How to access list permutations in prolog? - list

I want to access list permutation and pass it as argument to other functions.
This is the permutation code:
takeout(X,[X|R],R).
takeout(X,[F|R],[F|S]) :-
takeout(X,R,S),
write(S).
perm([X|Y],Z) :-
perm(Y,W),
takeout(X,Z,W).
perm([],[]).

To start with, let's redefine your predicates so they don't do any unnecessary I/O:
takeout(X,[X|R],R).
takeout(X,[F |R],[F|S]) :- takeout(X,R,S).
perm([X|Y],Z) :- perm(Y,W), takeout(X,Z,W).
perm([],[]).
Now you have what could be considered a "pure" permutation function:
?- perm([1,2,3], X).
X = [1, 2, 3] ;
X = [2, 1, 3] ;
X = [2, 3, 1] ;
X = [1, 3, 2] ;
X = [3, 1, 2] ;
X = [3, 2, 1] ;
false.
So, suppose you have a max_heap function that takes a list of values and produces a tree. I'll let you worry about that, so let's just posit that it exists and is called max_heap/2 and let's further posit that you have a way to display this attractively called display_heap/1. To "take" the permutation and "send" it as a parameter to these functions, you're really saying in math-ese: suppose P is a permutation of X, let's make a max_heap with it and display it. Or, suppose P is a permutation of X, H is a max heap made from X, let's display H:
show_heaps(List) :- perm(List, P), max_heap(P, H), display_heap(H).
This says the same thing as my English sentence: suppose P is a permutation of the list, then H is a heap representation of it, then display it. Technically, display_heap/1 is still a predicate which could be true or false for a given heap. In practice, it will always be true, and if you run this you'll still have to hit ; repeatedly to say, give me another solution, unless you use a failure-driven loop or an extralogical predicate like findall/3 to cause all the solutions to be found.
Edit: Let's discuss failure-driven loops and findall/3. First let me add some new predicates, because I don't know exactly what you're doing, but it doesn't matter for our purposes.
double([X|Xs], [Y|Ys]) :- Y is X*2, double(Xs, Ys).
double([],[]).
showlist(Xs) :- print(Xs).
So now I have a predicate double/2 which doubles the values in the list and a predicate showlist/1 that prints the list on standard output. We can try it out like so:
?- perm([1,2,3], X), double(X, Y), showlist(Y).
[2,4,6]
X = [1, 2, 3],
Y = [2, 4, 6] ;
[4,2,6]
X = [2, 1, 3],
Y = [4, 2, 6] ;
[4,6,2]
X = [2, 3, 1],
Y = [4, 6, 2] ;
[2,6,4]
X = [1, 3, 2],
Y = [2, 6, 4] ;
[6,2,4]
X = [3, 1, 2],
Y = [6, 2, 4] ;
[6,4,2]
X = [3, 2, 1],
Y = [6, 4, 2] ;
false.
When you type ; you're saying, "or?" to Prolog. In other words, you're saying "what else?" You're telling Prolog, in effect, this isn't the answer I want, try and find me another answer I like better. You can formalize this process with a failure-driven loop:
?- perm([1,2,3], X), double(X, Y), showlist(Y), fail.
[2,4,6][4,2,6][4,6,2][2,6,4][6,2,4][6,4,2]
false.
So now you see the output from each permutation having gone through double/2 there, and then Prolog reported false. That's what one means by something like this:
show_all_heaps(List) :- perm(List, X), double(X, Y), showlist(Y), nl, fail.
show_all_heaps(_).
Look at how that works:
?- show_all_heaps([1,2,3]).
[2,4,6]
[4,2,6]
[4,6,2]
[2,6,4]
[6,2,4]
[6,4,2]
true.
The other option is using findall/3, which looks more like this:
?- findall(Y, (perm([1,2,3], X), double(X, Y)), Ys).
Ys = [[2, 4, 6], [4, 2, 6], [4, 6, 2], [2, 6, 4], [6, 2, 4], [6, 4, 2]].
Using this to solve your problem is probably beyond the scope of whatever homework it is you're working on though.

