In C++03, template parameter deduction does not occur in some contexts. For example:
template <typename T> struct B {};
template <typename T>
struct A
{
typedef B<T> type;
};
template <typename T>
void f(typename A<T>::type);
int main()
{
B<int> b;
f(b); // ERROR: no match
}
Here, int is not deduced for T, because a nested type such as A<T>::type is a non-deduced context.
Had I written the function like this:
template <typename T> struct B {};
template <typename T>
void f(B<T>);
int main()
{
B<int> b;
f(b);
}
everything is fine because B<T> is a deduced context.
In C++11, however, template aliases can be used to disguise a nested type in syntax similar to the second example. For example:
template <typename T> struct B {};
template <typename T>
struct A
{
typedef B<T> type;
};
template <typename T>
using C = typename A<T>::type;
template <typename T>
void f(C<T>);
int main()
{
B<int> b;
f(b);
}
Would template argument deduction work in this case? In other words, are template aliases a deduced context or a non-deduced context? Or do they inherit the deduced/non-deduced status of whatever they alias?
In other words, are template aliases a deduced context or a non-deduced context?
They are as deducible as the equivalent code without using template aliases. For example
template<typename T>
using ref = T&;
template<typename T>
void f(ref<T> r);
Now you can call f(x) and T will be deduced perfectly fine. At the definition time of f already, ref<T> is replaced by type T&. And T& is a deduced context.
In your case C<T> is replaced by typename A<T>::type, and that is a non-deduced context for T, so T cannot be deduced.
Imagine this:
template <typename T> struct Foo { typedef T type; }
template <> struct Foo<char> { typedef int type; }
template <typename T> using mytype = typename Foo<T>::type;
template <typename T> void f(mytype<T>);
Now if I want int n; f(n);, how could I decide whether I want T = int or T = char? The whole problem, which is unaffected by template aliases, is that you cannot deduce backwards to all the things that could possibly define something.
I think the relevant quote in the C++ standard is 14.5.7 [temp.alias] paragraph 2:
When a template-id refers to the specialization of an alias template, it is equivalent to the associated type obtained by substitution of its template-arguments for the template-parameters in the type-id of the alias template. [ Note: An alias template name is never deduced. — end note ]
There is an example following the quote which effectively spells out that it is pointless to use an alias template in a function template and hoping to deduce the template argument. This apparently applies even for situation which don't involve nested types.
Related
I needed a type trait that decays enums to their underlying type, and works the same as decay_t for all other types. I've written the following code, and apparently this is not how SFINAE works. But it is how I thought it should work, so what exactly is the problem with this code and what's the gap in my understanding of C++?
namespace detail {
template <typename T, std::enable_if_t<!std::is_enum_v<T>>* = nullptr>
struct BaseType {
using Type = std::decay_t<T>;
};
template <typename T, std::enable_if_t<std::is_enum_v<T>>* = nullptr>
struct BaseType {
using Type = std::underlying_type_t<T>;
};
}
template <class T>
using base_type_t = typename detail::BaseType<T>::Type;
The error in MSVC is completely unintelligible:
'detail::BaseType': template parameter '__formal' is incompatible with
the declaration
In GCC it's a bit better - says that declarations of the second template parameter are incompatible between the two BaseType templates. But according to my understanding of SFINAE, only one should be visible at all for any given T and the other one should be malformed thanks to enable_if.
Godbolt link
SFINAE applied to class templates is primarily about choosing between partial specialisations of the template. The problem in your snippet is that there are no partial specialisations in sight. You define two primary class templates, with the same template name. That's a redefinition error.
To make it work, we should restructure the relationship between the trait implementations in such as way that they specialise the same template.
namespace detail {
template <typename T, typename = void> // Non specialised case
struct BaseType {
using Type = std::decay_t<T>;
};
template <typename T>
struct BaseType<T, std::enable_if_t<std::is_enum_v<T>>> {
using Type = std::underlying_type_t<T>;
};
}
template <class T>
using base_type_t = typename detail::BaseType<T>::Type;
The specialisation provides a void type for the second argument (just like the primary would be instantiated with). But because it does so in a "special way", partial ordering considers it more specialised. When substitution fails (we don't pass an enum), the primary becomes the fallback.
You can provide as many such specialisation as you want, so long as the second template argument is always void, and all specialisations have mutually exclusive conditions.
BaseType isn't being partial-specialized, you're just redeclaring it, and since the non-type parameter has a different type, the compilation fails. you might want to do
#include <type_traits>
namespace detail {
template <typename T, bool = std::is_enum_v<T>>
struct BaseType;
template <typename T>
struct BaseType<T, false> {
using Type = std::decay_t<T>;
};
template <typename T>
struct BaseType<T, true> {
using Type = std::underlying_type_t<T>;
};
}
You declare the same struct with different parameter, which is forbidden.
