I have noted that the cascades trained with the program opencv_traincascade does not run with the current version of opencv_performance. I've tried to convert the old performance cpp file to load the new types of cascades, but without success. The code is here:
#include "cv.h"
#include "highgui.h"
#include <cstdio>
#include <cmath>
#include <ctime>
#include <math.h>
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#ifndef PATH_MAX
#define PATH_MAX 512
#endif /* PATH_MAX */
/*typedef struct HidCascade {
int size;
int count;
} HidCascade;
*/
typedef struct ObjectPos {
float x;
float y;
float width;
int found; /* for reference */
int neghbors;
} ObjectPos;
using namespace std;
using namespace cv;
int main(int argc, char* argv[]) {
int i, j;
char* classifierdir = NULL;
//char* samplesdir = NULL;
int saveDetected = 1;
double scale_factor = 1.1;
float maxSizeDiff = 1.5F;
float maxPosDiff = 1.1F;
/* number of stages. if <=0 all stages are used */
//int nos = -1, nos0;
int width = 25;
int height = 15;
int rocsize;
FILE* info;
FILE* resultados;
char* infoname;
char fullname[PATH_MAX];
//char detfilename[PATH_MAX];
char* filename;
//char detname[] = "det-";
CascadeClassifier cascade;
double totaltime;
if (!(resultados = fopen("resultados.txt", "w"))) {
printf("Cannot create results file.\n");
exit(-1);
}
infoname = (char*) "";
rocsize = 20;
if (argc == 1) {
printf("Usage: %s\n -data <classifier_directory_name>\n"
" -info <collection_file_name>\n"
" [-maxSizeDiff <max_size_difference = %f>]\n"
" [-maxPosDiff <max_position_difference = %f>]\n"
" [-sf <scale_factor = %f>]\n"
" [-ni]\n"
" [-rs <roc_size = %d>]\n"
" [-w <sample_width = %d>]\n"
" [-h <sample_height = %d>]\n", argv[0], maxSizeDiff,
maxPosDiff, scale_factor, rocsize, width, height);
return 0;
}
for (i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-data")) {
classifierdir = argv[++i];
} else if (!strcmp(argv[i], "-info")) {
infoname = argv[++i];
} else if (!strcmp(argv[i], "-maxSizeDiff")) {
maxSizeDiff = (float) atof(argv[++i]);
} else if (!strcmp(argv[i], "-maxPosDiff")) {
maxPosDiff = (float) atof(argv[++i]);
} else if (!strcmp(argv[i], "-sf")) {
scale_factor = atof(argv[++i]);
} else if (!strcmp(argv[i], "-ni")) {
saveDetected = 0;
} else if (!strcmp(argv[i], "-rs")) {
rocsize = atoi(argv[++i]);
} else if (!strcmp(argv[i], "-w")) {
width = atoi(argv[++i]);
} else if (!strcmp(argv[i], "-h")) {
height = atoi(argv[++i]);
}
}
if (!cascade.load(classifierdir)) {
printf("Unable to load classifier from %s\n", classifierdir);
return 1;
}
strcpy(fullname, infoname);
filename = strrchr(fullname, '\\');
if (filename == NULL) {
filename = strrchr(fullname, '/');
}
if (filename == NULL) {
filename = fullname;
} else {
filename++;
}
info = fopen(infoname, "r");
totaltime = 0.0;
if (info != NULL) {
int x, y, width, height;
Mat img;
int hits, missed, falseAlarms;
int totalHits, totalMissed, totalFalseAlarms;
int found;
float distance;
int refcount;
ObjectPos* ref;
int detcount;
ObjectPos* det;
int error = 0;
int* pos;
int* neg;
pos = (int*) cvAlloc(rocsize * sizeof(*pos));
neg = (int*) cvAlloc(rocsize * sizeof(*neg));
for (i = 0; i < rocsize; i++) {
pos[i] = neg[i] = 0;
}
printf("+================================+======+======+======+\n");
printf("| File Name | Hits |Missed| False|\n");
printf("+================================+======+======+======+\n");
fprintf(resultados,
"+================================+======+======+======+\n");
fprintf(resultados,
"| File Name | Hits |Missed| False|\n");
fprintf(resultados,
"+================================+======+======+======+\n");
//fprintf (resultados, "%d\n",framesCnt);
totalHits = totalMissed = totalFalseAlarms = 0;
while (!feof(info)) {
fscanf(info, "%s %d", filename, &refcount);
img = imread(fullname);
if (!img.data) {
cout << "ow" << endl;
return -1;
}
ref = (ObjectPos*) cvAlloc(refcount * sizeof(*ref));
for (i = 0; i < refcount; i++) {
error = (fscanf(info, "%d %d %d %d", &x, &y, &width, &height)
!= 4);
if (error)
break;
ref[i].x = 0.5F * width + x;
ref[i].y = 0.5F * height + y;
ref[i].width = sqrt(0.5F * (width * width + height * height));
ref[i].found = 0;
ref[i].neghbors = 0; //in the new cascade, where to get the neighbors?
}
vector<Rect> obj_detectados;
Rect retang;
if (!error) {
totaltime -= time(0);
cascade.detectMultiScale(img, obj_detectados, scale_factor, 4, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
// |CV_HAAR_DO_ROUGH_SEARCH
| CV_HAAR_SCALE_IMAGE, Size(25, 15));
totaltime += time(0);
if (obj_detectados.size() == 0) {
detcount = 0;
} else {
detcount = obj_detectados.size();
}
det = (detcount > 0) ?
((ObjectPos*) cvAlloc(detcount * sizeof(*det))) : NULL;
hits = missed = falseAlarms = 0;
for (vector<Rect>::const_iterator r = obj_detectados.begin();
r != obj_detectados.end(); r++, i++) {
Point r1, r2;
r1.x = (r->x);
r1.y = (r->y);
r2.x = (r->x + r->width);
r2.y = (r->y + r->height);
retang.x = r1.x;
retang.y = r1.y;
retang.width = abs(r2.x - r1.x);
retang.height = abs(r2.y - r1.y);
if (saveDetected) {
rectangle(img, retang, Scalar(0, 0, 255), 3, CV_AA);
}
det[i].x = 0.5F*r->width + r->x;
det[i].y = 0.5F*r->height + r->y;
det[i].width = sqrt(0.5F * (r->width * r->width
+ r->height * r->height));
det[i].neghbors = 1; // i don't know if it will work...
// det[i].neghbors = r.neighbors; --- how to do it in the new version??
found = 0;
for (j = 0; j < refcount; j++) {
distance = sqrtf( (det[i].x - ref[j].x) * (det[i].x - ref[j].x) +
(det[i].y - ref[j].y) * (det[i].y - ref[j].y) );
//cout << distance << endl;
if( (distance < ref[j].width * maxPosDiff) &&
(det[i].width > ref[j].width / maxSizeDiff) &&
(det[i].width < ref[j].width * maxSizeDiff) )
{
ref[j].found = 1;
ref[j].neghbors = MAX( ref[j].neghbors, det[i].neghbors );
found = 1;
}
}
if (!found) {
falseAlarms++;
neg[MIN(det[i].neghbors, rocsize - 1)]++;
//neg[MIN(0, rocsize - 1)]++;
}
}
//imshow("teste", img);
if (saveDetected) {
//strcpy(detfilename, detname);
//strcat(detfilename, filename);
//strcpy(filename, detfilename);
imwrite(fullname, img);
//cvvSaveImage(fullname, img);
}
for (j = 0; j < refcount; j++) {
if (ref[j].found) {
hits++;
//pos[MIN(0, rocsize - 1)]++;
pos[MIN(ref[j].neghbors, rocsize - 1)]++;
} else {
missed++;
}
}
totalHits += hits;
totalMissed += missed;
totalFalseAlarms += falseAlarms;
printf("|%32.64s|%6d|%6d|%6d|\n", filename, hits, missed,
falseAlarms);
//printf("+--------------------------------+------+------+------+\n");
fprintf(resultados, "|%32.64s|%6d|%6d|%6d|\n", filename, hits,
missed, falseAlarms);
//fprintf(resultados,
// "+--------------------------------+------+------+------+\n");
fflush(stdout);
if (det) {
cvFree( &det);
det = NULL;
}
} /* if( !error ) */
//char c = (char) waitKey(10);
// if (c == 27)
// exit(0);
cvFree( &ref);
}
fclose(info);
printf("|%32.32s|%6d|%6d|%6d|\n", "Total", totalHits, totalMissed,
totalFalseAlarms);
fprintf(resultados, "|%32.32s|%6d|%6d|%6d|\n", "Total", totalHits,
totalMissed, totalFalseAlarms);
printf("+================================+======+======+======+\n");
fprintf(resultados,
"+================================+======+======+======+\n");
//printf("Number of stages: %d\n", nos);
//printf("Number of weak classifiers: %d\n", numclassifiers[nos - 1]);
printf("Total time: %f\n", totaltime);
fprintf(resultados, "Total time: %f\n", totaltime);
/* print ROC to stdout */
for (i = rocsize - 1; i > 0; i--) {
pos[i - 1] += pos[i];
neg[i - 1] += neg[i];
}
//fprintf(stderr, "%d\n", nos);
for (i = 0; i < rocsize; i++) {
fprintf(stderr, "\t%d\t%d\t%f\t%f\n", pos[i], neg[i],
((float) pos[i]) / (totalHits + totalMissed),
((float) neg[i]) / (totalHits + totalMissed));
}
cvFree( &pos);
cvFree( &neg);
}
return 0;
}
My doubt is about the det[i].neghbors = r.neighbors; in the old performance.cpp. How I retrieve the neighbors in this new version?
Anyone could help me to convert opencv_performance to run the new cascades from opencv_traincascade?
Many thanks!
Related
I'm in the process of working on a kernel program to handle printing capabilities of input for a custom OS. I'm following Poncho's 2nd YouTube Video series found here, I'm currently on Video 4 in the series where he starts to add numerical types as inputs to the renderer's print function. Now, my code isn't exactly like his as I made some modifications.
-Note- This won't compile directly as there is no main function. _start is being called or invoked by a bootloader that isn't shown here, I will however, add it to the bottom of this question.
When I use the class's print function like this within my kernel:
#include "BasicRenderer.h"
extern "C" void _start(Framebuffer* framebuffer, PSF1_FONT** fonts) {
BasicRenderer = renderer(framebuffer, fonts);
renderer.Print("This is some text");
renderer.Print('\n');
renderer.Print(uint64_t(123456789));
renderer.Print('\n');
renderer.Print(int64_t(-123456789));
return;
}
And I run the kernel in emu. I'm getting the following output displayed:
This is some text
123456789
-123456789
The above is correct, however, when I try to incorporate the ability to parse a newline set of characters being either \n or \0 within of a const char* that acts as a string as seen in the following example:
#include "BasicRenderer.h"
extern "C" void _start(Framebuffer* framebuffer, PSF1_FONT** fonts) {
BasicRenderer = renderer(framebuffer, fonts);
renderer.Print("This is some text\n");
renderer.Print(uint64_t(123456789));
renderer.Print('\n');
renderer.Print(int64_t(-123456789));
return;
}
And now the displayed output is:
This is some text
123456789
-123456789
Here, the output in the second line has a space preceding the numerical value to be displayed after the call to Print() that has a \n within its string. I'm not sure what is causing this in my code. Does it have to do with the while condition or how I'm incrementing and indexing into the character string within BasicRenderer::Print(const char* str)? Or is it coming from BasicRender::PutChar(char c)? Or is it within one of the to_string() functions?
Here is the relevant implementation code...
