c++ how to reduce the amout of identical template specializations? - c++

I have this functor:
struct functor
{
template<class T> void operator()(T value) // (*)
{
// process the value
}
template<> void operator()<const wchar_t *>(const wchar_t *value) // (**)
{
if (value)
{
// process the value
}
}
template<> void operator()<const char *>(const char *value) // (**)
{
if (value)
{
// process the value
}
}
template<> void operator()<wchar_t *>(wchar_t *value) // (**)
{
if (value)
{
// process the value
}
}
template<> void operator()<char *>(char *value) // (**)
{
if (value)
{
// process the value
}
}
};
As you can see, I have 4 identical template specializations. Is there a technique to specify all of them once, meaning somehow to partition all the possible types into the main group (*) and the specialized one (**)?
Thanks.
EDIT
Oops, fixed some typos.

You can get away with a simpler scheme - overloading!
template<class T>
void foo(T value){ // general
// ...
}
template<class T>
void foo(T* value){ // for pointers!
if(value)
foo(*value); // forward to general implementation
}
Also, I'd recommend to make the parameter a reference - const if you don't need to modify it (or maybe both, depending on what you actually need to do):
template<class T>
void foo(T& value){ // general, may modify parameter
// ...
}
template<class T>
void foo(T const& value){ // general, will not modify parameter
// ...
}
If you want to have a special implementation for a certain set of types (i.e., one implementation for the whole set), traits and tag dispatching can help you:
// dispatch tags
struct non_ABC_tag{};
struct ABC_tag{};
class A; class B; class C;
template<class T>
struct get_tag{
typedef non_ABC_tag type;
};
// specialization on the members of the set
template<> struct get_tag<A>{ typedef ABC_tag type; };
template<> struct get_tag<B>{ typedef ABC_tag type; };
template<> struct get_tag<C>{ typedef ABC_tag type; };
// again, consider references for 'value' - see above
template<class T>
void foo(T value, non_ABC_tag){
// not A, B or C ...
}
template<class T>
void foo(T value, ABC_tag){
// A, B, or C ...
}
template<class T>
void foo(T value){
foo(value, typename get_tag<T>::type()); // dispatch
}
Bottom line is, you'll need atleast some amount of duplication (tags, overloads, ...) if you want to group types that have nothing in common.

You mean like this?
struct functor
{
template<class T> void operator()(T value)
{
// process the value
}
template<class T> void operator()(T* value) // overload, not specialization
{
if (value) {
// process the value
}
}
};
http://ideone.com/P8GLp
If you want only those types, something else
struct functor
{
protected:
template<class T> void special(T* value) // overload, not specialization
{
if (value) {
// process the value
}
}
public
template<class T> void operator()(T value)
{
// process the value
}
void operator()(char* value) {special(value);}
void operator()(wchar_t* value) {special(value);}
void operator()(const char* value) {special(value);}
void operator()(const wchar_t* value) {special(value);}
};

