Boost Serialization of classes with private data - c++

Is it possible to non intrusively serialize a class with private data but with public get/set methods using the Boost serialize library. If not, are there other libraries that are capable of doing this?
Thnaks

You can deserialise/serialise to temporary variables, if you have to (the archive doesn't magically know that the variables being serialised into are fields of the class). Adapting the serialise function from the tutorial to assume no direct access to data:
template<class Archive>
void serialize(Archive & ar, gps_position & g, const unsigned int version)
{
int degrees = g.getDegrees();
int minutes = g.getMinutes();
float seconds = g.getSeconds();
ar & degrees;
ar & minutes;
ar & seconds;
g.setDegrees(degrees);
g.setMinutes(minutes);
g.setSeconds(seconds);
}

Related

How to deserialize and create objects on heap?

How to serialize/deserialize object with boost (c++11) when object contains
vector<map<u_int64_t, Student*>*>* students;
like:
class YearContainer{
public:
vector<map<u_int64_t, Student*>*>* students;
};
where class Student has serialize method like
template<class Archive>
void serialize(Archive & ar, const unsigned int version)
{
ar & name;
// ....
}
How to deserialize and create all on heap ?
This looks like it uses the Boost.Serialization library. I don't really see a more specific question here.

The Boost library, serialization, and an ampersand operator?

I come from a Java and C# background and as a way to dive into C++, I'm building an icons dock using Qt and Boost. Looking at the documentation for the serialization, I stumbled uppon some interesting use of an & operator.
class gps_position
{
private:
friend class boost::serialization::access;
// When the class Archive corresponds to an output archive, the
// & operator is defined similar to <<. Likewise, when the class Archive
// is a type of input archive the & operator is defined similar to >>.
template<class Archive>
void serialize(Archive & ar, const unsigned int version)
{
ar & degrees;
ar & minutes;
ar & seconds;
}
int degrees;
int minutes;
float seconds;
The purpose of the & operator is very clear reading the comments. What I'd like to know, is how is it achieved? How does it know what "&" is supposed to mean? I searched for more uses of the ampersand operator on Google, but all I can find is & used in order to denote reference rather than an opperation.
Thanks.
An example for overloading bitwise-and:
class Archive {
public:
std::ostream& operator&( std::ostream& out ) {
return out << to_string();
}
std::string to_string() { return "a string"; }
};
For non-builtin types, You can define operator behaviour in C++.
For details, see the C++ FAQ.

Boost serializing loading fails with exception thrown

I have been trying to make this work for a long time now.
In my project there are 6 classes that are being serialized using the exact tutorial from boost, by implementing the template function serialize.
Those classes are: State, guState, Policy, Action, Param, Vec3D.
When I serialize and save them, it works fine. I get indeed a text file, with various numbers and strings in it.
No complains, no warnings, no exceptions thrown. The only case is that if I try to serialize a pointer member of a class, the hole process becomes a zombie. So I do not try doing so, and saving works.
When however I try loading, I get:
terminate called after throwing an instance of
'boost::archive::archive_exception' what(): stream error
Now the interesting part is that I serialize two boost::ptr_vectors, one which consists of State pointers and one which consists of Policy pointers.
The state vector, I have saved and loaded without a problem.
The policy vector, I can save, but when I try loading i get the exception.
Furthermore, after reading the boost tutorials, I was under the impression that In order to load I did not need anything else other than the serialize function.
However when I tried loading, boost serialization would complain for not finding a default constructor such as State(), Policy(), etc (I implement my own constructors in each class ).
After reading this tutorial here I implemented a default constructor which does nothing, so that boost-serialization would work. Indeed it did compile, and I got the results mentioned above.
I have tried going down a much complicated road seen in my old question here where I tried seperating and implementing save_construct_data and load_construct_data, but I found this too instrusive, again I got the exact error as above.
Can someone please help me, explain how the loading works, what is the deal with the default constructors ? Or at least point me to a link that might be helpfull. I have gone through the manuals in boost, and they do not explain much about reconstruction.
Thank you.
Edit (Added a few snippets)
class State
{
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version);
protected:
std::map<std::string,float> positions;
float reward;
std::size_t hash_value;
bool exists(const Action* A);
bool operator== (State const& S);
std::size_t hash();
void clean_noise();
State(){}; // NOTE: This is used only by serializer, without it, code won't compile
public:
enum position { standing, on_chest, on_back, on_left, on_right, getting_up };
position current_position;
Policy *my_policy;
Vec3D gps;
boost::ptr_vector<Action> actions;
State(ACTION_MODE &m);
~State();
bool operator== (State const* S);
bool operator< (State const* S) const ;
const float& getR() const;
bool addAction(Action *A);
Action* findAction(const Action *A);
boost::ptr_vector<Action>& getAllActions();
void printState();
virtual bool isTerm();
};
template <class Archive>
void State::serialize(Archive& ar, const unsigned int version)
{
ar & BOOST_SERIALIZATION_NVP(positions);
ar & BOOST_SERIALIZATION_NVP(gps);
ar & BOOST_SERIALIZATION_NVP(current_position);
ar & BOOST_SERIALIZATION_NVP(reward);
ar & BOOST_SERIALIZATION_NVP(hash_value);
ar & BOOST_SERIALIZATION_NVP(actions);
ar & BOOST_SERIALIZATION_NVP(my_policy);
}
Other Classes inheriting from State, have also their serialize functions, using:
ar & boost::serialization::base_object<State>(*this);
Class Policy:
class Policy
{
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version);
Policy() {}; // NOTE: Again same as with state, used only by serialize load
protected:
float QValue;
State *state;
public:
//! Base class constructor
Policy(State *s);
...
};
template <class Archive>
void Policy::serialize(Archive& ar, const unsigned int version)
{
ar & BOOST_SERIALIZATION_NVP(action);
ar & BOOST_SERIALIZATION_NVP(state);
ar & BOOST_SERIALIZATION_NVP(QValue);
ar & BOOST_SERIALIZATION_NVP(r);
}
As you can see those are the two main classes, Other classes are also serialized because of reconstruction dependencies ( class Action, class Param, etc )
The master Class:
template <class S, class P> class Task
{
protected:
...
//! Container of states of type S (template parameter)
boost::ptr_vector<S> states;
//! Container of policies of type P (template parameter)
boost::ptr_vector<P> policies;
...
public:
Task(Agent &a, ACTION_MODE &m);
...
void save_to_file();
void load_from_file(std::string filename);
};
template <class S, class P>
void Task<S,P>::save_to_file()
{
std::string output = ramdisk+"serialized";
char *file = (char*)output.c_str();
std::ofstream ofs(file);
assert(ofs.good());
boost::archive::text_oarchive oa(ofs);
oa << states;
oa << policies;
ofs.close();
}
template <class S, class P>
void Task<S,P>::load_from_file(std::string filename)
{
char *file = (char*)output.c_str();
std::cout << file << std::endl;
std::ifstream ifs(file);
boost::archive::text_iarchive ia(ifs);
ia >> states;
ia >> policies;
ifs.close();
}
Effectively contains the two boost::ptr_vectors which hold the States and Policies.
States are saved and loaded without a problem.
The problem arises when loading policies. Saving them does not seem to create a problem (but then again I might be wrong).
Having tested save/load without policies, and with, The issue appears to be with policy reconstruction.
Note the default constructors used only by serialization, without which the code will not compile.
EDIT#2: After running application using valgrind and memcheck, it reports that there is a pointer memory leak. However since I am not good at debugging with valgrind I can't really tell where the leak is occuring or if it is relevant to my serialization (I think it is).
The problem is that you are serializing states and policies while Policy also holds references to the same instances of State. You can only serialize classes which don't have such cross-references. Boost should throw a pointer-conflict exception when writing to the file. In my tests it dependet on the order of writes if the exception was thrown or not - which is unfortunate because loading fails even if writing succeeded.
A workaround would be to delete the line oa << states when saving and loading and fix up the pointers by hand in a post-loading step.
About the constructors: it's mostly something the boost-api needs to do it's template magic. However when using versioning it's important to specify default-values for your member-variables so they are not left uninitialized when loading files with an older version-number.