BasicRenderer.cpp
#include "BasicRenderer.h"
void BasicRenderer::Print(const char* str) {
char* chr = (char*)str;
while(*chr != 0) {
if ( (*chr == '\\') && ((*chr+1 == 'n') || (*chr+1 == '0')) ) {
PutChar('\n');
chr++;
chr++;
} else {
PutChar(*chr);
cursor_position_.x += 8;
if (cursor_position_.x + 8 > framebuffer_->Width) {
cursor_position_.x = 0;
cursor_position_.y += 16;
}
chr++;
}
}
}
void BasicRenderer::Print(uint64_t val) {
const char* str = to_string(val);
Print(str);
}
void BasicRenderer::Print(int64_t val) {
const char* str = to_string(val);
Print(str);
}
void BasicRenderer::PutChar(char c) {
if (c == '\n' || c == '\0') {
cursor_position_.x = 0;
cursor_position_.y += 16;
} else {
unsigned int* pixPtr = (unsigned int*)framebuffer_->BaseAddress;
char* fontPtr = (char*)selected_font_->glyphBuffer + (c * selected_font_->psf1_Header->charsize);
for (unsigned long y = cursor_position_.y; y < cursor_position_.y + 16; y++) {
for (unsigned long x = cursor_position_.x; x < cursor_position_.x + 8; x++) {
if ((*fontPtr & (0b10000000 >> (x - cursor_position_.x))) > 0) {
*(unsigned int*)(pixPtr + x + (y * framebuffer_->PixelsPerScanLine)) = font_color_;
}
}
fontPtr++;
}
}
}
cstr.cpp
#include "cstr.h"
const char* to_string(uint64_t value) {
static char output_uint_buffer[128];
uint8_t size = 0;
uint64_t sizeTest = value;
while (sizeTest / 10 > 0) {
sizeTest /= 10;
size++;
}
uint8_t idx = 0;
while (value / 10 > 0) {
uint8_t remainder = value % 10;
value /= 10;
output_uint_buffer[size - idx] = remainder + '0';
idx++;
}
uint8_t remainder = value % 10;
output_uint_buffer[size-idx] = remainder + '0';
output_uint_buffer[size + 1] = 0;
return output_uint_buffer;
}
const char* to_string(int64_t value) {
static char output_int_buffer[128];
uint8_t isNegative = 0;
if (value < 0) {
isNegative = 1;
value *= -1;
output_int_buffer[0] = '-';
}
uint8_t size = 0;
uint64_t sizeTest = value;
while (sizeTest / 10 > 0) {
sizeTest /= 10;
size++;
}
uint8_t idx = 0;
while (value / 10 > 0) {
uint8_t remainder = value % 10;
value /= 10;
output_int_buffer[isNegative + size - idx] = remainder + '0';
idx++;
}
uint8_t remainder = value % 10;
output_int_buffer[isNegative + size - idx] = remainder + '0';
output_int_buffer[isNegative + size + 1] = 0;
return output_int_buffer;
}
And here is the rest of the declarations...
BasicRender.h
#pragma once
#include "cstr.h"
#include "math.h"
#include "framebuffer.h"
#include "SimpleFonts.h"
class BasicRenderer {
public:
BasicRenderer(Framebuffer* framebuffer, PSF1_FONT** fonts) :
framebuffer_{framebuffer},
fonts_{fonts},
cursor_position_({0,0}),
selected_font_{fonts_[0]},
font_color_{0xFFFFFFFF}
{}
void Print(const char* str);
void Print(char c) { PutChar(c); }
void Print(uint64_t val);
void Print(int64_t val);
private:
void PutChar(char c);
Framebuffer* framebuffer_;
Point cursor_position_;
PSF1_FONT** fonts_;
PSF1_FONT* selected_font_;
unsigned int font_color_;
};
cstr.h
#pragma once
#include <stdint.h>
const char* to_string(uint64_t value);
const char* to_string(int64_t value);
math.h
#pragma once
struct Point {
unsigned int x;
unsigned int y;
};
Framebuffer.h
#pragma once
#include <stddef.h>
struct Framebuffer {
void* BaseAddress;
size_t BufferSize;
unsigned int Width;
unsigned int Height;
unsigned int PixelsPerScanLine;
};
SimpleFonts.h
#pragma once
struct PSF1_HEADER {
unsigned char magic[2];
unsigned char mode;
unsigned char charsize;
};
struct PSF1_FONT {
PSF1_HEADER* psf1_Header;
void* glyphBuffer;
};
Here is the bootloader application that invokes the above kernel.
main.c
#include <efi.h>
#include <efilib.h>
#include <elf.h>
#define PSF1_MAGIC0 0x36
#define PSF1_MAGIC1 0x04
typedef unsigned long long size_t;
typedef struct {
unsigned char magic[2];
unsigned char mode;
unsigned char charsize;
} PSF1_HEADER;
typedef struct {
PSF1_HEADER* psf1_Header;
void* glyphBuffer;
} PSF1_FONT;
typedef struct {
void* BaseAddress;
size_t BufferSize;
unsigned int Width;
unsigned int Height;
unsigned int PixelsPerScanLine;
} Framebuffer; Framebuffer framebuffer;
Framebuffer* InitializeGOP() {
EFI_GUID gopGuid = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
EFI_GRAPHICS_OUTPUT_PROTOCOL* gop;
EFI_STATUS status;
status = uefi_call_wrapper(BS->LocateProtocol, 3, &gopGuid, NULL, (void**)&gop);
if (EFI_ERROR(status)) {
Print(L"Unable to locate GOP\n\r");
return NULL;
} else {
Print(L"GOP located\n\r");
}
framebuffer.BaseAddress = (void*)gop->Mode->FrameBufferBase;
framebuffer.BufferSize = gop->Mode->FrameBufferSize;
framebuffer.Width = gop->Mode->Info->HorizontalResolution;
framebuffer.Height = gop->Mode->Info->VerticalResolution;
framebuffer.PixelsPerScanLine = gop->Mode->Info->PixelsPerScanLine;
return &framebuffer;
}
EFI_FILE* LoadFile(EFI_FILE* Directory, CHAR16* Path, EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE* SystemTable) {
EFI_FILE* LoadedFile;
EFI_LOADED_IMAGE_PROTOCOL* LoadedImage;
SystemTable->BootServices->HandleProtocol(ImageHandle, &gEfiLoadedImageProtocolGuid, (void**)&LoadedImage);
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL* FileSystem;
SystemTable->BootServices->HandleProtocol(LoadedImage->DeviceHandle, &gEfiSimpleFileSystemProtocolGuid, (void**)&FileSystem);
if (Directory == NULL) {
FileSystem->OpenVolume(FileSystem, &Directory);
}
EFI_STATUS s = Directory->Open(Directory, &LoadedFile, Path, EFI_FILE_MODE_READ, EFI_FILE_READ_ONLY);
if (s != EFI_SUCCESS) {
return NULL;
}
return LoadedFile;
}
PSF1_FONT* LoadPSF1Font(EFI_FILE* Directory, CHAR16* Path, EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE* SystemTable) {
EFI_FILE* font = LoadFile(Directory, Path, ImageHandle, SystemTable);
if (font == NULL) return NULL;
PSF1_HEADER* fontHeader;
SystemTable->BootServices->AllocatePool(EfiLoaderData, sizeof(PSF1_HEADER), (void**)&fontHeader);
UINTN size = sizeof(PSF1_HEADER);
font->Read(font, &size, fontHeader);
if (fontHeader->magic[0] != PSF1_MAGIC0 || fontHeader->magic[1] != PSF1_MAGIC1) return NULL;
UINTN glyphBufferSize = fontHeader->charsize * 256;
if (fontHeader->mode == 1) { // 512 glyph mode
glyphBufferSize *= 2;
}
void* glyphBuffer;
font->SetPosition(font, sizeof(PSF1_HEADER));
SystemTable->BootServices->AllocatePool(EfiLoaderData, glyphBufferSize, (void**)&glyphBuffer);
font->Read(font, &glyphBufferSize, glyphBuffer);
PSF1_FONT* finishedFont;
SystemTable->BootServices->AllocatePool(EfiLoaderData, sizeof(PSF1_FONT), (void**)&finishedFont);
finishedFont->psf1_Header = fontHeader;
finishedFont->glyphBuffer = glyphBuffer;
return finishedFont;
}
int memcmp(const void* aptr, const void* bptr, size_t n) {
const unsigned char* a = aptr, *b = bptr;
for (size_t i = 0; i < n; i++) {
if (a[i] < b[i]) return -1;
else if(a[i] > b[i]) return 1;
}
return 0;
}
EFI_STATUS efi_main (EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable) {
InitializeLib(ImageHandle, SystemTable);
Print(L"Hello World!\n\r");
EFI_FILE* Kernel = LoadFile(NULL, L"kernel.elf", ImageHandle, SystemTable);
if ( Kernel == NULL) {
Print(L"Could not load kernel \n\r");
} else {
Print(L"Kernel Loaded Successfully \n\r");
}
Elf64_Ehdr header;
{
UINTN FileInfoSize;
EFI_FILE_INFO* FileInfo;
Kernel->GetInfo(Kernel, &gEfiFileInfoGuid, &FileInfoSize, NULL);
SystemTable->BootServices->AllocatePool(EfiLoaderData, FileInfoSize, (void**)&FileInfo);
Kernel->GetInfo(Kernel, &gEfiFileInfoGuid, &FileInfoSize, (void**)&FileInfo);
UINTN size = sizeof(header);
Kernel->Read(Kernel, &size, &header);
}
if (
memcmp(&header.e_ident[EI_MAG0], ELFMAG, SELFMAG) != 0 ||
header.e_ident[EI_CLASS] != ELFCLASS64 ||
header.e_ident[EI_DATA] != ELFDATA2LSB ||
header.e_type != ET_EXEC ||
header.e_machine != EM_X86_64 ||
header.e_version != EV_CURRENT
) {
Print(L"kernel format is bad\r\n");
} else {
Print(L"kernel header successfully verified\r\n");
}
Elf64_Phdr* phdrs;
{
Kernel->SetPosition(Kernel, header.e_phoff);
UINTN size = header.e_phnum * header.e_phentsize;
SystemTable->BootServices->AllocatePool(EfiLoaderData, size, (void**)&phdrs);
Kernel->Read(Kernel, &size, phdrs);
}
for (
Elf64_Phdr* phdr = phdrs;
(char*)phdr < (char*)phdrs + header.e_phnum * header.e_phentsize;
phdr = (Elf64_Phdr*)((char*)phdr + header.e_phentsize)
) {
switch(phdr->p_type) {
case PT_LOAD: {
int pages = (phdr->p_memsz + 0x1000 - 1) / 0x1000;
Elf64_Addr segment = phdr->p_paddr;
SystemTable->BootServices->AllocatePages(AllocateAddress, EfiLoaderData, pages, &segment);
Kernel->SetPosition(Kernel, phdr->p_offset);
UINTN size = phdr->p_filesz;
Kernel->Read(Kernel, &size, (void*)segment);
break;
}
}
}
Print(L"Kernel Loaded\n\r");
void (*KernelStart)(Framebuffer*, PSF1_FONT**) = ((__attribute__((sysv_abi)) void(*)(Framebuffer*, PSF1_FONT**) ) header.e_entry);
PSF1_FONT* newFont = LoadPSF1Font(NULL, L"zap-light16.psf", ImageHandle, SystemTable);
if (newFont == NULL) {
Print(L"Font is not valid or is not found\n\r");
} else {
Print(L"Font found, char size = %d\n\r", newFont->psf1_Header->charsize);
}
PSF1_FONT* newFontExt = LoadPSF1Font(NULL, L"zap-ext-light16.psf", ImageHandle, SystemTable);
if (newFont == NULL) {
Print(L"Font is not valid or is not found\n\r");
} else {
Print(L"Font found, char size = %d\n\r", newFont->psf1_Header->charsize);
}
PSF1_FONT* fonts[] = {newFont, newFontExt};
Framebuffer* newBuffer = InitializeGOP();
Print(L"Base: 0x%x\n\rSize: 0x%x\n\rWidth: %d\n\rHeight: %d\n\rPixelsPerScanline: %d\n\r",
newBuffer->BaseAddress,
newBuffer->BufferSize,
newBuffer->Width,
newBuffer->Height,
newBuffer->PixelsPerScanLine);
KernelStart(newBuffer, fonts);
return EFI_SUCCESS; // Exit the UEFI application
}
The problem is here:
if ( (*chr == '\\') && ((*chr+1 == 'n') || (*chr+1 == '0')) ) {
PutChar('\n');
chr++;
chr++;
}
...