We can define list_permutation/2 based on same_length/2 and select/3 like this:
:- use_module(library(lists),[same_length/2,select/3]).
list_permutation(As,Bs) :-
same_length(As,Bs), % redundant goal helps termination
list_permutation_(As,Bs).
list_permutation_([],[]).
list_permutation_([A|As],Bs0) :-
select(A,Bs0,Bs),
list_permutation_(As,Bs).
Thanks to same_length/2, both of the following queries1,2 terminate universally:
?- list_permutation([1,2,3],Ys).
Ys = [1,2,3]
; Ys = [1,3,2]
; Ys = [2,1,3]
; Ys = [3,1,2]
; Ys = [2,3,1]
; Ys = [3,2,1]
; false.
?- list_permutation(Xs,[1,2,3]).
Xs = [1,2,3]
; Xs = [1,3,2]
; Xs = [2,1,3]
; Xs = [2,3,1]
; Xs = [3,1,2]
; Xs = [3,2,1]
; false.
So far, so good. But what does the answer sequence look like if there are duplicate list items?
?- list_permutation([1,1,1],Ys).
Ys = [1,1,1]
; Ys = [1,1,1]
; Ys = [1,1,1]
; Ys = [1,1,1]
; Ys = [1,1,1]
; Ys = [1,1,1]
; false.
5/6 answers are redundant! What can we do? We simply use selectd/3 instead of select/3!
list_permuted(As,Bs) :-
same_length(As,Bs),
list_permuted_(As,Bs).
list_permuted_([],[]).
list_permuted_([A|As],Bs0) :-
selectd(A,Bs0,Bs), % use selectd/3, not select/3
list_permuted_(As,Bs).
Let's re-run above query that gave us 5 redundant solutions before!
?- list_permuted([1,1,1],Ys).
Ys = [1,1,1]
; false.
?- list_permuted(Xs,[1,1,1]).
Xs = [1,1,1]
; false.
Better! All redundant answers are gone.
Let's compare the solution set for some sample case:
?- _Xs = [1,2,1,1,2,1,1,2,1],
setof(Ys,list_permutation(_Xs,Ys),Yss),
setof(Ys,list_permuted(_Xs,Ys),Yss),
length(Yss,N).
N = 84, Yss = [[1,1,1,1,1,1,2,2,2],[1,1,1,1,1,2,1,2,2],[...|...]|...].
OK! How about empirical runtime measurements with a problem of a slightly bigger size?
We use call_time/2 for measuring the runtime in milli-seconds T_ms.
?- call_time(\+ (list_permutation([1,2,1,1,1,2,1,1,1,2,1],_),false),T_ms).
T_ms = 8110.
?- call_time(\+ (list_permuted( [1,2,1,1,1,2,1,1,1,2,1],_),false),T_ms).
T_ms = 140.
OK! And with proper compilation of if_/3 and (=)/3, list_permuted/2 is even faster!
Footnote 1: Using SICStus Prolog version 4.3.2 (x86_64-linux-glibc2.12).
Footnote 2: The answers given by the Prolog toplevel have been post-processed for the sake of readability.

If you just want to explore the permutations without the "False" in the end, this code might be helpful
takeout(X,[F |R],[F|S]) :- F\=X, takeout(X,R,S).
takeout(X,[X|R],R).
perm([X|Y],Z) :- perm(Y,W), takeout(X,Z,W).
perm([],[]).
So, the output of perm([a,b],B) would be
B=[a,b]
B=[b,a]

Related

Append elements of list to other list in Prolog [duplicate]

