class. This would make additional noise to readability and can burden the performance of the application.
With changing of a private access to some less restrictive, we are opening the possibility to a developer for misusing the new situation in the future development of the application. Instead of enforcing him/her to develop in the proper way, we are tempting him/her with new possibilities and giving him ability to make wrong choices in the future.
Of course there might be a few exceptions to this rule, but with clear understanding, what is the rule and what is the exception? We need to be absolutely sure we know why that kind of exception is introduced.

What is wrong with making a unit test a friend of the class it is testing? [duplicate]

This question already has answers here:
How do I test a class that has private methods, fields or inner classes?
(58 answers)
Closed 5 years ago.
In C++, I have often made a unit test class a friend of the class I am testing. I do this because I sometimes feel the need to write a unit test for a private method, or maybe I want access to some private member so I can more easily setup the state of the object so I can test it. To me this helps preserve encapsulation and abstraction because I am not modifying the public or protected interface of the class.
If I buy a third party library, I wouldn't want its public interface to be polluted with a bunch of public methods I don't need to know about simply because the vendor wanted to unit test!
Nor do I want have to worry about a bunch of protected members that I don't need to know about if I am inheriting from a class.
That is why I say it preserves abstraction and encapsulation.
At my new job they frown against using friend classes even for unit tests. They say because the class should not "know" anything about the tests and that you do not want tight coupling of the class and its test.
Can someone please explain these reasons to me more so that I may understand better? I just do not see why using a friend for unit tests is bad.
Ideally, you shouldn't need to unit test private methods at all. All a consumer of your class should care about is the public interface, so that's what you should test. If a private method has a bug, it should be caught by a unit test that invokes some public method on the class which eventually ends up calling the buggy private method. If a bug manages to slip by, this indicates that your test cases don't fully reflect the contract you wish your class to implement. The solution to this problem is almost certainly to test public methods with more scrutiny, not to have your test cases dig into the class's implementation details.
Again, this is the ideal case. In the real world, things may not always be so clear, and having a unit testing class be a friend of the class it tests might be acceptable, or even desirable. Still, it's probably not something you want to do all the time. If it seems to come up often enough, that might a sign that your classes are too large and/or performing too many tasks. If so, further subdividing them by refactoring complex sets of private methods into separate classes should help remove the need for unit tests to know about implementation details.
You should consider that there are different styles and methods to test: Black box testing only tests the public interface (treating the class as a black box). If you have an abstract base class you can even use the same tests against all your implementations.
If you use White box testing, you might even look at the details of the implementation. Not only about which private methods a class has, but what kind of conditional statements are included (i.e. if you want to increase your condition coverage because you know that the conditions were hard to code). In white box testing, you definitely have "high coupling" between classes/implementation and the tests which is necessary because you want to test the implementation and not the interface.
As bcat pointed out, it's often helpful to use composition and more but smaller classes instead of many private methods. This simplifies white box testing because you can more easily specify the test cases to get a good test coverage.
I feel that Bcat gave a very good answer, but I would like to expound on the exceptional case that he alludes to
In the real world, things may not always be so clear, and having a
unit testing class be a friend of the class it tests might be
acceptable, or even desirable.
I work in a company with a large legacy codebase, which has two problems both of which contribute to making a friend unit-test desirable.
We suffer from obscenely large functions and classes which require refactoring, but in order to refactor it is helpful to have tests.
Much of our code is dependent on database access, which for various reasons should not be brought into the unit tests.
In some cases Mocking is useful to alleviate the latter problem, but very often this just leads to uneccessarily complex design (class heirarchies where none would otherwise be needed), while one could very simply refactor the code in the following way:
class Foo{
public:
some_db_accessing_method(){
// some line(s) of code with db dependance.
// a bunch of code which is the real meat of the function
// maybe a little more db access.
}
}
Now we have the situation where the meat of the function needs refactoring, so we'd like a unit test. It shouldn't be exposed publicly. Now, there's a wonderful technique called mocking that could be used in this situation, but the fact is that in this case a mock is overkill. It would require me to increase the complexity of the design with an unecessary hierarchy.
A far more pragmatic approach would be to do something like this:
class Foo{
public:
some_db_accessing_method(){
// db code as before
unit_testable_meat(data_we_got_from_db);
// maybe more db code.
}
private:
unit_testable_meat(...);
}
The latter gives me all of the benefits I need from unit testing, including giving me that precious safety net to catch errors produced when I refactor the code in the meat. In order to unit test it, I have to friend a UnitTest class, but I would strongly argue that this is is far better than an otherwise useless code heirarchy just to allow me to use a Mock.
I think this should become an idiom, and I think it's a suitable, pragmatic solution to increase the ROI of unit testing.
Like bcat suggested, as much as possible, you need to find bugs using public interface itself. But if you want to do things like printing private variables and comparing with expected result etc(Helpful for developers to debug the issues easily), then you can make UnitTest class as friend to class to be tested. But you may need to add it under a macro like below.
class Myclass
{
#if defined(UNIT_TEST)
friend class UnitTest;
#endif
};
Enable flag UNIT_TEST only when Unit testing is required.
For other releases, you need to disable this flag.
I don't see anything wrong with using a friend unit testing class in many cases. Yes, decomposing a large class into smaller ones is sometimes a better way to go. I think people are a bit too hasty to dismiss using the friend keyword for something like this - it might not be ideal object oriented design, but I can sacrifice a little idealism for better test coverage if that's what I really need.
Typically you only test the public interface so that you are free to redesign and refactor the implementation. Adding test cases for private members defines a requirement and restriction on the implementation of your class.
Make the functions you want to test protected.
Now in your unit test file, create a derived class.
Create public wrapper functions that call your the class-under-test protected functions.