You should not be parsing out \n since this will be present in the string as a linefeed character. What you want instead is:
if (*chr == '\n') {
PutChar('\n');
chr++;
}
...
I use lzmaspec.cpp from 7zip library lzma1900/cpp/7zip/Bundles/Lzmaspec to decompress lzma file.
it works fine and save file correctly.
when I take main2 function and and make header file to use it in my project,it does not save the whole file.
this is lzmaspec.h
/*
* LzmaSpec.h
*
* Created on: Oct 14, 2020
* Author: za2ponubuntu1844
*/
#ifndef LZMASPEC_H_
#define LZMASPEC_H_
int main2(const char *,const char *);
#endif /* LZMASPEC_H_ */
and this is my modified main2 function
/* LzmaSpec.cpp -- LZMA Reference Decoder
2015-06-14 : Igor Pavlov : Public domain */
// This code implements LZMA file decoding according to LZMA specification.
// This code is not optimized for speed.
#include <stdio.h>
#ifdef _MSC_VER
#pragma warning(disable : 4710) // function not inlined
#pragma warning(disable : 4996) // This function or variable may be unsafe
#endif
typedef unsigned char Byte;
typedef unsigned short UInt16;
#ifdef _LZMA_UINT32_IS_ULONG
typedef unsigned long UInt32;
#else
typedef unsigned int UInt32;
#endif
#if defined(_MSC_VER) || defined(__BORLANDC__)
typedef unsigned __int64 UInt64;
#else
typedef unsigned long long int UInt64;
#endif
struct CInputStream
{
FILE *File;
UInt64 Processed;
void Init() { Processed = 0; }
Byte ReadByte()
{
int c = getc(File);
if (c < 0)
throw "Unexpected end of file";
Processed++;
return (Byte)c;
}
};
struct COutStream
{
FILE *File;
UInt64 Processed;
void Init() { Processed = 0; }
void WriteByte(Byte b)
{
if (putc(b, File) == EOF)
throw "File writing error";
Processed++;
}
};
class COutWindow
{
Byte *Buf;
UInt32 Pos;
UInt32 Size;
bool IsFull;
public:
unsigned TotalPos;
COutStream OutStream;
COutWindow(): Buf(NULL) {}
~COutWindow() { delete []Buf; }
void Create(UInt32 dictSize)
{
Buf = new Byte[dictSize];
Pos = 0;
Size = dictSize;
IsFull = false;
TotalPos = 0;
}
void PutByte(Byte b)
{
TotalPos++;
Buf[Pos++] = b;
if (Pos == Size)
{
Pos = 0;
IsFull = true;
}
OutStream.WriteByte(b);
}
Byte GetByte(UInt32 dist) const
{
return Buf[dist <= Pos ? Pos - dist : Size - dist + Pos];
}
void CopyMatch(UInt32 dist, unsigned len)
{
for (; len > 0; len--)
PutByte(GetByte(dist));
}
bool CheckDistance(UInt32 dist) const
{
return dist <= Pos || IsFull;
}
bool IsEmpty() const
{
return Pos == 0 && !IsFull;
}
};
#define kNumBitModelTotalBits 11
#define kNumMoveBits 5
typedef UInt16 CProb;
#define PROB_INIT_VAL ((1 << kNumBitModelTotalBits) / 2)
#define INIT_PROBS(p) \
{ for (unsigned i = 0; i < sizeof(p) / sizeof(p[0]); i++) p[i] = PROB_INIT_VAL; }
class CRangeDecoder
{
UInt32 Range;
UInt32 Code;
void Normalize();
public:
CInputStream *InStream;
bool Corrupted;
bool Init();
bool IsFinishedOK() const { return Code == 0; }
UInt32 DecodeDirectBits(unsigned numBits);
unsigned DecodeBit(CProb *prob);
};
bool CRangeDecoder::Init()
{
Corrupted = false;
Range = 0xFFFFFFFF;
Code = 0;
Byte b = InStream->ReadByte();
for (int i = 0; i < 4; i++)
Code = (Code << 8) | InStream->ReadByte();
if (b != 0 || Code == Range)
Corrupted = true;
return b == 0;
}
#define kTopValue ((UInt32)1 << 24)
void CRangeDecoder::Normalize()
{
if (Range < kTopValue)
{
Range <<= 8;
Code = (Code << 8) | InStream->ReadByte();
}
}
UInt32 CRangeDecoder::DecodeDirectBits(unsigned numBits)
{
UInt32 res = 0;
do
{
Range >>= 1;
Code -= Range;
UInt32 t = 0 - ((UInt32)Code >> 31);
Code += Range & t;
if (Code == Range)
Corrupted = true;
Normalize();
res <<= 1;
res += t + 1;
}
while (--numBits);
return res;
}
unsigned CRangeDecoder::DecodeBit(CProb *prob)
{
unsigned v = *prob;
UInt32 bound = (Range >> kNumBitModelTotalBits) * v;
unsigned symbol;
if (Code < bound)
{
v += ((1 << kNumBitModelTotalBits) - v) >> kNumMoveBits;
Range = bound;
symbol = 0;
}
else
{
v -= v >> kNumMoveBits;
Code -= bound;
Range -= bound;
symbol = 1;
}
*prob = (CProb)v;
Normalize();
return symbol;
}
unsigned BitTreeReverseDecode(CProb *probs, unsigned numBits, CRangeDecoder *rc)
{
unsigned m = 1;
unsigned symbol = 0;
for (unsigned i = 0; i < numBits; i++)
{
unsigned bit = rc->DecodeBit(&probs[m]);
m <<= 1;
m += bit;
symbol |= (bit << i);
}
return symbol;
}
template <unsigned NumBits>
class CBitTreeDecoder
{
CProb Probs[(unsigned)1 << NumBits];
public:
void Init()
{
INIT_PROBS(Probs);
}
unsigned Decode(CRangeDecoder *rc)
{
unsigned m = 1;
for (unsigned i = 0; i < NumBits; i++)
m = (m << 1) + rc->DecodeBit(&Probs[m]);
return m - ((unsigned)1 << NumBits);
}
unsigned ReverseDecode(CRangeDecoder *rc)
{
return BitTreeReverseDecode(Probs, NumBits, rc);
}
};
#define kNumPosBitsMax 4
#define kNumStates 12
#define kNumLenToPosStates 4
#define kNumAlignBits 4
#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
#define kMatchMinLen 2
class CLenDecoder
{
CProb Choice;
CProb Choice2;
CBitTreeDecoder<3> LowCoder[1 << kNumPosBitsMax];
CBitTreeDecoder<3> MidCoder[1 << kNumPosBitsMax];
CBitTreeDecoder<8> HighCoder;
public:
void Init()
{
Choice = PROB_INIT_VAL;
Choice2 = PROB_INIT_VAL;
HighCoder.Init();
for (unsigned i = 0; i < (1 << kNumPosBitsMax); i++)
{
LowCoder[i].Init();
MidCoder[i].Init();
}
}
unsigned Decode(CRangeDecoder *rc, unsigned posState)
{
if (rc->DecodeBit(&Choice) == 0)
return LowCoder[posState].Decode(rc);
if (rc->DecodeBit(&Choice2) == 0)
return 8 + MidCoder[posState].Decode(rc);
return 16 + HighCoder.Decode(rc);
}
};
unsigned UpdateState_Literal(unsigned state)
{
if (state < 4) return 0;
else if (state < 10) return state - 3;
else return state - 6;
}
unsigned UpdateState_Match (unsigned state) { return state < 7 ? 7 : 10; }
unsigned UpdateState_Rep (unsigned state) { return state < 7 ? 8 : 11; }
unsigned UpdateState_ShortRep(unsigned state) { return state < 7 ? 9 : 11; }
#define LZMA_DIC_MIN (1 << 12)
class CLzmaDecoder
{
public:
CRangeDecoder RangeDec;
COutWindow OutWindow;
bool markerIsMandatory;
unsigned lc, pb, lp;
UInt32 dictSize;
UInt32 dictSizeInProperties;
void DecodeProperties(const Byte *properties)
{
unsigned d = properties[0];
if (d >= (9 * 5 * 5))
throw "Incorrect LZMA properties";
lc = d % 9;
d /= 9;
pb = d / 5;
lp = d % 5;
dictSizeInProperties = 0;
for (int i = 0; i < 4; i++)
dictSizeInProperties |= (UInt32)properties[i + 1] << (8 * i);
dictSize = dictSizeInProperties;
if (dictSize < LZMA_DIC_MIN)
dictSize = LZMA_DIC_MIN;
}
CLzmaDecoder(): LitProbs(NULL) {}
~CLzmaDecoder() { delete []LitProbs; }
void Create()
{
OutWindow.Create(dictSize);
CreateLiterals();
}
int Decode(bool unpackSizeDefined, UInt64 unpackSize);
private:
CProb *LitProbs;
void CreateLiterals()
{
LitProbs = new CProb[(UInt32)0x300 << (lc + lp)];
}
void InitLiterals()
{
UInt32 num = (UInt32)0x300 << (lc + lp);
for (UInt32 i = 0; i < num; i++)
LitProbs[i] = PROB_INIT_VAL;
}
void DecodeLiteral(unsigned state, UInt32 rep0)
{
unsigned prevByte = 0;
if (!OutWindow.IsEmpty())
prevByte = OutWindow.GetByte(1);
unsigned symbol = 1;
unsigned litState = ((OutWindow.TotalPos & ((1 << lp) - 1)) << lc) + (prevByte >> (8 - lc));
CProb *probs = &LitProbs[(UInt32)0x300 * litState];
if (state >= 7)
{
unsigned matchByte = OutWindow.GetByte(rep0 + 1);
do
{
unsigned matchBit = (matchByte >> 7) & 1;
matchByte <<= 1;
unsigned bit = RangeDec.DecodeBit(&probs[((1 + matchBit) << 8) + symbol]);
symbol = (symbol << 1) | bit;
if (matchBit != bit)
break;
}
while (symbol < 0x100);
}
while (symbol < 0x100)
symbol = (symbol << 1) | RangeDec.DecodeBit(&probs[symbol]);
OutWindow.PutByte((Byte)(symbol - 0x100));
}
CBitTreeDecoder<6> PosSlotDecoder[kNumLenToPosStates];
CBitTreeDecoder<kNumAlignBits> AlignDecoder;
CProb PosDecoders[1 + kNumFullDistances - kEndPosModelIndex];
void InitDist()
{
for (unsigned i = 0; i < kNumLenToPosStates; i++)
PosSlotDecoder[i].Init();
AlignDecoder.Init();
INIT_PROBS(PosDecoders);
}
unsigned DecodeDistance(unsigned len)
{
unsigned lenState = len;
if (lenState > kNumLenToPosStates - 1)
lenState = kNumLenToPosStates - 1;
unsigned posSlot = PosSlotDecoder[lenState].Decode(&RangeDec);
if (posSlot < 4)
return posSlot;
unsigned numDirectBits = (unsigned)((posSlot >> 1) - 1);
UInt32 dist = ((2 | (posSlot & 1)) << numDirectBits);
if (posSlot < kEndPosModelIndex)
dist += BitTreeReverseDecode(PosDecoders + dist - posSlot, numDirectBits, &RangeDec);
else
{
dist += RangeDec.DecodeDirectBits(numDirectBits - kNumAlignBits) << kNumAlignBits;
dist += AlignDecoder.ReverseDecode(&RangeDec);
}
return dist;
}
CProb IsMatch[kNumStates << kNumPosBitsMax];
CProb IsRep[kNumStates];
CProb IsRepG0[kNumStates];
CProb IsRepG1[kNumStates];
CProb IsRepG2[kNumStates];
CProb IsRep0Long[kNumStates << kNumPosBitsMax];
CLenDecoder LenDecoder;
CLenDecoder RepLenDecoder;
void Init()
{
InitLiterals();
InitDist();
INIT_PROBS(IsMatch);
INIT_PROBS(IsRep);
INIT_PROBS(IsRepG0);
INIT_PROBS(IsRepG1);
INIT_PROBS(IsRepG2);
INIT_PROBS(IsRep0Long);
LenDecoder.Init();
RepLenDecoder.Init();
}
};
#define LZMA_RES_ERROR 0
#define LZMA_RES_FINISHED_WITH_MARKER 1
#define LZMA_RES_FINISHED_WITHOUT_MARKER 2
int CLzmaDecoder::Decode(bool unpackSizeDefined, UInt64 unpackSize)
{
if (!RangeDec.Init())
return LZMA_RES_ERROR;
Init();
UInt32 rep0 = 0, rep1 = 0, rep2 = 0, rep3 = 0;
unsigned state = 0;
for (;;)
{
if (unpackSizeDefined && unpackSize == 0 && !markerIsMandatory)
if (RangeDec.IsFinishedOK())
return LZMA_RES_FINISHED_WITHOUT_MARKER;
unsigned posState = OutWindow.TotalPos & ((1 << pb) - 1);
if (RangeDec.DecodeBit(&IsMatch[(state << kNumPosBitsMax) + posState]) == 0)
{
if (unpackSizeDefined && unpackSize == 0)
return LZMA_RES_ERROR;
DecodeLiteral(state, rep0);
state = UpdateState_Literal(state);
unpackSize--;
continue;
}
unsigned len;
if (RangeDec.DecodeBit(&IsRep[state]) != 0)
{
if (unpackSizeDefined && unpackSize == 0)
return LZMA_RES_ERROR;
if (OutWindow.IsEmpty())
return LZMA_RES_ERROR;
if (RangeDec.DecodeBit(&IsRepG0[state]) == 0)
{
if (RangeDec.DecodeBit(&IsRep0Long[(state << kNumPosBitsMax) + posState]) == 0)
{
state = UpdateState_ShortRep(state);
OutWindow.PutByte(OutWindow.GetByte(rep0 + 1));
unpackSize--;
continue;
}
}
else
{
UInt32 dist;
if (RangeDec.DecodeBit(&IsRepG1[state]) == 0)
dist = rep1;
else
{
if (RangeDec.DecodeBit(&IsRepG2[state]) == 0)
dist = rep2;
else
{
dist = rep3;
rep3 = rep2;
}
rep2 = rep1;
}
rep1 = rep0;
rep0 = dist;
}
len = RepLenDecoder.Decode(&RangeDec, posState);
state = UpdateState_Rep(state);
}
else
{
rep3 = rep2;
rep2 = rep1;
rep1 = rep0;
len = LenDecoder.Decode(&RangeDec, posState);
state = UpdateState_Match(state);
rep0 = DecodeDistance(len);
if (rep0 == 0xFFFFFFFF)
return RangeDec.IsFinishedOK() ?