I need to find the combinations in a list of lists. For example, give the following list,
List = [[1, 2], [1, 2, 3]]
These should be the output,
Comb = [[1,1],[1,2],[1,3],[2,1],[2,2],[2,3]]
Another example:
List = [[1,2],[1,2],[1,2,3]]
Comb = [[1,1,1],[1,1,2],[1,1,3],[1,2,1],[1,2,2],[1,2,3]....etc]
I know how to do it for a list with two sublists but it needs to work for any number of sublists.
I'm new to Prolog, please help.
This answer hunts the bounty offered "for a pure solution that also takes into account for Ess".
Here we generalize this previous
answer like so:
list_crossproduct(Xs, []) :-
member([], Xs).
list_crossproduct(Xs, Ess) :-
Ess = [E0|_],
same_length(E0, Xs),
maplist(maybelonger_than(Ess), Xs),
list_comb(Xs, Ess).
maybelonger_than(Xs, Ys) :-
maybeshorter_than(Ys, Xs).
maybeshorter_than([], _).
maybeshorter_than([_|Xs], [_|Ys]) :-
maybeshorter_than(Xs, Ys).
list_crossproduct/2 gets bidirectional by relating Xs and Ess early.
?- list_comb(Xs, [[1,2,3],[1,2,4],[1,2,5]]).
nontermination % BAD!
?- list_crossproduct(Xs, [[1,2,3],[1,2,4],[1,2,5]]).
Xs = [[1],[2],[3,4,5]] % this now works, too
; false.
Sample query having multiple answers:
?- list_crossproduct(Xs, [[1,2,3],[1,2,4],[1,2,5],X,Y,Z]).
X = [1,2,_A],
Y = [1,2,_B],
Z = [1,2,_C], Xs = [[1],[2],[3,4,5,_A,_B,_C]]
; X = [1,_A,3],
Y = [1,_A,4],
Z = [1,_A,5], Xs = [[1],[2,_A],[3,4,5]]
; X = [_A,2,3],
Y = [_A,2,4],
Z = [_A,2,5], Xs = [[1,_A],[2],[3,4,5]]
; false.
For completeness, here is the augmented version of my comment-version. Note nilmemberd_t/2 which is inspired by memberd_t/2.
nilmemberd_t([], false).
nilmemberd_t([X|Xs], T) :-
if_(nil_t(X), T = true, nilmemberd_t(Xs, T)).
nil_t([], true).
nil_t([_|_], false).
list_comb(List, []) :-
nilmemberd_t(List, true).
list_comb(List, Ess) :-
bagof(Es, maplist(member,Es,List), Ess).
Above version shows that "only" the first clause was missing in my comment response. Maybe even shorter with:
nilmemberd([[]|_]).
nilmemberd([[_|_]|Nils]) :-
nilmemberd(Nils).
This should work for Prologs without constraints. With constraints, bagof/3 would have to be reconsidered since copying constraints is an ill-defined terrain.
Here's a way to do it using maplist/3 and append/2:
list_comb([], [[]]).
list_comb([Xs|Xss], Ess) :-
Xs = [_|_],
list_comb(Xss, Ess0),
maplist(aux_x_comb(Ess0), Xs, Esss1),
append(Esss1, Ess).
aux_x_comb(Ess0, X, Ess1) :-
maplist(head_tail_list(X), Ess0, Ess1).
head_tail_list(X, Xs, [X|Xs]).
Sample query:
?- list_comb([[a,b],[f,g],[x,y,z]], Ess).
Ess = [[a,f,x],[a,f,y],[a,f,z],
[a,g,x],[a,g,y],[a,g,z],
[b,f,x],[b,f,y],[b,f,z],
[b,g,x],[b,g,y],[b,g,z]].
Here's how it works!
As an example, consider these goals:
list_comb([[a,b],[f,g],[x,y,z]], Ess)
list_comb([ [f,g],[x,y,z]], Ess0)
How can we get from Ess0 to Ess?
We look at the answers to the
latter query:
?- list_comb([[f,g],[x,y,z]], Ess0).
Ess0 = [[f,x],[f,y],[f,z], [g,x],[g,y],[g,z]].
... place a before [f,x], ..., [g,z] ...
?- maplist(head_tail_list(a),
[[f,x],[f,y],[f,z],
[g,x],[g,y],[g,z]], X).
X = [[a,f,x],[a,f,y],[a,f,z],
[a,g,x],[a,g,y],[a,g,z]].
... then do the same for b.
maplist(aux_x_comb) helps us handle all items:
?- maplist(aux_x_comb([[f,x],[f,y],[f,z],
[g,x],[g,y],[g,z]]),
[a,b], X).
X = [[[a,f,x],[a,f,y],[a,f,z],
[a,g,x],[a,g,y],[a,g,z]],
[[b,f,x],[b,f,y],[b,f,z],
[b,g,x],[b,g,y],[b,g,z]]].
To get from a list of lists to a list use append/2.
I hope this explanation was more eludicating than confusing:)
A twist in #false's approach:
%list_comb( ++LL, -Ess)
list_comb( LL, Ess):-
is_list( LL),
maplist( is_list, LL),
findall( Es, maplist( member, Es, LL), Ess).
Testing:
41 ?- list_comb( [[1,2],[1],[1]], X).
X = [[1, 1, 1], [2, 1, 1]].
42 ?- list_comb( [[1,2],[1],[1,2,3]], X).
X = [[1, 1, 1], [1, 1, 2], [1, 1, 3], [2, 1, 1], [2, 1, 2], [2, 1, 3]].
43 ?- list_comb( [[1,2],[],[1,2,3]], X).
X = [].
44 ?- list_comb( [[1,2],t,[1,2,3]], X).
false.
45 ?- list_comb( t, X).
false.