How to unit test private methods in BDD / TDD?

I am trying to program according to Behavior Driven Development,
which states that no line of code should be written without writing
failing unit test first.
My questions:
how to use BDD with private methods, and
how can I unit test private methods?
Is there better solution than:
making private methods public first and then making them private
when I write public method that uses those private methods;
or
in C# making all private methods internal and using InternalsVisibleTo
attribute.
When you write code test-first, you write against the public interface. There are no private methods at this point.
Then you write the code to pass the test. If any of that code gets factored into a private method, that's not important -- it should still be there only because it is used by the public interface.
If the code isn't written test first, then -- in .net, anyway -- reflection can be used to directly prod private methods; though this is a technique of last resort.
Private methods are internal implementation details. They should not be tested directly, as they will be tested indirectly via testing your public interface. If for some reason a private method is not covered when your public interface is fully tested, then the private method is not required, and it should be removed.
Generally, it is a bad idea to bind test code to private implementation details. That couples your test to those private details, reducing your freedom to change those details at will, even if they don't affect the publicly facing interface and behavior. That increases the amount of effort required to write and maintain your unit tests, which is a negative thing. You should strive for as much coverage as possible, while only binding to the public interface.
Short answer: You don't test private methods.
If you have programmed well, the code coverage of your tests should be testing private methods implicitly.
If a private method method exists, it's there to be used by a public method. Therefore I'd write a test for the public method.
I write my tests to test the public parts of a class. If the class is well designed then the private parts get tested by default.
If the private method isn't called from a public method, then why does it exist?
In your case I'd do the following
* Write failing test for the public method
* Write public method that calls the private method that doesn't exist yet(test still fails as your class is incomplete
* Write the private method
* Test should now pass
Short answer: You can't test a private method.
Long answer: You can't test a private method, but if you're inclined to test whatever it does consider refactoring your code. There are two trivial approaches:
Test the public method that accesses the private method.
Extract the private code to its own class, i.e. move the implementation so it can become appropriately public.
The first one is simple but has a tendency to let you shoot your own foot as you write more tests and the latter promotes better code and test design.
Contrived answer: Okay, so I lied. You can test a private method with the help of some reflection magic (some TDD tools support testing private methods). In my experience though, it leads to convoluted unit tests. Convoluted unit tests leads to worse code. Worse code leads to anger. Anger leads to hate. Hate leads to suffering…
The direct effect of production code becoming worse is that the class under test tend to become large and handles many things (violation of Single Responsibility Principle) and harder to maintain. This defeats the purpose of TDD, that is to get production code testable, extensible and more importantly: reusable.
If you're writing tests for a class that is deployed, you could investigate everything that calls the private method and write tests accordingly. If you have the chance to rewrite the class then please do refactor it by splitting the class up. If you're lucky then you'll end up with some code reuse that you can utilize.
We can Unit Test static and instance private methods using PrivateType and PrivateObject respectively. The following 2 articles explains these techniques
1. Unit Test Private Static Method in C#.NET
2. Unit Test Private Instance Method in C#.NET
I agree with the point that has been made about not testing private methods per se and that tests should be written against the public API, but there is another option you haven't listed above.
You could make the methods protected then derive from the class under test. You can expose the base protected method with a public method on the derived class, for example,
public class TestableClassToTest : ClassToTest
{
public new void MethodToTest()
{
base.MethodToTest();
}
}
You might be using this Extract and Override pattern already to override virtual properties of the base class for dependency injection, in which case this may be a viable option for you.
Mbunit Reflector helps you with this.
Reflector objectReflection = new Reflector(new ObjectWithprivateMethods());
objectReflection.InvokeMethod(AccessModifier.NonPublic,,"Add",1,6));
A blog post about it.
I've been fighting with it for over 1 month, but found the answer:
var objectOfPrivateMethod = new ObjectOfPrivateMethod(); //yes here is contructor
object[] arguments = { }; // here as Object you provide arguments
var extractedPrivateMethod = typeof(ObjectOfPrivateMethod).GetMethod("Name_Of_Private_Method", BindingFlags.NonPublic|BindingFlags.Static); //if fails returns null. delete flag static if it's not static. Returns your method as an object.
Assert.AreNotEqual(null, extractedPrivateMethod, "Mathod does not exist"); // good to catch if even exists.
object result = extractedPrivateMethod.Invoke(null, arguments); // here as object you'll get return value of your function. change null for object of class where is method, if your method is not static
that's all.
You should only be testing the external API of your classes, i.e. the public methods. If your tests aren't hitting code in the private methods then either you need to write more tests or refactor the class.
The whole point of testing an API, especially one that will be distributed to third parties, is that you can change the internal structure of the class as much as you want, as long as you don't break the external contract of it's public methods.
As you've identified, this is where BDD comes into play over 'traditional' TDD using mock classes, where every method call has to be set-up in advance for the test. I'm not an expert on either of these, hopefully someone else can answer that one better than I can.
If you find yourself wanting to test a private method then there is something complex in it and you are probably right to want to test it, this is a design smell. Exposing the method on the interface just swaps one smell for another worse one.
Time to refactor :)
Usually I factor out the inner complexity into a helper class. However check the method for 'Feature Envy' or 'Inappropriate Intimacy'. There may be a better place for the method to live. With Extension methods in .net now, even base types could be a good candidate.
Good Luck
If you really believe that a private method is complex enough that it deserves unit tests of it's own - it's an indicator that your class is doing too much and you should extract part or all of that private method into a class of its own behind an interface.
Mock the interface when testing the original class. You should now have a public accessor to the new class which was previously the private method.
Sometimes when dealing with old code that was either poorly written or not written using TDD there may be a need to test the private classes. In this case you should use reflection, but where possible update the code to follow closer to the TDD approach.