Related

Type erasure and a kind of template method pattern

Consider the following, minimal example:
struct S {
using func_t = void(*)(void *);
template<typename T>
static void proto(void *ptr) {
static_cast<T*>(ptr)->f();
}
func_t func;
void *ptr;
};
struct T {
void f() {}
};
void g(S &s) {
s.func(s.ptr);
}
int main() {
T t;
S s;
s.func = &S::proto<T>;
s.ptr = &t;
g(s);
}
The pretty obvious idea is to erase the type of a bunch of objects (like T, that is not the only available type) to create an array of instances of S, then iterate over that array and invoke a predetermined member function.
So far so good, it's easy to implement and it works.
Now I would like to provide an external function to be invoked on the erased object, something that would be like this:
template<typename T, typename F>
static void proto(void *ptr, F &&f) {
auto *t = static_cast<T*>(ptr);
std::forward<F>(f)(*t);
t->f();
}
Or this:
template<typename T>
static void proto(void *ptr, void(*f)(T &)) {
auto *t = static_cast<T*>(ptr);
f(*t);
t->f();
}
To be invoked as:
s.func(s.ptr, [](auto obj){ /* ... */ });
A kind of template method pattern where the extra functionalities are provided by the caller instead of a derived class.
Unfortunately I cannot do that for I cannot reduce the specializations to something homogeneous to be assigned to a function pointer.
The only alternative I can see is to define a custom class like the following one:
struct C {
template<typename T>
void f(T &t) { /* ... */ }
// ...
};
Where f dispatches somehow the call internally to the right member function, then use it as:
struct S {
using func_t = void(*)(void *, C &);
template<typename T>
static void proto(void *ptr, C &c) {
auto t = static_cast<T*>(ptr);
c.f(*t);
t->f();
}
func_t func;
void *ptr;
};
That is not far from what I would do by using a lambda, but it's more verbose and requires me to explicitly declare the class C.
Is there any other valid alternative to achieve the same or is this the only viable solution?
Assuming you can enumerate the types you wish to support you can do this:
#include <iostream>
#include <string>
#include <vector>
template <class... Ts>
struct PseudoFunction {
private:
template <class T>
static void (*function)(T &);
template <class T>
static void call_func(void *object) {
return function<T>(*static_cast<T *>(object));
}
template <class Fun>
static void assign(Fun) {}
template <class Fun, class Head, class... Tail>
static void assign(Fun fun) {
function<Head> = fun;
assign<Fun, Tail...>(fun);
}
public:
template <class T>
PseudoFunction(T *t)
: object(t)
, func(call_func<T>) {}
template <class F>
static void set_function(F f) {
assign<F, Ts...>(f);
}
void operator()() {
func(object);
}
private:
void *object;
void (*func)(void *);
};
template <class... Ts>
template <class T>
void (*PseudoFunction<Ts...>::function)(T &) = nullptr;
//example types that are not related and not copy constructible
//but have the same member function name and signature
struct T1 {
T1() = default;
T1(const T1 &) = delete;
void func(double d) {
std::cout << "T1: " + std::to_string(d) + '\n';
}
};
struct T2 {
T2() = default;
T2(const T2 &) = delete;
void func(double d) {
std::cout << "T2: " + std::to_string(d) + '\n';
}
};
int main() {
T1 t1;
T2 t2;
using PF = PseudoFunction<T1, T2>;
std::vector<PF> funcs;
funcs.push_back(&t1);
funcs.push_back(&t2);
PF::set_function([](auto &object) { object.func(3.14); });
for (auto &f : funcs) {
f();
}
}
(demo)
It has decent call syntax (just that you have to specify the function before calling the objects) and some overhead of setting potentially unused function pointers.
One could probably make a wrapper that does the set_function and iterating over the PFs in one go.