Combinations of multiple lists - Prolog

I need to find the combinations in a list of lists. For example, give the following list,
List = [[1, 2], [1, 2, 3]]
These should be the output,
Comb = [[1,1],[1,2],[1,3],[2,1],[2,2],[2,3]]
Another example:
List = [[1,2],[1,2],[1,2,3]]
Comb = [[1,1,1],[1,1,2],[1,1,3],[1,2,1],[1,2,2],[1,2,3]....etc]
I know how to do it for a list with two sublists but it needs to work for any number of sublists.
I'm new to Prolog, please help.
This answer hunts the bounty offered "for a pure solution that also takes into account for Ess".
Here we generalize this previous
answer like so:
list_crossproduct(Xs, []) :-
member([], Xs).
list_crossproduct(Xs, Ess) :-
Ess = [E0|_],
same_length(E0, Xs),
maplist(maybelonger_than(Ess), Xs),
list_comb(Xs, Ess).
maybelonger_than(Xs, Ys) :-
maybeshorter_than(Ys, Xs).
maybeshorter_than([], _).
maybeshorter_than([_|Xs], [_|Ys]) :-
maybeshorter_than(Xs, Ys).
list_crossproduct/2 gets bidirectional by relating Xs and Ess early.
?- list_comb(Xs, [[1,2,3],[1,2,4],[1,2,5]]).
nontermination % BAD!
?- list_crossproduct(Xs, [[1,2,3],[1,2,4],[1,2,5]]).
Xs = [[1],[2],[3,4,5]] % this now works, too
; false.
Sample query having multiple answers:
?- list_crossproduct(Xs, [[1,2,3],[1,2,4],[1,2,5],X,Y,Z]).
X = [1,2,_A],
Y = [1,2,_B],
Z = [1,2,_C], Xs = [[1],[2],[3,4,5,_A,_B,_C]]
; X = [1,_A,3],
Y = [1,_A,4],
Z = [1,_A,5], Xs = [[1],[2,_A],[3,4,5]]
; X = [_A,2,3],
Y = [_A,2,4],
Z = [_A,2,5], Xs = [[1,_A],[2],[3,4,5]]
; false.
For completeness, here is the augmented version of my comment-version. Note nilmemberd_t/2 which is inspired by memberd_t/2.
nilmemberd_t([], false).
nilmemberd_t([X|Xs], T) :-
if_(nil_t(X), T = true, nilmemberd_t(Xs, T)).
nil_t([], true).
nil_t([_|_], false).
list_comb(List, []) :-
nilmemberd_t(List, true).
list_comb(List, Ess) :-
bagof(Es, maplist(member,Es,List), Ess).
Above version shows that "only" the first clause was missing in my comment response. Maybe even shorter with:
nilmemberd([[]|_]).
nilmemberd([[_|_]|Nils]) :-
nilmemberd(Nils).
This should work for Prologs without constraints. With constraints, bagof/3 would have to be reconsidered since copying constraints is an ill-defined terrain.
Here's a way to do it using maplist/3 and append/2:
list_comb([], [[]]).
list_comb([Xs|Xss], Ess) :-
Xs = [_|_],
list_comb(Xss, Ess0),
maplist(aux_x_comb(Ess0), Xs, Esss1),
append(Esss1, Ess).
aux_x_comb(Ess0, X, Ess1) :-
maplist(head_tail_list(X), Ess0, Ess1).
head_tail_list(X, Xs, [X|Xs]).
Sample query:
?- list_comb([[a,b],[f,g],[x,y,z]], Ess).
Ess = [[a,f,x],[a,f,y],[a,f,z],
[a,g,x],[a,g,y],[a,g,z],
[b,f,x],[b,f,y],[b,f,z],
[b,g,x],[b,g,y],[b,g,z]].
Here's how it works!
As an example, consider these goals:
list_comb([[a,b],[f,g],[x,y,z]], Ess)
list_comb([ [f,g],[x,y,z]], Ess0)
How can we get from Ess0 to Ess?
We look at the answers to the
latter query:
?- list_comb([[f,g],[x,y,z]], Ess0).
Ess0 = [[f,x],[f,y],[f,z], [g,x],[g,y],[g,z]].
... place a before [f,x], ..., [g,z] ...
?- maplist(head_tail_list(a),
[[f,x],[f,y],[f,z],
[g,x],[g,y],[g,z]], X).
X = [[a,f,x],[a,f,y],[a,f,z],
[a,g,x],[a,g,y],[a,g,z]].
... then do the same for b.
maplist(aux_x_comb) helps us handle all items:
?- maplist(aux_x_comb([[f,x],[f,y],[f,z],
[g,x],[g,y],[g,z]]),
[a,b], X).
X = [[[a,f,x],[a,f,y],[a,f,z],
[a,g,x],[a,g,y],[a,g,z]],
[[b,f,x],[b,f,y],[b,f,z],
[b,g,x],[b,g,y],[b,g,z]]].
To get from a list of lists to a list use append/2.
I hope this explanation was more eludicating than confusing:)
A twist in #false's approach:
%list_comb( ++LL, -Ess)
list_comb( LL, Ess):-
is_list( LL),
maplist( is_list, LL),
findall( Es, maplist( member, Es, LL), Ess).
Testing:
41 ?- list_comb( [[1,2],[1],[1]], X).
X = [[1, 1, 1], [2, 1, 1]].
42 ?- list_comb( [[1,2],[1],[1,2,3]], X).
X = [[1, 1, 1], [1, 1, 2], [1, 1, 3], [2, 1, 1], [2, 1, 2], [2, 1, 3]].
43 ?- list_comb( [[1,2],[],[1,2,3]], X).
X = [].
44 ?- list_comb( [[1,2],t,[1,2,3]], X).
false.
45 ?- list_comb( t, X).
false.

Prolog how do I append a list of lists into one list?