LZMA_RES_FINISHED_WITH_MARKER :
LZMA_RES_ERROR;
if (unpackSizeDefined && unpackSize == 0)
return LZMA_RES_ERROR;
if (rep0 >= dictSize || !OutWindow.CheckDistance(rep0))
return LZMA_RES_ERROR;
}
len += kMatchMinLen;
bool isError = false;
if (unpackSizeDefined && unpackSize < len)
{
len = (unsigned)unpackSize;
isError = true;
}
OutWindow.CopyMatch(rep0 + 1, len);
unpackSize -= len;
if (isError)
return LZMA_RES_ERROR;
}
}
static void Print(const char *s)
{
fputs(s, stdout);
}
static void PrintError(const char *s)
{
fputs(s, stderr);
}
#define CONVERT_INT_TO_STR(charType, tempSize) \
void ConvertUInt64ToString(UInt64 val, char *s)
{
char temp[32];
unsigned i = 0;
while (val >= 10)
{
temp[i++] = (char)('0' + (unsigned)(val % 10));
val /= 10;
}
*s++ = (char)('0' + (unsigned)val);
while (i != 0)
{
i--;
*s++ = temp[i];
}
*s = 0;
}
void PrintUInt64(const char *title, UInt64 v)
{
Print(title);
Print(" : ");
char s[32];
ConvertUInt64ToString(v, s);
Print(s);
Print(" bytes \n");
}
int main2(const char * infile, const char *outfile)
{
try
{
Print("\nLZMA Reference Decoder 15.00 : Igor Pavlov : Public domain : 2015-04-16\n");
//if (numArgs == 1)
// Print("\nUse: lzmaSpec a.lzma outFile");
//if (numArgs != 3)
// throw "you must specify two parameters";
CInputStream inStream;
inStream.File = fopen(infile, "rb");
inStream.Init();
if (inStream.File == 0)
throw "Can't open input file";
CLzmaDecoder lzmaDecoder;
lzmaDecoder.OutWindow.OutStream.File = fopen(outfile, "wb+");
lzmaDecoder.OutWindow.OutStream.Init();
if (inStream.File == 0)
throw "Can't open output file";
Byte header[13];
int i;
for (i = 0; i < 13; i++)
header[i] = inStream.ReadByte();
lzmaDecoder.DecodeProperties(header);
printf("\nlc=%d, lp=%d, pb=%d", lzmaDecoder.lc, lzmaDecoder.lp, lzmaDecoder.pb);
printf("\nDictionary Size in properties = %u", lzmaDecoder.dictSizeInProperties);
printf("\nDictionary Size for decoding = %u", lzmaDecoder.dictSize);
UInt64 unpackSize = 0;
bool unpackSizeDefined = false;
for (i = 0; i < 8; i++)
{
Byte b = header[5 + i];
if (b != 0xFF)
unpackSizeDefined = true;
unpackSize |= (UInt64)b << (8 * i);
}
lzmaDecoder.markerIsMandatory = !unpackSizeDefined;
Print("\n");
if (unpackSizeDefined)
PrintUInt64("Uncompressed Size", unpackSize);
else
Print("End marker is expected\n");
lzmaDecoder.RangeDec.InStream = &inStream;
Print("\n");
lzmaDecoder.Create();
int res = lzmaDecoder.Decode(unpackSizeDefined, unpackSize);
PrintUInt64("Read ", inStream.Processed);
PrintUInt64("Written ", lzmaDecoder.OutWindow.OutStream.Processed);
if (res == LZMA_RES_ERROR)
throw "LZMA decoding error";
else if (res == LZMA_RES_FINISHED_WITHOUT_MARKER)
Print("Finished without end marker");
else if (res == LZMA_RES_FINISHED_WITH_MARKER)
{
if (unpackSizeDefined)
{
if (lzmaDecoder.OutWindow.OutStream.Processed != unpackSize)
throw "Finished with end marker before than specified size";
Print("Warning: ");
}
Print("Finished with end marker");
}
else
throw "Internal Error";
Print("\n");
if (lzmaDecoder.RangeDec.Corrupted)
{
Print("\nWarning: LZMA stream is corrupted\n");
}
//15-10-2020
}
catch (const char *s)
{
PrintError("\nError:\n");
PrintError(s);
PrintError("\n");
return 1;
}
catch(...)
{
PrintError("\nError\n");
return 1;
}
return 0;
}
/*
int
#ifdef _MSC_VER
__cdecl
#endif
main(int numArgs, const char *args[])
{
try { return main2(numArgs, args); }
catch (const char *s)
{
PrintError("\nError:\n");
PrintError(s);
PrintError("\n");
return 1;
}
catch(...)
{
PrintError("\nError\n");
return 1;
}
}
*/
when i debug it i find that function
void WriteByte(Byte b)
works fine but the resulting file does not have correct size.
i used this file
13h_ticks.bi5 from dukascopy
i uploaded it here
https://github.com/ahmed-allam/starting_coding
I do not know why this happens.
when i try to decompress same file using lzmaspec.cpp outside project ,it works fine.
I need guide line where the error could be?
I just started learning C++ this year. Currently, I'm using four accelerometers to calculate human body movement for my school project. I tried to use multi-thread but the data outputs are unstable as such when I tried multiple times, some of the data would change. It does give correct output data sometimes. The output is saved to Microsoft Excel while printing on the screen simultaneously. However, When I tried the accelerometer separately, it seems to work just fine. The output would change only when I multi-thread them together. I can't seem to find what cause the output data to change periodically. I appreciate any help I could get. Pardon my grammatical mistakes for it is not my native language. Thank you =D
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <process.h>
#include <Windows.h>
#include "erslib.h"
struct SENSOR_DATA {
int ID_1, ID_2, ID_3,ID_4;
int y_1, y_2, y_3, y_4;
int z_1, z_2, z_3, z_4;
int x_1, x_2, x_3, x_4;
};
void Thread_0(void);
void Thread_1(void);
void Thread_2(void);
void Thread_3(void);
FILE *fp[4];
errno_t err[4];
int key = 0;
int MainLoopFlag = true;
SENSOR_DATA acc;
int main()
{
DWORD ThreadID_0;
DWORD ThreadID_1;
DWORD ThreadID_2;
DWORD ThreadID_3;
HANDLE Handle_0 = NULL;
HANDLE Handle_1 = NULL;
HANDLE Handle_2 = NULL;
HANDLE Handle_3 = NULL;
Handle_0 = CreateThread(0,0,(LPTHREAD_START_ROUTINE) Thread_0, 0, 0, &ThreadID_0);
Sleep(1000);
Handle_1 = CreateThread(0,0,(LPTHREAD_START_ROUTINE) Thread_1, 0, 0, &ThreadID_1);
Sleep(1000);
Handle_2 = CreateThread(0,0,(LPTHREAD_START_ROUTINE) Thread_2, 0, 0, &ThreadID_2);
Sleep(1000);
Handle_3 = CreateThread(0,0,(LPTHREAD_START_ROUTINE) Thread_3, 0, 0, &ThreadID_3);
Sleep(1000);
WaitForSingleObject(Thread_0, INFINITE);
WaitForSingleObject(Thread_1, INFINITE);
WaitForSingleObject(Thread_2, INFINITE);
WaitForSingleObject(Thread_3, INFINITE);
//////Print and Data Output//////
while(MainLoopFlag){
if(_kbhit()){
key = _getch(); //a key to start data saving//
if(key == 'a' && Save_flag==0){
printf("Preparing for saving...\n");
Sleep(5000);
printf("Saving start\n");
char * fname_0 = ("C:\\Users\\Desktop\\adam\\ID 1\\test02.csv");
err[0] = fopen_s(&fp[0], fname_0,"w+");
if (fp[0]==NULL) {
printf("%s File cannot be opened。\n",fname_0);
return -1;
}
char * fname_1 = ("C:\\Users\\Desktop\\adam\\ID 2\\test02.csv");
err[1] = fopen_s(&fp[1], fname_1,"w+");
if (fp[1]==NULL) {
printf("%s File cannot be opened。\n",fname_1);
return -1;
}
char * fname_2 = ("C:\\Users\\Desktop\\adam\\ID 3\\test02.csv");
err[2] = fopen_s(&fp[2], fname_2,"w+");
if (fp[2]==NULL) {
printf("%s File cannot be opened。\n",fname_2);
return -1;
}
char * fname_3 = ("C:\\Users\\Desktop\\adam\\ID 4\\test02.csv");
err[3] = fopen_s(&fp[3], fname_3,"w+");
if (fp[3]==NULL) {
printf("%s File cannot be opened。\n",fname_3);
return -1;
}
Save_flag=1;
while(MainLoopFlag && Save_flag==1){
printf("ID->%d, x->%d, y->%d, z->%d \n",acc.ID_1,acc.x_1,acc.y_1,acc.z_1);