You can do it with partial specialization:
namespace detail {
template <typename T, typename Enabler = void>
struct BaseType {
using Type = std::decay_t<T>;
};
template <typename E>
struct BaseType<E, std::enable_if_t<std::is_enum_v<E>>>
{
using Type = std::underlying_type_t<E>;
};
}
Demo
Consider the following piece of C++ code:
int main(){
MyObject<int> obj;
foo(obj);
}
template <typename T>
void foo(T& objct){
...
}
In foo, the type of objct will be MyObject<int>.
I would like to create a variable in foo() whose type is the objct's generics, in this case, int.
Is there a way to do that? Thank you.
Edit
Unfortunately (I think) I can't rewrite the signature because the function foo() is called with different type of objects, for example
int main(){
MyObject<int> obj;
MyDifferentObject<int> obj2;
foo(obj);
foo(obj2);
}
What about defining foo() using a template-template parameter?
template <template <typename...> class C, typename T>
void foo (C<T> & objct)
{
/...
}
or also
template <template <typename...> class C, typename T, typename ... Ts>
void foo (C<T, Ts...> & objct)
{
/...
}
to be more flexible and accept also type with multiple template types parameters.
This way, if you call
MyObject<int> obj;
MyDifferentObject obj2;
foo(obj);
foo(obj2);
you have that C is MyObject in first case, MyDifferentObject in the second case and T is int in both cases.
This, obviously, works only if the argument of foo() are object of a template class with only template type parameters so, for example, doesn't works for std::array
std::vector<int> v;
std::array<int, 5u> a;
foo(v); // compile: only types parameters for std::vector
foo(a); // compilation error: a non-type template parameter for std::array
I would like to create a variable in foo() whose type is the objct's generics, in this case, int.
Is there a way to do that?
If you can change the function signature, then you can do this:
template <typename T>
void foo(MyObject<T>& objct){
T variable;
If that is not an option, for example if you want foo to allow other templates too (such as in your edited question), then you can define a type trait:
template<class T>
struct fancy_type_trait
{
};
template<class T>
struct fancy_type_trait<MyObject<T>>
{
using type = T;
};
template<class T>
struct fancy_type_trait<MyDifferentObject<T>>
{
using type = T;
};
template <typename T>
void foo(T& objct){
using V = typename fancy_type_trait<T>::type;
V variable;
You can write a trait that determines the first template parameter of any instantiation of a template with one template parameter:
#include <type_traits>
template <typename T>
struct MyObject {};
template <typename T>
struct MyOtherObject {};
template <typename T>
struct first_template_parameter;
template <template<typename> typename T,typename X>
struct first_template_parameter< T<X> > {
using type = X;
};
int main() {
static_assert(std::is_same< first_template_parameter<MyObject<int>>::type,
first_template_parameter<MyOtherObject<int>>::type>::value );
}
The trait first_template_parameter can take any instantiation of a template with a single parameter and tells you what that parameter is. first_template_parameter< MyObject<int> >::type is int. More generally first_template_parameter< SomeTemplate<T> >::type is T (given that SomeTemplate has one parameter).
This is a slight generalization of the trait used in this answer and if needed it could be generalized to also work for instantiations of tempaltes with more than one parameter.
In your function you would use it like this:
template <typename T>
void foo(T& objct){
typename first_template_parameter<T>::type x;
}
The rules for picking which class template specialization is preferred involve rewriting the specializations into function templates and determining which function template is more specialized via the ordering rules for function templates [temp.class.order]. Consider this example, then:
#include <iostream>
template <class T> struct voider { using type = void; };
template <class T> using void_t = typename voider<T>::type;
template <class T, class U> struct A { };
template <class T> int foo(A<T, void_t<T>> ) { return 1; }
template <class T> int foo(A<T*, void> ) { return 2; }
int main() {
std::cout << foo(A<int*, void>{});
}
Both gcc and clang print 2 here. This makes sense with some previous examples - deducing against a non-deduced context (void against void_t<T>) is just ignored, so deducing <T, void_t<T>> against <X*, void> succeeds but deducing <T*, void> against <Y, void_t<Y>> fails in both arguments. Fine.
Now consider this generalization:
#include <iostream>
template <class T> struct voider { using type = void; };
template <class T> using void_t = typename voider<T>::type;
template <int I> struct int_ { static constexpr int value = I; };
template <class T, class U> struct A : int_<0> { };
template <class T> struct A<T, void_t<T>> : int_<1> { };
template <class T> struct A<T*, void> : int_<2> { };
int main() {
std::cout << A<int*, void>::value << '\n';
}
Both clang and gcc report this specialization as ambiguous, between 1 and 2. But why? The synthesized function templates aren't ambiguous. What's the difference between these two cases?