So I'm totally new to Prolog and need some help. I'm trying to take a list of lists like [[1,2,3],[4,5,6],[7,8]] and create a list like [2,3,5,6,8], so basically all the values into a new list besides the first of each list. I got this:
test5(X,[[_|X]|_]).
test5(X,[_|A]) :- test5(X,A).
which returns [2,3] and then [5,6] and then [8] each time I press enter. I'm not sure how to make them run all at once and make them into a list. I tried using append in different ways but I could not get this working. Any idea on how to implement this? Thanks!
You have the common predicate flatten/2, which almost does the job:
?- flatten([[1,2,3],[4,5,6],[7,8]], L).
L = [1, 2, 3, 4, 5, 6, 7, 8].
There are many implementations of flatten/2 available, just google it.
If you know that the list of lists is not nested, you should rather use append/2.
Then, you need to drop the first element of each list before appending:
list_tail([_|T], T).
Then:
?- maplist(list_tail, [[1,2,3],[4,5,6],[7,8]], T), append(T, L).
T = [[2, 3], [5, 6], [8]],
L = [2, 3, 5, 6, 8].
It might be a good exercise to take a more careful look at the implementation of append/2 linked above. With a small change in the definition (literally removing 1 character and adding 5) it will do the dropping and appending in the same step, without traversing the original list twice.
EDIT
So why is it that #repeat's initial solution does not terminate when the first argument is not a proper list, but the second is a proper list?
nt_tails_append([[_|T]|Ls], As) :-
append(T, Ws, As),
nt_tails_append(Ls, Ws).
It is because when the first argument to nt_tails_append/2 is a free variable, the first two arguments to append/3 above are variables, too. When we call append/3 in this mode, we get, by definition:
?- append(A, B, L).
A = [],
B = L .
In other words, the second and the third arguments are now unified. With the definition of nt_tail_append/2, this means that the recursive call gets the same second argument as the original call, and a new free variable as the first argument. This is an endless loop, of course.
(Tellingly, if you care to look at the definition of append/2 linked above, you will see that the first argument must_be a list.)
How does this help?
tails_append(Ls, As) :-
maplist(list_tail, Ls, T),
append(T, As).
list_tail([_|T], T).
The way that maplist is defined, all list arguments will be instantiated to proper lists. So you can safely use append/3 (here, used in the definition of append/2).
Here is how you could do it using append/3:
lists_concatenatedTails([],[]).
lists_concatenatedTails([[_|Xs0]|Xss],Ys) :-
append(Xs0,Ys0,Ys),
lists_concatenatedTails(Xss,Ys0).
Sample query:
?- lists_concatenatedTails([[1,2,3],[4,5,6],[7,8]], Xs).
Xs = [2, 3, 5, 6, 8].
Edit 2015-05-07
Note that the code that #Boris suggested (using list_tail/2,maplist/3,append/2) also gives answers for the following query:
?- maplist(list_tail,Xss,Yss), append(Yss,[1,2,3]).
Xss = [[_G97, 1, 2, 3]], Yss = [[1, 2, 3]] ;
Xss = [[_G97], [_G106, 1, 2, 3]], Yss = [[], [1, 2, 3]] ;
Xss = [[_G97, 1], [_G106, 2, 3]], Yss = [[1], [2, 3]] ;
Xss = [[_G97, 1, 2], [_G106, 3]], Yss = [[1, 2], [3]] ;
Xss = [[_G97, 1, 2, 3], [_G106]], Yss = [[1, 2, 3], []] ;
Xss = [[_G97], [_G106], [_G115, 1, 2, 3]], Yss = [[], [], [1, 2, 3]] ...
This doesn't terminate universally---nor do we expect it to: the set of solutions is infinite in size and it can, in this case, only be covered by an infinite sequence of answers.
In the following equivalent query lists_concatenatedTails/2 "loops" right away:
?- lists_concatenatedTails(Lss,[1,2,3]).
% not a single answer within finite time
Only when constraining the length of Lss right away, fair enumeration can be achieved:
?- length(Lss,_), lists_concatenatedTails(Lss,[1,2,3]).
Lss = [[_G23, 1, 2, 3]] ;
Lss = [[_G26], [_G29, 1, 2, 3]] ;
Lss = [[_G26, 1], [_G32, 2, 3]] ;
Lss = [[_G26, 1, 2], [_G35, 3]] ;
Lss = [[_G26, 1, 2, 3], [_G38]] ;
Lss = [[_G29], [_G32], [_G35, 1, 2, 3]] ...

How can I delete every occurrence of a sublist from a list in prolog?