fprintf(fp[0],"%d, %d, %d, %d \n",acc.ID_1,acc.x_1,acc.y_1,acc.z_1);
printf("ID->%d, x->%d, y->%d, z->%d \n",acc.ID_2,acc.x_2,acc.y_2,acc.z_2);
fprintf(fp[1],"%d, %d, %d, %d \n",acc.ID_2,acc.x_2,acc.y_2,acc.z_2);
printf("ID->%d, x->%d, y->%d, z->%d \n",acc.ID_3,acc.x_3,acc.y_3,acc.z_3);
fprintf(fp[2],"%d, %d, %d, %d \n",acc.ID_3,acc.x_3,acc.y_3,acc.z_3);
printf("ID->%d, x->%d, y->%d, z->%d \n",acc.ID_4,acc.x_4,acc.y_4,acc.z_4);
fprintf(fp[3],"%d, %d, %d, %d \n",acc.ID_4,acc.x_4,acc.y_4,acc.z_4);
if(_kbhit()){
key = _getch();
//s key to stop data saving
if(key == 's' && Save_flag==1){
printf("End Data saving\n");
Save_flag=0;
fclose(fp[0]);
fclose(fp[1]);
fclose(fp[2]);
fclose(fp[3]);
MainLoopFlag = false;}
}
}
}
}
}
// Close Handle
CloseHandle(Handle_0);
CloseHandle(Handle_1);
CloseHandle(Handle_2);
CloseHandle(Handle_3);
return 0;
}
//--------------------------------------------------------------------------
// Name: Thread_1(void)
//--------------------------------------------------------------------------
void Thread_1(void)
{
unsigned char buf[4096];
unsigned char buf_data[4096];
unsigned char bin_data[5];
//unsigned char buf_str[4096];
int i,j,n;
int n_cou;
int ComPort = 20;
int flag=0;
int temp_char_1[7];
ERS_Open(ComPort,4096,4096);
ERS_Config(ComPort,ERS_38400|ERS_NO|ERS_1|ERS_8);
//最初に取得するデータは異常なので捨てる
n=ERS_CheckRecv(ComPort);
ERS_Recv(ComPort,buf,n);
// 1となる位置を調べる
flag=0;
while(MainLoopFlag){
n=ERS_CheckRecv(ComPort);
ERS_Recv(ComPort,buf,n);
for(i=0;i<n;i++){
if((buf[i] & 0x80) == 0x80){
flag=1;
break;
}
}
if(flag==1)break;
Sleep(1);
}
// 1 となる位置から後ろをbuf_dataに入れる
n_cou = n - i;
for(j=0;j<n_cou;j++)
buf_data[j]=buf[i+j];
while(MainLoopFlag){
while(MainLoopFlag && n_cou<5){
n=ERS_CheckRecv(ComPort);
ERS_Recv(ComPort,buf,n);
for(i=0;i<n;i++)buf_data[n_cou+i]=buf[i];
n_cou=n_cou+n;
}
for(i=0;i<5;i++)bin_data[i]=buf_data[i];
temp_char_1[0] = (bin_data[0] & 0x38) >> 3; //ID
acc.ID_2 = (int)temp_char_1[0];
temp_char_1[1] = (bin_data[0] & 0x07) << 7; // x = 3bit
temp_char_1[2] = (bin_data[1] & 0x38) << 4; // y = 3bit
temp_char_1[3] = (bin_data[1] & 0x07) << 7; // z = 3bit
temp_char_1[4] = (bin_data[2] & 0x7F) | temp_char_1[1];
acc.x_2 = (int)temp_char_1[4];
temp_char_1[5] = (bin_data[3] & 0x7F) | temp_char_1[2];
acc.y_2 = (int)temp_char_1[5];
temp_char_1[6] = (bin_data[4] & 0x7F) | temp_char_1[3];
acc.z_2 = (int)temp_char_1[6];
for(i=5;i<n_cou;i++)buf_data[i-5]=buf_data[i];
n_cou=n_cou-5;
}
ERS_CloseAll();
}
//--------------------------------------------------------------------------
// Name: Thread_2(void)
//--------------------------------------------------------------------------
void Thread_2(void)
{
unsigned char buf[4096];
unsigned char buf_data[4096];
unsigned char bin_data[5];
//unsigned char buf_str[4096];
int i,j,n;
int n_cou;
int ComPort = 15;
int flag=0;
int temp_char_2[7];
ERS_Open(ComPort,4096,4096);
ERS_Config(ComPort,ERS_38400|ERS_NO|ERS_1|ERS_8);
//最初に取得するデータは異常なので捨てる
n=ERS_CheckRecv(ComPort);
ERS_Recv(ComPort,buf,n);
// 1となる位置を調べる
flag=0;
while(MainLoopFlag){
n=ERS_CheckRecv(ComPort);
ERS_Recv(ComPort,buf,n);
for(i=0;i<n;i++){
if((buf[i] & 0x80) == 0x80){
flag=1;
break;
}
}
if(flag==1)break;
Sleep(1);
}
// 1 となる位置から後ろをbuf_dataに入れる
n_cou = n - i;
for(j=0;j<n_cou;j++)
buf_data[j]=buf[i+j];
while(MainLoopFlag){
while(MainLoopFlag && n_cou<5){
n=ERS_CheckRecv(ComPort);
ERS_Recv(ComPort,buf,n);
for(i=0;i<n;i++)buf_data[n_cou+i]=buf[i];
n_cou=n_cou+n;
}
for(i=0;i<5;i++)bin_data[i]=buf_data[i];
temp_char_2[0] = (bin_data[0] & 0x38) >> 3; //ID
acc.ID_3 = (int)temp_char_2[0];
temp_char_2[1] = (bin_data[0] & 0x07) << 7; // x = 3bit
temp_char_2[2] = (bin_data[1] & 0x38) << 4; // y = 3bit
temp_char_2[3] = (bin_data[1] & 0x07) << 7; // z = 3bit
temp_char_2[4] = (bin_data[2] & 0x7F) | temp_char_2[1];
acc.x_3 = (int)temp_char_2[4];
temp_char_2[5] = (bin_data[3] & 0x7F) | temp_char_2[2];
acc.y_3 = (int)temp_char_2[5];
temp_char_2[6] = (bin_data[4] & 0x7F) | temp_char_2[3];
acc.z_3 = (int)temp_char_2[6];
for(i=5;i<n_cou;i++)buf_data[i-5]=buf_data[i];
n_cou=n_cou-5;
}
ERS_CloseAll();
}
//--------------------------------------------------------------------------
// Name: Thread_3(void)
//--------------------------------------------------------------------------
void Thread_3(void)
{
unsigned char buf[4096];
unsigned char buf_data[4096];
unsigned char bin_data[5];
//unsigned char buf_str[4096];
int i,j,n;
int n_cou;
int ComPort = 3;
int flag=0;
int temp_char_3[7];
ERS_Open(ComPort,4096,4096);
ERS_Config(ComPort,ERS_38400|ERS_NO|ERS_1|ERS_8);
//最初に取得するデータは異常なので捨てる
n=ERS_CheckRecv(ComPort);
ERS_Recv(ComPort,buf,n);
// 1となる位置を調べる
flag=0;
while(MainLoopFlag){
n=ERS_CheckRecv(ComPort);
ERS_Recv(ComPort,buf,n);
for(i=0;i<n;i++){
if((buf[i] & 0x80) == 0x80){
flag=1;
break;
}
}
if(flag==1)break;
Sleep(1);
}
// 1 となる位置から後ろをbuf_dataに入れる
n_cou = n - i;
for(j=0;j<n_cou;j++)
buf_data[j]=buf[i+j];
//for(i=0;i<n_cou;i++)printf("%x ",buf_data[i]);
//printf("\n");
while(MainLoopFlag){
while(MainLoopFlag && n_cou<5){
n=ERS_CheckRecv(ComPort);
ERS_Recv(ComPort,buf,n);
for(i=0;i<n;i++)buf_data[n_cou+i]=buf[i];
n_cou=n_cou+n;
}
for(i=0;i<5;i++)bin_data[i]=buf_data[i];
//for(i=0;i<5;i++)printf("%x ",bin_data[i]);
//printf("\n");
temp_char_3[0] = (bin_data[0] & 0x38) >> 3; //ID
acc.ID_4 = (int)temp_char_3[0];
temp_char_3[1] = (bin_data[0] & 0x07) << 7; // x = 3bit
temp_char_3[2] = (bin_data[1] & 0x38) << 4; // y = 3bit
temp_char_3[3] = (bin_data[1] & 0x07) << 7; // z = 3bit
temp_char_3[4] = (bin_data[2] & 0x7F) | temp_char_3[1];
acc.x_4 = (int)temp_char_3[4];
temp_char_3[5] = (bin_data[3] & 0x7F) | temp_char_3[2];
acc.y_4 = (int)temp_char_3[5];
temp_char_3[6] = (bin_data[4] & 0x7F) | temp_char_3[3];
acc.z_4 = (int)temp_char_3[6];
for(i=5;i<n_cou;i++)buf_data[i-5]=buf_data[i];
n_cou=n_cou-5;
}
ERS_CloseAll();
}
Correct data :
(Example)
ID->1, x->47, y->147, z->298
ID->2, x->298, y->25, z->147
ID->3, x->47, y->147, z->298
ID->4, x->213, y->123, z->43
ID->1, x->49, y->152, z->222
ID->2, x->256, y->30, z->155
ID->3, x->47, y->147, z->298
ID->4, x->221, y->132, z->54
incorrect data:
ID->1, x->905, y->179, z->20
ID->6, x->47, y->147, z->298
ID->0, x->0, y->0, z->0
ID->4, x->1010, y->56, z->23
ID->1, x->905, y->179, z->20
ID->6, x->47, y->147, z->298
ID->0, x->0, y->0, z->0
ID->4, x->1010, y->56, z->23
Basically the ID shouldn't change while the x, y and z would as you move the accelerometer.
i have difficulties in using LZMA SDK in my application.
I would like to create a kind of single file compression tool. I dont need any directory support, just need only the LZMA2 stream. But i have no idea on how LZMA SDK is to be used for this.
Please can anyone give me a little example on how the LZMA SDK can be used under C++?
I think that it's a properly little example to use LZMA SDK.