C++ method with multiple parameter packs

Consider the following simplified piece of code for a variant class. Most of it is for informational purposes, the question is about the conditional_invoke method.
// Possible types in variant.
enum class variant_type { empty, int32, string };
// Actual data store.
union variant_data {
std::int32_t val_int32;
std::string val_string;
inline variant_data(void) { /* Leave uninitialised */ }
inline ~variant_data(void) { /* Let variant do clean up. */ }
};
// Type traits which allow inferring which type to use (these are actually generated by a macro).
template<variant_type T> struct variant_type_traits { };
template<class T> struct variant_reverse_traits { };
template<> struct variant_type_traits<variant_type::int32> {
typedef std::int32_t type;
inline static type *get(variant_data& d) { return &d.val_int32; }
};
template<> struct variant_reverse_traits<std::int32_t> {
static const variant_type type = variant_type::int32;
inline static std::int32_t *get(variant_data& d) { return &d.val_int32; }
};
template<> struct variant_type_traits<variant_type::string> {
typedef std::string type;
inline static type *get(variant_data& d) { return &d.val_string; }
};
template<> struct variant_reverse_traits<std::string> {
static const variant_type type = variant_type::string;
inline static std::string *get(variant_data& d) { return &d.val_string; }
};
// The actual variant class.
class variant {
public:
inline variant(void) : type(variant_type::empty) { }
inline ~variant(void) {
this->conditional_invoke<destruct>();
}
template<class T> inline variant(const T value) : type(variant_type::empty) {
this->set<T>(value);
}
template<class T> void set(const T& value) {
this->conditional_invoke<destruct>();
std::cout << "Calling data constructor ..." << std::endl;
::new (variant_reverse_traits<T>::get(this->data)) T(value);
this->type = variant_reverse_traits<T>::type;
}
variant_data data;
variant_type type;
private:
template<variant_type T> struct destruct {
typedef typename variant_type_traits<T>::type type;
static void invoke(type& v) {
std::cout << "Calling data destructor ..." << std::endl;
v.~type();
}
};
template<template<variant_type> class F, class... P>
inline void conditional_invoke(P&&... params) {
this->conditional_invoke0<F, variant_type::int32, variant_type::string, P...>(std::forward<P>(params)...);
}
template<template<variant_type> class F, variant_type T, variant_type... U, class... P>
void conditional_invoke0(P&&... params) {
if (this->type == T) {
F<T>::invoke(*variant_type_traits<T>::get(this->data), std::forward<P>(params)...);
}
this->conditional_invoke0<F, U..., P...>(std::forward<P>(params)...);
}
template<template<variant_type> class F, class... P>
inline void conditional_invoke0(P&&... params) { }
};
The code works this way, i.e. it works as long as the parameter list P... for the functor is empty. If I add another functor like
template<variant_type T> struct print {
typedef typename variant_type_traits<T>::type type;
static void invoke(type& v, std::ostream& stream) {
stream << v;
}
};
and try to invoke it
friend inline std::ostream& operator <<(std::ostream& lhs, variant& rhs) {
rhs.conditional_invoke<print>(lhs);
return lhs;
}
the compiler VS 20115 complains
error C2672: 'variant::conditional_invoke0': no matching overloaded function found
or gcc respectively
error: no matching function for call to 'variant::conditional_invoke0 >&>(std::basic_ostream&)'
I guess the compiler cannot decide when U... ends and when P... starts. Is there any way to work around the issue?
You'll have to make both parameter packs deducible. That is, let the type and non-type template parameters be part of a function parameter list. For that, introduce a dummy structure:
template <variant_type...>
struct variant_type_list {};
and let the compiler deduce the variant_type... pack from a function call:
template <template <variant_type> class F
, variant_type T
, variant_type... U
, typename... P>
void conditional_invoke0(variant_type_list<T, U...> t
, P&&... params)
{
if (this->type == T)
{
F<T>::invoke(*variant_type_traits<T>::get(this->data)
, std::forward<P>(params)...);
}
this->conditional_invoke0<F>(variant_type_list<U...>{}
, std::forward<P>(params)...);
}
To break recursive calls, introduce an overload with an empty variant_type_list:
template <template <variant_type> class F, typename... P>
void conditional_invoke0(variant_type_list<>, P&&... params) {}
When calling the invoker for the first time, provide variant_types as an argument:
this->conditional_invoke0<F>(variant_type_list<variant_type::int32, variant_type::string>{}
, std::forward<P>(params)...);
DEMO

Accessing a member in a template: how to check if the template is a pointer or not?