Using boost::archive with boost::iostreams to compress data

I want to write a serialize function for a class that can optionally compress the data. I would like to use the compression facilities provided in boost::iostreams. Does anyone know how to do this?
struct X
{
X() {}
template<class Archive>
void serialize(Archive & ar, const unsigned int version)
{
ar & compression;
if(compression == 0)
{
ar & data;
}
else if(compression == 1)
{
// use boost::iostream compression
// facilities to serialize data
}
}
int compression;
std::vector<int> data;
};
The only way I can see to do that is compress the data first and then use ar.load_binary and ar.save_binary. To compress the data, you could use a filtering_stream with std::ostringstream as sink and an appropriate compression filter.
Any reason you don't want to push the compression down the stack (that is, build your archive over a compressing stream)?

boost::serialization with mutable members

Using boost::serialization, what's the "best" way to serialize an object that contains cached, derived values in mutable members?
class Example
{
public:
Example(float n) :
num(n),
sqrt_num(-1.0)
{}
// compute and cache sqrt on first read
float get_sqrt() const
{
if(sqrt_num < 0)
sqrt_num = sqrt(num);
return sqrt_num;
}
template <class Archive>
void serialize(Archive& ar, unsigned int version)
{ ... }
private:
float num;
mutable float sqrt_num;
};
I'd like to avoid splitting serialize() into separate save() and load() methods, for maintenance reasons.
One suboptimal implementation of serialize:
template <class Archive>
void serialize(Archive& ar, unsigned int version)
{
ar & num;
sqrt_num = -1.0;
}
This handles the deserialization case, but in the serialization case, the cached value is killed and must be recomputed.
What is the best practice in this case?
Splitting your saving and loading methods doesn't mean you have to maintain two copies of your serialization code. You can split them and then join them back again with a common function.
private:
friend class boost::serialization::access;
BOOST_SERIALIZATION_SPLIT_MEMBER()
template <class Archive>
void save(Archive& ar, const unsigned int version) const {
const_cast<Example*>(this)->common_serialize(ar, version);
}
template <class Archive>
void load(Archive& ar, const unsigned int version) {
common_serialize(ar, version);
sqrt_num = -1;
}
template <class Archive>
void common_serialize(Archive& ar, const unsigned int version) {
ar & num;
}
You probably noticed the const_cast. That's an unfortunate caveat to this idea. Although the serialize member function is non-const for saving operations, the save member function needs to be const. As long as the object you're serializing wasn't originally declared const, though, it's safe to cast it away as shown above. The documentation briefly mentions the need to cast for const members; this is similar.
With the changes above, your code will correctly print "2" for both ex1 and ex2, and you only have to maintain one copy of the serialization code. The load code only contains code specific to re-initializing the object's internal cache; the save function doesn't touch the cache.
You can check the Archive::is_loading field, and load cached values if it's true.
template <class Archive>
void serialize(Archive& ar, unsigned int version)
{
ar & num;
if(Archive::is_loading::value == true)
sqrt_num = -1.0;
}