/* LzmaUtil.c -- Test application for LZMA compression
2008-08-05
Igor Pavlov
public domain */
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "../LzmaDec.h"
#include "../LzmaEnc.h"
#include "../Alloc.h"
const char *kCantReadMessage = "Can not read input file";
const char *kCantWriteMessage = "Can not write output file";
const char *kCantAllocateMessage = "Can not allocate memory";
const char *kDataErrorMessage = "Data error";
static void *SzAlloc(void *p, size_t size) { p = p; return MyAlloc(size); }
static void SzFree(void *p, void *address) { p = p; MyFree(address); }
static ISzAlloc g_Alloc = { SzAlloc, SzFree };
#define kInBufferSize (1 << 15)
#define kOutBufferSize (1 << 15)
unsigned char g_InBuffer[kInBufferSize];
unsigned char g_OutBuffer[kOutBufferSize];
size_t MyReadFile(FILE *file, void *data, size_t size)
{ return fread(data, 1, size, file); }
int MyReadFileAndCheck(FILE *file, void *data, size_t size)
{ return (MyReadFile(file, data, size) == size); }
size_t MyWriteFile(FILE *file, const void *data, size_t size)
{
if (size == 0)
return 0;
return fwrite(data, 1, size, file);
}
int MyWriteFileAndCheck(FILE *file, const void *data, size_t size)
{ return (MyWriteFile(file, data, size) == size); }
long MyGetFileLength(FILE *file)
{
long length;
fseek(file, 0, SEEK_END);
length = ftell(file);
fseek(file, 0, SEEK_SET);
return length;
}
void PrintHelp(char *buffer)
{
strcat(buffer, "\nLZMA Utility 4.58 Copyright (c) 1999-2008 Igor Pavlov 2008-04-11\n"
"\nUsage: lzma <e|d> inputFile outputFile\n"
" e: encode file\n"
" d: decode file\n");
}
int PrintError(char *buffer, const char *message)
{
strcat(buffer, "\nError: ");
strcat(buffer, message);
strcat(buffer, "\n");
return 1;
}
int PrintErrorNumber(char *buffer, SRes val)
{
sprintf(buffer + strlen(buffer), "\nError code: %x\n", (unsigned)val);
return 1;
}
int PrintUserError(char *buffer)
{
return PrintError(buffer, "Incorrect command");
}
#define IN_BUF_SIZE (1 << 16)
#define OUT_BUF_SIZE (1 << 16)
static int Decode(FILE *inFile, FILE *outFile, char *rs)
{
UInt64 unpackSize;
int thereIsSize; /* = 1, if there is uncompressed size in headers */
int i;
int res = 0;
CLzmaDec state;
/* header: 5 bytes of LZMA properties and 8 bytes of uncompressed size */
unsigned char header[LZMA_PROPS_SIZE + 8];
/* Read and parse header */
if (!MyReadFileAndCheck(inFile, header, sizeof(header)))
return PrintError(rs, kCantReadMessage);
unpackSize = 0;
thereIsSize = 0;
for (i = 0; i < 8; i++)
{
unsigned char b = header[LZMA_PROPS_SIZE + i];
if (b != 0xFF)
thereIsSize = 1;
unpackSize += (UInt64)b << (i * 8);
}
LzmaDec_Construct(&state);
res = LzmaDec_Allocate(&state, header, LZMA_PROPS_SIZE, &g_Alloc);
if (res != SZ_OK)
return res;
{
Byte inBuf[IN_BUF_SIZE];
Byte outBuf[OUT_BUF_SIZE];
size_t inPos = 0, inSize = 0, outPos = 0;
LzmaDec_Init(&state);
for (;;)
{
if (inPos == inSize)
{
inSize = MyReadFile(inFile, inBuf, IN_BUF_SIZE);
inPos = 0;
}
{
SizeT inProcessed = inSize - inPos;
SizeT outProcessed = OUT_BUF_SIZE - outPos;
ELzmaFinishMode finishMode = LZMA_FINISH_ANY;
ELzmaStatus status;
if (thereIsSize && outProcessed > unpackSize)
{
outProcessed = (SizeT)unpackSize;
finishMode = LZMA_FINISH_END;
}
res = LzmaDec_DecodeToBuf(&state, outBuf + outPos, &outProcessed,
inBuf + inPos, &inProcessed, finishMode, &status);
inPos += (UInt32)inProcessed;
outPos += outProcessed;
unpackSize -= outProcessed;
if (outFile != 0)
MyWriteFile(outFile, outBuf, outPos);
outPos = 0;
if (res != SZ_OK || thereIsSize && unpackSize == 0)
break;
if (inProcessed == 0 && outProcessed == 0)
{
if (thereIsSize || status != LZMA_STATUS_FINISHED_WITH_MARK)
res = SZ_ERROR_DATA;
break;
}
}
}
}
LzmaDec_Free(&state, &g_Alloc);
return res;
}
typedef struct _CFileSeqInStream
{
ISeqInStream funcTable;
FILE *file;
} CFileSeqInStream;
static SRes MyRead(void *p, void *buf, size_t *size)
{
if (*size == 0)
return SZ_OK;
*size = MyReadFile(((CFileSeqInStream*)p)->file, buf, *size);
/*
if (*size == 0)
return SZE_FAIL;
*/
return SZ_OK;
}
typedef struct _CFileSeqOutStream
{
ISeqOutStream funcTable;
FILE *file;
} CFileSeqOutStream;
static size_t MyWrite(void *pp, const void *buf, size_t size)
{
return MyWriteFile(((CFileSeqOutStream *)pp)->file, buf, size);
}
static SRes Encode(FILE *inFile, FILE *outFile, char *rs)
{
CLzmaEncHandle enc;
SRes res;
CFileSeqInStream inStream;
CFileSeqOutStream outStream;
CLzmaEncProps props;
enc = LzmaEnc_Create(&g_Alloc);
if (enc == 0)
return SZ_ERROR_MEM;
inStream.funcTable.Read = MyRead;
inStream.file = inFile;
outStream.funcTable.Write = MyWrite;
outStream.file = outFile;
LzmaEncProps_Init(&props);
res = LzmaEnc_SetProps(enc, &props);
if (res == SZ_OK)
{
Byte header[LZMA_PROPS_SIZE + 8];
size_t headerSize = LZMA_PROPS_SIZE;
UInt64 fileSize;
int i;
res = LzmaEnc_WriteProperties(enc, header, &headerSize);
fileSize = MyGetFileLength(inFile);
for (i = 0; i < 8; i++)
header[headerSize++] = (Byte)(fileSize >> (8 * i));
if (!MyWriteFileAndCheck(outFile, header, headerSize))
return PrintError(rs, "writing error");
if (res == SZ_OK)
res = LzmaEnc_Encode(enc, &outStream.funcTable, &inStream.funcTable,
NULL, &g_Alloc, &g_Alloc);
}
LzmaEnc_Destroy(enc, &g_Alloc, &g_Alloc);
return res;
}
int main2(int numArgs, const char *args[], char *rs)
{
FILE *inFile = 0;
FILE *outFile = 0;
char c;
int res;
int encodeMode;
if (numArgs == 1)
{
PrintHelp(rs);
return 0;
}
if (numArgs < 3 || numArgs > 4 || strlen(args[1]) != 1)
return PrintUserError(rs);
c = args[1][0];
encodeMode = (c == 'e' || c == 'E');
if (!encodeMode && c != 'd' && c != 'D')
return PrintUserError(rs);
{
size_t t4 = sizeof(UInt32);
size_t t8 = sizeof(UInt64);
if (t4 != 4 || t8 != 8)
return PrintError(rs, "LZMA UTil needs correct UInt32 and UInt64");
}
inFile = fopen(args[2], "rb");
if (inFile == 0)
return PrintError(rs, "Can not open input file");
if (numArgs > 3)
{
outFile = fopen(args[3], "wb+");
if (outFile == 0)
return PrintError(rs, "Can not open output file");
}
else if (encodeMode)
PrintUserError(rs);
if (encodeMode)
{
res = Encode(inFile, outFile, rs);
}
else
{
res = Decode(inFile, outFile, rs);
}
if (outFile != 0)
fclose(outFile);
fclose(inFile);
if (res != SZ_OK)
{
if (res == SZ_ERROR_MEM)
return PrintError(rs, kCantAllocateMessage);
else if (res == SZ_ERROR_DATA)
return PrintError(rs, kDataErrorMessage);
else
return PrintErrorNumber(rs, res);
}
return 0;
}
int MY_CDECL main(int numArgs, const char *args[])
{
char rs[800] = { 0 };
int res = main2(numArgs, args, rs);
printf(rs);
return res;
}
Also you can see it at:
http://read.pudn.com/downloads151/sourcecode/zip/656407/7z460/C/LzmaUtil/LzmaUtil.c__.htm
http://read.pudn.com/downloads157/sourcecode/zip/698262/LZMA/LzmaUtil.c__.htm
I recently found a nice example, written in C++. Credit goes to GH user Treeki who published the original gist:
// note: -D_7ZIP_ST is required when compiling on non-Windows platforms
// g++ -o lzma_sample -std=c++14 -D_7ZIP_ST lzma_sample.cpp LzmaDec.c LzmaEnc.c LzFind.c
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <memory>
#include "LzmaEnc.h"
#include "LzmaDec.h"
static void *_lzmaAlloc(ISzAllocPtr, size_t size) {
return new uint8_t[size];
}
static void _lzmaFree(ISzAllocPtr, void *addr) {
if (!addr)
return;
delete[] reinterpret_cast<uint8_t *>(addr);
}
static ISzAlloc _allocFuncs = {
_lzmaAlloc, _lzmaFree
};
std::unique_ptr<uint8_t[]> lzmaCompress(const uint8_t *input, uint32_t inputSize, uint32_t *outputSize) {
std::unique_ptr<uint8_t[]> result;
// set up properties
CLzmaEncProps props;
LzmaEncProps_Init(&props);
if (inputSize >= (1 << 20))
props.dictSize = 1 << 20; // 1mb dictionary
else
props.dictSize = inputSize; // smaller dictionary = faster!
props.fb = 40;
// prepare space for the encoded properties
SizeT propsSize = 5;
uint8_t propsEncoded[5];
// allocate some space for the compression output
// this is way more than necessary in most cases...
// but better safe than sorry
// (a smarter implementation would use a growing buffer,
// but this requires a bunch of fuckery that is out of
/// scope for this simple example)
SizeT outputSize64 = inputSize * 1.5;
if (outputSize64 < 1024)
outputSize64 = 1024;
auto output = std::make_unique<uint8_t[]>(outputSize64);
int lzmaStatus = LzmaEncode(
output.get(), &outputSize64, input, inputSize,
&props, propsEncoded, &propsSize, 0,
NULL,
&_allocFuncs, &_allocFuncs);
*outputSize = outputSize64 + 13;
if (lzmaStatus == SZ_OK) {
// tricky: we have to generate the LZMA header
// 5 bytes properties + 8 byte uncompressed size
result = std::make_unique<uint8_t[]>(outputSize64 + 13);
uint8_t *resultData = result.get();
memcpy(resultData, propsEncoded, 5);
for (int i = 0; i < 8; i++)
resultData[5 + i] = (inputSize >> (i * 8)) & 0xFF;
memcpy(resultData + 13, output.get(), outputSize64);
}
return result;
}
std::unique_ptr<uint8_t[]> lzmaDecompress(const uint8_t *input, uint32_t inputSize, uint32_t *outputSize) {
if (inputSize < 13)
return NULL; // invalid header!
// extract the size from the header
UInt64 size = 0;
for (int i = 0; i < 8; i++)
size |= (input[5 + i] << (i * 8));
if (size <= (256 * 1024 * 1024)) {
auto blob = std::make_unique<uint8_t[]>(size);
ELzmaStatus lzmaStatus;
SizeT procOutSize = size, procInSize = inputSize - 13;
int status = LzmaDecode(blob.get(), &procOutSize, &input[13], &procInSize, input, 5, LZMA_FINISH_END, &lzmaStatus, &_allocFuncs);
if (status == SZ_OK && procOutSize == size) {
*outputSize = size;
return blob;
}
}
return NULL;
}
void hexdump(const uint8_t *buf, int size) {
int lines = (size + 15) / 16;
for (int i = 0; i < lines; i++) {
printf("%08x | ", i * 16);
int lineMin = i * 16;
int lineMax = lineMin + 16;
int lineCappedMax = (lineMax > size) ? size : lineMax;
for (int j = lineMin; j < lineCappedMax; j++)
printf("%02x ", buf[j]);
for (int j = lineCappedMax; j < lineMax; j++)
printf(" ");
printf("| ");
for (int j = lineMin; j < lineCappedMax; j++) {
if (buf[j] >= 32 && buf[j] <= 127)
printf("%c", buf[j]);
else
printf(".");
}
printf("\n");
}
}
void testIt(const uint8_t *input, int size) {
printf("Test Input:\n");
hexdump(input, size);
uint32_t compressedSize;
auto compressedBlob = lzmaCompress(input, size, &compressedSize);
if (compressedBlob) {
printf("Compressed:\n");
hexdump(compressedBlob.get(), compressedSize);
} else {
printf("Nope, we screwed it\n");
return;
}
// let's try decompressing it now
uint32_t decompressedSize;
auto decompressedBlob = lzmaDecompress(compressedBlob.get(), compressedSize, &decompressedSize);
if (decompressedBlob) {
printf("Decompressed:\n");
hexdump(decompressedBlob.get(), decompressedSize);
} else {
printf("Nope, we screwed it (part 2)\n");
return;
}
printf("----------\n");
}
void testIt(const char *string) {
testIt((const uint8_t *)string, strlen(string));
}
int main(int argc, char **argv) {
testIt("a");
testIt("here is a cool string");
testIt("here's something that should compress pretty well: abcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdef");
return 0;
}
You can refer to this file on how to use lzma2。
https://github.com/Tencent/libpag/blob/aab6391e455193c8ec5b8e2031b495b3fe77b034/test/framework/utils/LzmaUtil.cpp
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Tencent is pleased to support the open source community by making libpag available.