Given the following declaration:
template<class T>
class A {
void run(T val) {
val.member ...
}
}
This code works fine if no pointers are used:
A<Type> a;
Type t;
a.run(t);
But using a pointer results in an error:
A<Type*> a;
Type* t = new Type();
a.run(t);
error: request for member ‘member’ which is of non-class type ‘T*’
Obviously in this case the member must be accessed via ->. What's the best way to handle this?
I found a solution on SO: Determine if Type is a pointer in a template function
template<typename T>
struct is_pointer { static const bool value = false; };
template<typename T>
struct is_pointer<T*> { static const bool value = true; };
...
if (is_pointer<T>::value) val->member
else val.member
But this is very verbose. Any better ideas?
You could use a simple pair of overloaded function templates:
template<typename T>
T& access(T& t) { return t; }
template<typename T>
T& access(T* t) { return *t; }
And then use them this way:
access(val).member = 42;
For instance:
template<typename T>
struct A
{
void do_it(T& val)
{
access(val).member = 42;
}
};
struct Type
{
int member = 0;
};
#include <iostream>
int main()
{
A<Type> a;
Type t;
a.do_it(t);
std::cout << t.member << std::endl;
A<Type*> a2;
Type* t2 = new Type(); // OK, I don't like this, but just to show
// it does what you want it to do...
a2.do_it(t2);
std::cout << t2->member;
delete t2; // ...but then, don't forget to clean up!
}
Here is a live example.
The best idea is probably to specialize your class for pointer types.
template<class T>
class A{ ...};
template<>
class A<T*> { //implement for pointers
};
If you feel that this is too verbose, you can use overload a get_ref function:
template<class T> T& get_ref(T & r) {return r;}
template<class T> T& get_ref(T* r) {return *r;}
template<class T>
class A {
void do(T val) {
get_ref(val).member ...
}
}

Ambiguous template arguments not excluded by enable_if

I want to automatically choose the right pointer-to-member among overloaded ones based on the "type" of the member, by removing specializations that accept unconcerned members (via enable_if).
I have the following code:
class test;
enum Type
{
INT_1,
FLOAT_1,
UINT_1,
CHAR_1,
BOOL_1,
INT_2,
FLOAT_2,
UINT_2,
CHAR_2,
BOOL_2
};
template<typename T, Type Et, typename func> struct SetterOk { static const bool value = false; };
template<typename T> struct SetterOk<T,INT_1,void (T::*)(int)> { static const bool value = true; };
template<typename T> struct SetterOk<T,FLOAT_1,void (T::*)(float)> { static const bool value = true; };
template<typename T> struct SetterOk<T,UINT_1,void (T::*)(unsigned int)> { static const bool value = true; };
template<typename T> struct SetterOk<T,CHAR_1,void (T::*)(char)> { static const bool value = true; };
template<typename T> struct SetterOk<T,BOOL_1,void (T::*)(bool)> { static const bool value = true; };
template<typename T> struct SetterOk<T,INT_2,void (T::*)(int,int)> { static const bool value = true; };
template<typename T> struct SetterOk<T,FLOAT_2,void (T::*)(float,float)> { static const bool value = true; };
template<typename T> struct SetterOk<T,UINT_2,void (T::*)(unsigned int, unsigned int)> { static const bool value = true; };
template<typename T> struct SetterOk<T,CHAR_2,void (T::*)(char,char)> { static const bool value = true; };
template<typename T> struct SetterOk<T,BOOL_2,void (T::*)(bool,bool)> { static const bool value = true; };
template <bool, class T = void> struct enable_if {};
template <class T> struct enable_if<true, T> { typedef T type; };
template<typename T, Type Et>
struct Helper
{
template<typename U>
static void func(U method, typename enable_if<SetterOk<T,Et,U>::value>::type* dummy = 0)
{
}
};
class test
{
public:
void init()
{
Helper<test,INT_2>::func(&test::set);
}
void set2(int);
void set(int);
void set(int,int);
void set(float,float);
};
int main()
{
test t;
t.init();
return 0;
}
I'm expecting it to choose the right function between all possible. The problem is that the compiler says "cannot deduce template argument as function argument is ambiguous".
It seems I don't know how to use enable_if, because if so the compiler would only allow the specialization if the specified function has the right type...
Note that I want to have C++03 solutions (if possible) - my code must compile on some old compilers.
Thanks in advance
You can never refer to an overloaded function without disambiguating it (means: static_casting it to the correct type). When you instantiate Helper::func the type of the function argument cannot be known without ever disambiguating it.
The reason it doesn't compile is quite simply that there are several different overloaded functions and it doesn't know which one you mean. Granted, only one of these (void set(int,int)) would actually compile, given the specialization Helper<test,INT_2>. However, this is not enough for the compiler to go on.
One way of getting this to compile would be to explicitly cast &test::set to the appropriate type:
Helper<test,INT_2>::func(static_cast<void (test::*)(int,int)>(&test::set));
Another way would be to use explicit template specialization:
Helper<test,INT_2>::func<void (test::*)(int,int)>((&test::set));
Either way, you need to let the compiler know which of the set functions you are trying to refer to.
EDIT:
As I understand it, you want to be able to deduce, from the use of a Type, which function type should be used. The following alternative achieves this:
template<typename T, Type Et> struct SetterOK{};
template<typename T> struct SetterOK<T,INT_1> {typedef void (T::*setter_type)(int);};
template<typename T> struct SetterOK<T,FLOAT_1> {typedef void (T::*setter_type) (float);};
// ...
template<typename T> struct SetterOK<T,INT_2> {typedef void (T::*setter_type)(int,int);};
// ....
template<typename T, Type Et>
struct Helper
{
template<typename U>
static void func(U method)
{
}
};
class test
{
public:
void init()
{
Helper<test,INT_2>::func<SetterOK<test,INT_2>::setter_type >(&test::set);
}
void set2(int);
void set(int);
void set(int,int);
void set(float,float);
};
int main()
{
test t;
t.init();
return 0;
}
ADDITIONAL EDIT:
A thought just occurred to me. In this special case which you've done, where U is SetterOK::setter_type, things can be simplified further by completely removing the template arguments for func:
static void func(typename SetterOK<T,Et>::setter_type method)
{
}
This would make the init method a simpler:
void init()
{
Helper<test,INT_2>::func(&test::set);
}