This is the code for deleting or removing an element from a given list:
remove_elem(X,[],[]).
remove_elem(X,L1,L2) :-
L1 = [H|T],
X == H,
remove_elem(X,T,Temp),
L2 = Temp.
remove_elem(X,L1,L2) :-
L1 = [H|T],
X \== H,
remove_elem(X,T,Temp),
L2 = [H|Temp].
How can I modify it, so that I can delete every occurrence of a sub list from a list?
When I tried to put a list in an element, it only deletes the element and only once.
It should be this:
?- remove([1,2],[1,2,3,4,1,2,5,6,1,2,1],L).
L = [3,4,5,6,1]. % expected result
Inspired by #CapelliC's implementation I wrote the following code based on
and_t/3:
append_t([] ,Ys,Ys, true).
append_t([X|Xs],Ys,Zs,Truth) :-
append_aux_t(Zs,Ys,Xs,X,Truth).
append_aux_t([] ,_ ,_ ,_,false). % aux pred for using 1st argument indexing
append_aux_t([Z|Zs],Ys,Xs,X,Truth) :-
and_t(X=Z, append_t(Xs,Ys,Zs), Truth).
One append_t/4 goal can replace two prefix_of_t/3 and append/3 goals.
Because of that, the implementation of list_sublist_removed/3 gets a bit simpler than before:
list_sublist_removed([] ,[_|_] ,[]).
list_sublist_removed([X|Xs],[L|Ls],Zs) :-
if_(append_t([L|Ls],Xs0,[X|Xs]),
(Zs = Zs0 , Xs1 = Xs0),
(Zs = [X|Zs0], Xs1 = Xs)),
list_sublist_removed(Xs1,[L|Ls],Zs0).
Still deterministic?
?- list_sublist_removed([1,2,3,4,1,2,5,6,1,2,1],[1,2],L).
L = [3,4,5,6,1].
Yes! What about the following?
?- list_sublist_removed([1,2,3,4,1,2,5,6,1,2,1],X,[3,4,5,6,1]).
X = [1,2] ; % succeeds with useless choice-point
false.
Nope. So there is still room for potential improvement...
This logically pure implementation is based on the predicates if_/3 and (=)/3.
First, we build a reified version of prefix_of/2:
prefix_of_t([],_,true).
prefix_of_t([X|Xs],Zs,T) :-
prefix_of_t__aux(Zs,X,Xs,T).
prefix_of_t__aux([],_,_,false).
prefix_of_t__aux([Z|Zs],X,Xs,T) :-
if_(X=Z, prefix_of_t(Xs,Zs,T), T=false).
Then, on to the main predicate list_sublist_removed/3:
list_sublist_removed([],[_|_],[]).
list_sublist_removed([X|Xs],[L|Ls],Zs) :-
if_(prefix_of_t([L|Ls],[X|Xs]), % test
(Zs = Zs0, append([L|Ls],Xs0,[X|Xs])), % case 1
(Zs = [X|Zs0], Xs0 = Xs)), % case 2
list_sublist_removed(Xs0,[L|Ls],Zs0).
A few operational notes on the recursive clause of list_sublist_removed/3:
First (test), we check if [L|Ls] is a prefix of [X|Xs].
If it is present (case 1), we strip it off [X|Xs] yielding Xs0 and add nothing to Zs.
If it is absent (case 2), we strip X off [X|Xs] and add X to Zs.
We recurse on the rest of [X|Xs] until no more items are left to process.
Onwards to some queries!
The use case you gave in your question:
?- list_sublist_removed([1,2,3,4,1,2,5,6,1,2,1],[1,2],L).
L = [3,4,5,6,1]. % succeeds deterministically
Two queries that try to find the sublist that was removed:
?- list_sublist_removed([1,2,3,4,1,2,5,6,1,2,1],Sub,[ 3,4,5,6,1]).
Sub = [1,2] ? ;
no
?- list_sublist_removed([1,2,3,4,1,2,5,6,1,2,1],Sub,[1,3,4,5,6,1]).
no
Next, let's find a suitable Ls in this query:
?- list_sublist_removed(Ls,[1,2],[3,4,5,6,1]).
% a lot of time passes ... and nothing happens!
Non-termination! This is unfortunate, but within expectations, as the solution set is infinite. However, by a-priori constraining the length of Ls, we can get all expected results:
?- length(Ls,_), list_sublist_removed(Ls,[1,2],[3,4,5,6,1]).
Ls = [ 3,4,5,6,1] ?
; Ls = [1,2, 3,4,5,6,1] ?
; Ls = [3, 1,2, 4,5,6,1] ?
; Ls = [3,4, 1,2, 5,6,1] ?
; Ls = [3,4,5, 1,2, 6,1] ?
; Ls = [3,4,5,6, 1,2, 1] ?
; Ls = [3,4,5,6,1, 1,2 ] ?
; Ls = [1,2, 1,2, 3,4,5,6,1] ? ...
<rant>
So many years I study Prolog, still it deserves some surprises... your problem it's quite simple to solve, when you know the list library, and you have a specific mode (like the one you posted as example). But can also be also quite complex to generalize, and it's unclear to me if the approach proposed by #repeat, based on #false suggestion (if_/3 and friends) can be 'ported' to plain, old Prolog (a-la Clocksin-Mellish, just to say).
</rant>
A solution, that has been not so easy to find, based on old-school Prolog
list_sublist_removed(L, S, R) :-
append([A, S, B], L),
S \= [],
list_sublist_removed(B, S, T),
append(A, T, R),
!
; L = R.
some test:
?- list_sublist_removed([1,2,3,4,1,2,5,6,1,2,1],[1,2],L).
L = [3, 4, 5, 6, 1].
?- list_sublist_removed([1,2,3,4,1,2,5,6,1,2,1],X,[3, 4, 5, 6, 1]).
X = [1, 2].
?- length(X,_), list_sublist_removed(X,[1,2],[3, 4, 5, 6, 1]).
X = [3, 4, 5, 6, 1] ;
X = [3, 4, 5, 6, 1, 2, 1] ...