//
// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
// except in compliance with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// unless required by applicable law or agreed to in writing, software distributed under the
// license is distributed on an "as is" basis, without warranties or conditions of any kind,
// either express or implied. see the license for the specific language governing permissions
// and limitations under the license.
//
/////////////////////////////////////////////////////////////////////////////////////////////////
#include "LzmaUtil.h"
#include "test/framework/lzma/Lzma2DecMt.h"
#include "test/framework/lzma/Lzma2Enc.h"
namespace pag {
static void* LzmaAlloc(ISzAllocPtr, size_t size) {
return new uint8_t[size];
}
static void LzmaFree(ISzAllocPtr, void* address) {
if (!address) {
return;
}
delete[] reinterpret_cast<uint8_t*>(address);
}
static ISzAlloc gAllocFuncs = {LzmaAlloc, LzmaFree};
class SequentialOutStream {
public:
virtual ~SequentialOutStream() = default;
virtual bool write(const void* data, size_t size) = 0;
};
class SequentialInStream {
public:
virtual ~SequentialInStream() = default;
virtual bool read(void* data, size_t size, size_t* processedSize) = 0;
};
struct CSeqInStreamWrap {
ISeqInStream vt;
std::unique_ptr<SequentialInStream> inStream;
};
struct CSeqOutStreamWrap {
ISeqOutStream vt;
std::unique_ptr<SequentialOutStream> outStream;
};
class BuffPtrInStream : public SequentialInStream {
public:
explicit BuffPtrInStream(const uint8_t* buffer, size_t bufferSize)
: buffer(buffer), bufferSize(bufferSize) {
}
bool read(void* data, size_t size, size_t* processedSize) override {
if (processedSize) {
*processedSize = 0;
}
if (size == 0 || position >= bufferSize) {
return true;
}
auto remain = bufferSize - position;
if (remain > size) {
remain = size;
}
memcpy(data, static_cast<const uint8_t*>(buffer) + position, remain);
position += remain;
if (processedSize) {
*processedSize = remain;
}
return true;
}
private:
const uint8_t* buffer = nullptr;
size_t bufferSize = 0;
size_t position = 0;
};
class VectorOutStream : public SequentialOutStream {
public:
explicit VectorOutStream(std::vector<uint8_t>* buffer) : buffer(buffer) {
}
bool write(const void* data, size_t size) override {
auto oldSize = buffer->size();
buffer->resize(oldSize + size);
memcpy(&(*buffer)[oldSize], data, size);
return true;
}
private:
std::vector<uint8_t>* buffer;
};
class BuffPtrSeqOutStream : public SequentialOutStream {
public:
BuffPtrSeqOutStream(uint8_t* buffer, size_t size) : buffer(buffer), bufferSize(size) {
}
bool write(const void* data, size_t size) override {
auto remain = bufferSize - position;
if (remain > size) {
remain = size;
}
if (remain != 0) {
memcpy(buffer + position, data, remain);
position += remain;
}
return remain != 0 || size == 0;
}
private:
uint8_t* buffer = nullptr;
size_t bufferSize = 0;
size_t position = 0;
};
static const size_t kStreamStepSize = 1 << 31;
static SRes MyRead(const ISeqInStream* p, void* data, size_t* size) {
CSeqInStreamWrap* wrap = CONTAINER_FROM_VTBL(p, CSeqInStreamWrap, vt);
auto curSize = (*size < kStreamStepSize) ? *size : kStreamStepSize;
if (!wrap->inStream->read(data, curSize, &curSize)) {
return SZ_ERROR_READ;
}
*size = curSize;
return SZ_OK;
}
static size_t MyWrite(const ISeqOutStream* p, const void* buf, size_t size) {
auto* wrap = CONTAINER_FROM_VTBL(p, CSeqOutStreamWrap, vt);
if (wrap->outStream->write(buf, size)) {
return size;
}
return 0;
}
class Lzma2Encoder {
public:
Lzma2Encoder() {
encoder = Lzma2Enc_Create(&gAllocFuncs, &gAllocFuncs);
}
~Lzma2Encoder() {
Lzma2Enc_Destroy(encoder);
}
std::shared_ptr<Data> code(const std::shared_ptr<Data>& inputData) {
if (encoder == nullptr || inputData == nullptr || inputData->size() == 0) {
return nullptr;
}
auto inputSize = inputData->size();
CLzma2EncProps lzma2Props;
Lzma2EncProps_Init(&lzma2Props);
lzma2Props.lzmaProps.dictSize = inputSize;
lzma2Props.lzmaProps.level = 9;
lzma2Props.numTotalThreads = 4;
Lzma2Enc_SetProps(encoder, &lzma2Props);
std::vector<uint8_t> outBuf;
outBuf.resize(1 + 8);
outBuf[0] = Lzma2Enc_WriteProperties(encoder);
for (int i = 0; i < 8; i++) {
outBuf[1 + i] = static_cast<uint8_t>(inputSize >> (8 * i));
}
CSeqInStreamWrap inWrap = {};
inWrap.vt.Read = MyRead;
inWrap.inStream = std::make_unique<BuffPtrInStream>(
static_cast<const uint8_t*>(inputData->data()), inputSize);
CSeqOutStreamWrap outStream = {};
outStream.vt.Write = MyWrite;
outStream.outStream = std::make_unique<VectorOutStream>(&outBuf);
auto status =
Lzma2Enc_Encode2(encoder, &outStream.vt, nullptr, nullptr, &inWrap.vt, nullptr, 0, nullptr);
if (status != SZ_OK) {
return nullptr;
}
return Data::MakeWithCopy(&outBuf[0], outBuf.size());
}
private:
CLzma2EncHandle encoder = nullptr;
};
std::shared_ptr<Data> LzmaUtil::Compress(const std::shared_ptr<Data>& pixelData) {
Lzma2Encoder encoder;
return encoder.code(pixelData);
}
class Lzma2Decoder {
public:
Lzma2Decoder() {
decoder = Lzma2DecMt_Create(&gAllocFuncs, &gAllocFuncs);
}
~Lzma2Decoder() {
if (decoder) {
Lzma2DecMt_Destroy(decoder);
}
}
std::shared_ptr<Data> code(const std::shared_ptr<Data>& inputData) {
if (decoder == nullptr || inputData == nullptr || inputData->size() == 0) {
return nullptr;
}
auto input = static_cast<const uint8_t*>(inputData->data());
auto inputSize = inputData->size() - 9;
Byte prop = static_cast<const Byte*>(input)[0];
CLzma2DecMtProps props;
Lzma2DecMtProps_Init(&props);
props.inBufSize_ST = inputSize;
props.numThreads = 1;
UInt64 outBufferSize = 0;
for (int i = 0; i < 8; i++) {
outBufferSize |= (input[1 + i] << (i * 8));
}
auto outBuffer = new uint8_t[outBufferSize];
CSeqInStreamWrap inWrap = {};
inWrap.vt.Read = MyRead;
inWrap.inStream = std::make_unique<BuffPtrInStream>(input + 9, inputSize);
CSeqOutStreamWrap outWrap = {};
outWrap.vt.Write = MyWrite;
outWrap.outStream = std::make_unique<BuffPtrSeqOutStream>(outBuffer, outBufferSize);
UInt64 inProcessed = 0;
int isMT = false;
auto res = Lzma2DecMt_Decode(decoder, prop, &props, &outWrap.vt, &outBufferSize, 1, &inWrap.vt,
&inProcessed, &isMT, nullptr);
if (res == SZ_OK && inputSize == inProcessed) {
return Data::MakeAdopted(outBuffer, outBufferSize, Data::DeleteProc);
}
delete[] outBuffer;
return nullptr;
}
private:
CLzma2DecMtHandle decoder = nullptr;
};
std::shared_ptr<Data> LzmaUtil::Decompress(const std::shared_ptr<Data>& data) {
Lzma2Decoder decoder;
return decoder.code(data);
}
} // namespace pag
i am having problems understanding how the audio part of the sdl library works
now, i know that when you initialize it, you have to specify the frequency and a >>callback<< function, which i think is then called automatically at the given frequency.
can anyone who worked with the sdl library write a simple example that would use sdl_audio to generate a 440 hz square wave (since it is the simplest waveform) at a sampling frequency of 44000 hz?
The Introduction to SDL (2011 cached version: 2) has got a neat example of using SDL Sound library that should get you started: http://www.libsdl.org/intro.en/usingsound.html
EDIT: Here is a working program that does what you asked for. I modified a bit the code found here: http://www.dgames.org/beep-sound-with-sdl/
#include <SDL/SDL.h>
#include <SDL/SDL_audio.h>
#include <queue>
#include <cmath>
const int AMPLITUDE = 28000;
const int FREQUENCY = 44100;
struct BeepObject
{
double freq;
int samplesLeft;
};
class Beeper
{
private:
double v;
std::queue<BeepObject> beeps;
public:
Beeper();
~Beeper();
void beep(double freq, int duration);
void generateSamples(Sint16 *stream, int length);
void wait();
};
void audio_callback(void*, Uint8*, int);
Beeper::Beeper()
{
SDL_AudioSpec desiredSpec;
desiredSpec.freq = FREQUENCY;
desiredSpec.format = AUDIO_S16SYS;
desiredSpec.channels = 1;
desiredSpec.samples = 2048;
desiredSpec.callback = audio_callback;
desiredSpec.userdata = this;
SDL_AudioSpec obtainedSpec;
// you might want to look for errors here
SDL_OpenAudio(&desiredSpec, &obtainedSpec);
// start play audio
SDL_PauseAudio(0);
}
Beeper::~Beeper()
{
SDL_CloseAudio();
}
void Beeper::generateSamples(Sint16 *stream, int length)
{
int i = 0;
while (i < length) {
if (beeps.empty()) {
while (i < length) {
stream[i] = 0;
i++;
}
return;
}
BeepObject& bo = beeps.front();
int samplesToDo = std::min(i + bo.samplesLeft, length);
bo.samplesLeft -= samplesToDo - i;
while (i < samplesToDo) {
stream[i] = AMPLITUDE * std::sin(v * 2 * M_PI / FREQUENCY);
i++;
v += bo.freq;
}
if (bo.samplesLeft == 0) {
beeps.pop();
}
}
}
void Beeper::beep(double freq, int duration)
{
BeepObject bo;
bo.freq = freq;
bo.samplesLeft = duration * FREQUENCY / 1000;
SDL_LockAudio();
beeps.push(bo);
SDL_UnlockAudio();
}
void Beeper::wait()
{
int size;
do {
SDL_Delay(20);
SDL_LockAudio();
size = beeps.size();
SDL_UnlockAudio();
} while (size > 0);
}
void audio_callback(void *_beeper, Uint8 *_stream, int _length)
{
Sint16 *stream = (Sint16*) _stream;
int length = _length / 2;
Beeper* beeper = (Beeper*) _beeper;
beeper->generateSamples(stream, length);
}
int main(int argc, char* argv[])
{
SDL_Init(SDL_INIT_AUDIO);
int duration = 1000;
double Hz = 440;
Beeper b;
b.beep(Hz, duration);
b.wait();
return 0;
}
Good luck.
A boiled-down variant of the beeper-example, reduced to the bare minimum (with error-handling).