How to recursively dereference pointer (C++03)?

I'm trying to recursively dereference a pointer in C++.
If an object is passed that is not a pointer (this includes smart pointers), I just want to return the object itself, by reference if possible.
I have this code:
template<typename T> static T &dereference(T &v) { return v; }
template<typename T> static const T &dereference(const T &v) { return v; }
template<typename T> static T &dereference(T *v) { return dereference(*v); }
My code seems to work fine in most cases, but it breaks when given function pointers, because dereferencing a function pointer results in the same exact type of function pointer, causing a stack overflow.
So, how can I "stop" the dereferencing process when the dereferenced type has the same type as the original object?
Note:
I see my question has been marked as a duplicate of a similar question that uses Boost; however, I need a solution without Boost (or any other libraries).
Example:
template<typename T> T &dereference(T &v) { return v; }
template<typename T> const T &dereference(const T &v) { return v; }
template<typename T> T &dereference(T *v) { return dereference(*v); }
template<typename TCallback /* void(int) */>
void invoke(TCallback callback) { dereference(callback)(); }
void callback() { }
struct Callback {
static void callback() { }
void operator()() { }
};
int main() {
Callback obj;
invoke(Callback()); // Should work (and does)
invoke(obj); // Should also work (and does)
invoke(&obj); // Should also work (and does)
invoke(Callback::callback); // Should also work (but doesn't)
invoke(&Callback::callback); // Should also work (but doesn't)
invoke(callback); // Should also work (but doesn't)
invoke(&callback); // Should also work (but doesn't)
return 0;
}
No dependencies at all, simple, should work on MSVC-2008.
template<typename T>
struct is_function
{
static char check(...);
static double check(const volatile void*); // function pointers are not convertible to void*
static T from;
enum { value = sizeof(check(from)) != sizeof(char) };
};
template<bool, typename T = void>
struct enable_if{};
template<typename T>
struct enable_if<true, T>{typedef T type;};
template<typename T>
T& dereference(T &v){return v;}
template<typename T>
const T& dereference(const T& v){return v;}
template<typename T>
typename enable_if<!is_function<T>::value, T&>::type dereference(T* v){return dereference(*v);}