prolog two lists are exactly the same

I want to write a function that returns true if two lists are exactly the same(order of elements matters).
I tried it this way:
same([ ], [ ]).
same([H1|R1], [H2|R2]):-
H1 == H2,
same(R1, R2).
It returns true while two lists are the same, also I expect if I have
?- same(X, [1, 2, 3]).
I want it to return
X = [1, 2, 3].
But it doesn't work if input is like this. Here are some sample outputs I got:
?- same([1, 2], [1, 2]).
true.
?- same([2, 1], [1, 2]).
false.
?- same(X, [1, 2, 3]).
false.
?- same([1, 2, 3], [1, 2, X]).
false.
How to fix it?
The problem is that you're using ==/2 (checking whether two items are instantiated the same) rather than =/2 (checks if two items are unified or unifiable). Just change to unification:
same([], []).
same([H1|R1], [H2|R2]):-
H1 = H2,
same(R1, R2).
Then this will have the behavior you're looking for:
| ?- same(X, [1, 2, 3]).
X = [1,2,3] ? a
no
| ?- same([1, 2], [1, 2]).
(1 ms) yes
| ?- same([2, 1], [1, 2]).
no
| ?- same([1, 2, 3], [1, 2, X]).
X = 3
(1 ms) yes
| ?- same([A,B,C], L).
L = [A,B,C]
yes
% In this last example, A, B, and C are variables. So it says L is [A,B,C],
% whatever A, B, and C are.
If you query X == 3 in Prolog, and X is not bound to the value 3, or it is just unbound, it will fail. If X is unbound and you query, X = 3, then Prolog will unify X (bind it) with 3 and it will succeed.
For more regarding the difference between =/2 and ==/2, see What is the difference between == and = in Prolog?
You can also use maplist for a nice, compact solution. maplist is very handy for iterating through a list:
same(L1, L2) :- maplist(=, L1, L2).
Here, unification (=/2) is still used for exactly the same reason as above.
Finally, as #Boris points out, in Prolog, the unification predicate will work on entire lists. In this case, this would suffice:
same(L1, L2) :- L1 = L2.
Or equivalently:
same(L, L). % Would unify L1 and L2 queried as same(L1, L2)
This will succeed if the lists are the same, or will attempt to unify them by unifying each element in turn.
| ?- same([1,2,X], [1,2,3]). % Or just [1,2,X] = [1,2,3]
X = 3
yes
| ?- same([1,2,X], [1,2,3,4]). % Or just [1,2,X] = [1,2,3,4]
no
The prior more elaborate approaches are considered an exercise in list processing for illustration. But the simplest and most correct method for comparison and/or unification of lists would be L1 = L2.