#include <math.h>
#include <SDL.h>
#include <SDL_audio.h>
const int AMPLITUDE = 28000;
const int SAMPLE_RATE = 44100;
void audio_callback(void *user_data, Uint8 *raw_buffer, int bytes)
{
Sint16 *buffer = (Sint16*)raw_buffer;
int length = bytes / 2; // 2 bytes per sample for AUDIO_S16SYS
int &sample_nr(*(int*)user_data);
for(int i = 0; i < length; i++, sample_nr++)
{
double time = (double)sample_nr / (double)SAMPLE_RATE;
buffer[i] = (Sint16)(AMPLITUDE * sin(2.0f * M_PI * 441.0f * time)); // render 441 HZ sine wave
}
}
int main(int argc, char *argv[])
{
if(SDL_Init(SDL_INIT_AUDIO) != 0) SDL_Log("Failed to initialize SDL: %s", SDL_GetError());
int sample_nr = 0;
SDL_AudioSpec want;
want.freq = SAMPLE_RATE; // number of samples per second
want.format = AUDIO_S16SYS; // sample type (here: signed short i.e. 16 bit)
want.channels = 1; // only one channel
want.samples = 2048; // buffer-size
want.callback = audio_callback; // function SDL calls periodically to refill the buffer
want.userdata = &sample_nr; // counter, keeping track of current sample number
SDL_AudioSpec have;
if(SDL_OpenAudio(&want, &have) != 0) SDL_LogError(SDL_LOG_CATEGORY_AUDIO, "Failed to open audio: %s", SDL_GetError());
if(want.format != have.format) SDL_LogError(SDL_LOG_CATEGORY_AUDIO, "Failed to get the desired AudioSpec");
SDL_PauseAudio(0); // start playing sound
SDL_Delay(1000); // wait while sound is playing
SDL_PauseAudio(1); // stop playing sound
SDL_CloseAudio();
return 0;
}
SDL 2 C example
The following code produces a sinusoidal sound, it is adapted from: https://codereview.stackexchange.com/questions/41086/play-some-sine-waves-with-sdl2
main.c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <SDL2/SDL.h>
const double ChromaticRatio = 1.059463094359295264562;
const double Tao = 6.283185307179586476925;
Uint32 sampleRate = 48000;
Uint32 frameRate = 60;
Uint32 floatStreamLength = 1024;
Uint32 samplesPerFrame;
Uint32 msPerFrame;
double practicallySilent = 0.001;
Uint32 audioBufferLength = 48000;
float *audioBuffer;
SDL_atomic_t audioCallbackLeftOff;
Sint32 audioMainLeftOff;
Uint8 audioMainAccumulator;
SDL_AudioDeviceID AudioDevice;
SDL_AudioSpec audioSpec;
SDL_Event event;
SDL_bool running = SDL_TRUE;
typedef struct {
float *waveform;
Uint32 waveformLength;
double volume;
double pan;
double frequency;
double phase;
} voice;
void speak(voice *v) {
float sample;
Uint32 sourceIndex;
double phaseIncrement = v->frequency/sampleRate;
Uint32 i;
if (v->volume > practicallySilent) {
for (i = 0; (i + 1) < samplesPerFrame; i += 2) {
v->phase += phaseIncrement;
if (v->phase > 1)
v->phase -= 1;
sourceIndex = v->phase*v->waveformLength;
sample = v->waveform[sourceIndex]*v->volume;
audioBuffer[audioMainLeftOff+i] += sample*(1-v->pan);
audioBuffer[audioMainLeftOff+i+1] += sample*v->pan;
}
}
else {
for (i=0; i<samplesPerFrame; i+=1)
audioBuffer[audioMainLeftOff+i] = 0;
}
audioMainAccumulator++;
}
double getFrequency(double pitch) {
return pow(ChromaticRatio, pitch-57)*440;
}
int getWaveformLength(double pitch) {
return sampleRate / getFrequency(pitch)+0.5f;
}
void buildSineWave(float *data, Uint32 length) {
Uint32 i;
for (i=0; i < length; i++)
data[i] = sin(i*(Tao/length));
}
void logSpec(SDL_AudioSpec *as) {
printf(
" freq______%5d\n"
" format____%5d\n"
" channels__%5d\n"
" silence___%5d\n"
" samples___%5d\n"
" size______%5d\n\n",
(int) as->freq,
(int) as->format,
(int) as->channels,
(int) as->silence,
(int) as->samples,
(int) as->size
);
}
void logVoice(voice *v) {
printf(
" waveformLength__%d\n"
" volume__________%f\n"
" pan_____________%f\n"
" frequency_______%f\n"
" phase___________%f\n",
v->waveformLength,
v->volume,
v->pan,
v->frequency,
v->phase
);
}
void logWavedata(float *floatStream, Uint32 floatStreamLength, Uint32 increment) {
printf("\n\nwaveform data:\n\n");
Uint32 i=0;
for (i = 0; i < floatStreamLength; i += increment)
printf("%4d:%2.16f\n", i, floatStream[i]);
printf("\n\n");
}
void audioCallback(void *unused, Uint8 *byteStream, int byteStreamLength) {
float* floatStream = (float*) byteStream;
Sint32 localAudioCallbackLeftOff = SDL_AtomicGet(&audioCallbackLeftOff);
Uint32 i;
for (i = 0; i < floatStreamLength; i++) {
floatStream[i] = audioBuffer[localAudioCallbackLeftOff];
localAudioCallbackLeftOff++;
if (localAudioCallbackLeftOff == audioBufferLength)
localAudioCallbackLeftOff = 0;
}
SDL_AtomicSet(&audioCallbackLeftOff, localAudioCallbackLeftOff);
}
int init(void) {
SDL_Init(SDL_INIT_AUDIO | SDL_INIT_TIMER);
SDL_AudioSpec want;
SDL_zero(want);
want.freq = sampleRate;
want.format = AUDIO_F32;
want.channels = 2;
want.samples = floatStreamLength;
want.callback = audioCallback;
AudioDevice = SDL_OpenAudioDevice(NULL, 0, &want, &audioSpec, SDL_AUDIO_ALLOW_FORMAT_CHANGE);
if (AudioDevice == 0) {
printf("\nFailed to open audio: %s\n", SDL_GetError());
return 1;
}
printf("want:\n");
logSpec(&want);
printf("audioSpec:\n");
logSpec(&audioSpec);
if (audioSpec.format != want.format) {
printf("\nCouldn't get Float32 audio format.\n");
return 2;
}
sampleRate = audioSpec.freq;
floatStreamLength = audioSpec.size / 4;
samplesPerFrame = sampleRate / frameRate;
msPerFrame = 1000 / frameRate;
audioMainLeftOff = samplesPerFrame * 8;
SDL_AtomicSet(&audioCallbackLeftOff, 0);
if (audioBufferLength % samplesPerFrame)
audioBufferLength += samplesPerFrame - (audioBufferLength % samplesPerFrame);
audioBuffer = malloc(sizeof(float) * audioBufferLength);
return 0;
}
int onExit(void) {
SDL_CloseAudioDevice(AudioDevice);
SDL_Quit();
return 0;
}
int main(int argc, char *argv[]) {
float syncCompensationFactor = 0.0016;
Sint32 mainAudioLead;
Uint32 i;
voice testVoiceA;
voice testVoiceB;
voice testVoiceC;
testVoiceA.volume = 1;
testVoiceB.volume = 1;
testVoiceC.volume = 1;
testVoiceA.pan = 0.5;
testVoiceB.pan = 0;
testVoiceC.pan = 1;
testVoiceA.phase = 0;
testVoiceB.phase = 0;
testVoiceC.phase = 0;
testVoiceA.frequency = getFrequency(45);
testVoiceB.frequency = getFrequency(49);
testVoiceC.frequency = getFrequency(52);
Uint16 C0waveformLength = getWaveformLength(0);
testVoiceA.waveformLength = C0waveformLength;
testVoiceB.waveformLength = C0waveformLength;
testVoiceC.waveformLength = C0waveformLength;
float sineWave[C0waveformLength];
buildSineWave(sineWave, C0waveformLength);
testVoiceA.waveform = sineWave;
testVoiceB.waveform = sineWave;
testVoiceC.waveform = sineWave;
if (init())
return 1;
SDL_Delay(42);
SDL_PauseAudioDevice(AudioDevice, 0);
while (running) {
while (SDL_PollEvent(&event) != 0) {
if (event.type == SDL_QUIT) {
running = SDL_FALSE;
}
}
for (i = 0; i < samplesPerFrame; i++)
audioBuffer[audioMainLeftOff+i] = 0;
speak(&testVoiceA);
speak(&testVoiceB);
speak(&testVoiceC);
if (audioMainAccumulator > 1) {
for (i=0; i<samplesPerFrame; i++) {
audioBuffer[audioMainLeftOff+i] /= audioMainAccumulator;
}
}
audioMainAccumulator = 0;
audioMainLeftOff += samplesPerFrame;
if (audioMainLeftOff == audioBufferLength)
audioMainLeftOff = 0;
mainAudioLead = audioMainLeftOff - SDL_AtomicGet(&audioCallbackLeftOff);
if (mainAudioLead < 0)
mainAudioLead += audioBufferLength;
if (mainAudioLead < floatStreamLength)
printf("An audio collision may have occured!\n");
SDL_Delay(mainAudioLead * syncCompensationFactor);
}
onExit();
return 0;
}
Compile and run:
gcc -ggdb3 -O3 -std=c99 -Wall -Wextra -pedantic -o main.out main.c -lSDL2 -lm
./main.out
Should be easy to turn this into a simple piano with: https://github.com/cirosantilli/cpp-cheat/blob/f734a2e76fbcfc67f707ae06be7a2a2ef5db47d1/c/interactive/audio_gen.c#L44
For wav manipulation, also check the official examples:
http://hg.libsdl.org/SDL/file/e12c38730512/test/testresample.c
http://hg.libsdl.org/SDL/file/e12c38730512/test/loopwave.c
Tested on Ubuntu 19.10, SDL 2.0.10.
This is a minimal example of how to play a sine wave in SDL2.
Make sure to call SDL_Init(SDL_INIT_AUDIO) before creating an instance of Sound.
Sound.h
#include <cstdint>
#include <SDL2/SDL.h>
class Sound
{
public:
Sound();
~Sound();
void play();
void stop();
const double m_sineFreq;
const double m_sampleFreq;
const double m_samplesPerSine;
uint32_t m_samplePos;
private:
static void SDLAudioCallback(void *data, Uint8 *buffer, int length);
SDL_AudioDeviceID m_device;
};
Sound.cpp
#include "Sound.h"
#include <cmath>
#include <iostream>
Sound::Sound()
: m_sineFreq(1000),
m_sampleFreq(44100),
m_samplesPerSine(m_sampleFreq / m_sineFreq),
m_samplePos(0)
{
SDL_AudioSpec wantSpec, haveSpec;
SDL_zero(wantSpec);
wantSpec.freq = m_sampleFreq;
wantSpec.format = AUDIO_U8;
wantSpec.channels = 1;
wantSpec.samples = 2048;
wantSpec.callback = SDLAudioCallback;
wantSpec.userdata = this;
m_device = SDL_OpenAudioDevice(NULL, 0, &wantSpec, &haveSpec, SDL_AUDIO_ALLOW_FORMAT_CHANGE);
if (m_device == 0)
{
std::cout << "Failed to open audio: " << SDL_GetError() << std::endl;
}
}
Sound::~Sound()
{
SDL_CloseAudioDevice(m_device);
}
void Sound::play()
{
SDL_PauseAudioDevice(m_device, 0);
}
void Sound::stop()
{
SDL_PauseAudioDevice(m_device, 1);
}
void Sound::SDLAudioCallback(void *data, Uint8 *buffer, int length)
{
Sound *sound = reinterpret_cast<Sound*>(data);
for(int i = 0; i < length; ++i)
{
buffer[i] = (std::sin(sound->m_samplePos / sound->m_samplesPerSine * M_PI * 2) + 1) * 127.5;
++sound->m_samplePos;
}
}