Clang is being GCC-compatible (and compatible with existing code that depends on both of these behaviors).
Consider [temp.deduct.type]p1:
[...] an attempt is made to find template argument values (a type for a type parameter, a value for a non-type parameter, or a template for a template parameter) that will make P, after substitution of the deduced values (call it the deduced A), compatible with A.
The crux of the issue is what "compatible" means here.
When partially ordering function templates, Clang merely deduces in both directions; if deduction succeeds in one direction but not the other, it assumes that means the result will be "compatible", and uses that as the ordering result.
When partially ordering class template partial specializations, however, Clang interprets "compatible" as meaning "the same". Therefore it only considers one partial specialization to be more specialized than another if substituting the deduced arguments from one of them into the other would reproduce the original partial specialization.
Changing either of these two to match the other breaks substantial amounts of real code. :(
Consider these two template functions:
template<typename T>
void foo(T&& bar) {
// do stuff with bar, which may or may not be an instance of a templated class
}
template<typename U, template<typename> class T>
void foo(T<U>&& bar) {
// do stuff with bar, which must be an instance of a templated class
}
Why does the former accept lvalues (by using a forwarding reference) while the latter does not?
It looks like Can an identity alias template be a forwarding reference? may be related to this as well, but it seems to cover a different facet of the restrictions on forwarding references.
If you want to retain a forwarding reference parameter, and, at the same time, deduce the type of an argument, you can use the below solution:
#include <type_traits>
#include <utility>
template <typename T>
struct tag {};
template <typename T, typename U, template <typename> class C>
void foo(T&& t, tag<C<U>>)
{
}
template <typename T>
auto foo(T&& t)
-> decltype(foo(std::forward<T>(t), tag<typename std::decay<T>::type>{}))
{
return foo(std::forward<T>(t), tag<typename std::decay<T>::type>{});
}
DEMO
Because that's how the standard says the language should work.
[14.8.2.1][temp.deduct.call]
3.If P is a cv-qualified type, the top level cv-qualifiers of P’s type are ignored for type deduction. If P is a
reference type, the type referred to by P is used for type deduction. A forwarding reference is an rvalue
reference to a cv-unqualified template parameter. If P is a forwarding reference and the argument is an
lvalue, the type “lvalue reference to A” is used in place of A for type deduction.
Only an rvalue-reference to a CV-unqualified template parameter can be deduced as an l-value reference in this manner.
To achieve what you are trying to do, you might be able to use a trait to extract the template template parameter.
#include <type_traits>
/***
* Extract template from template type.
*/
template <typename I> struct get_template;
template <template<class> typename T, typename C>
struct get_template<T<C>> {
template <typename U>
using temp = T<U>;
};
template <typename T> struct A{};
struct B;
template<typename W>
void foo(W && bar) {
typedef typename get_template<typename std::remove_reference<W>::type>::template temp<int> new_type;
new_type my_variable;
}
int main() {
A<B> temp;
foo(temp);
}
Or, just overload the function for const & and && as usual.
The following code compiles. Anyone can explain why? I've been digging the standard to figure out why it's legal.
template <bool B, typename T = void> struct enable_if { };
template <typename T> struct enable_if<true, T> {
typedef T type;
};
template <typename T, typename Enable = void> struct A;
template <typename T> struct A<T, typename enable_if<(sizeof(T) <= ~0ULL)>::type> {
void f() { }
};
int main() {
A<int> a;
a.f();
}
At the statement:
A<int> a;
As there's only one template paramerter "int", the compiler should go to use the primary template, which is:
template <typename T, typename Enable = void> struct A;
which is undefined, thus causing an error.
From § 14.5.5.1
1 When a class template is used in a context that requires an
instantiation of the class, it is necessary to determine whether the
instantiation is to be generated using the primary template or one of
the partial specializations. This is done by matching the template
arguments of the class template specialization with the template
argument lists of the partial specializations.
— If exactly one matching specialization is found, the instantiation is generated from
that specialization.
Let's try to figure out what's going on here:
// definition of enable_if, second parameter is defaulted to void
template <bool B, typename T = void>
struct enable_if { };
// specialization of enable_if, if first parameter is true,
// enable_if has a typedef for the second parameter
template <typename T>
struct enable_if<true, T> {
typedef T type;
};
// definition of struct A, second parameter defaults to void
template <typename T, typename Enable = void>
struct A;
// specialization of struct A, second parameter
// is obtained from the enable_if::type typedef
// the first parameter of enable_if is true if the size of T
// is smaller than the max long long (~0 --> all F)
template <typename T>
struct A<T, typename enable_if<(sizeof(T) <= ~0ULL)>::type> {
void f() { }
};
int main() {
// So we attempt the specialization for struct A<int,enable_if...>
// The expression of enable_if evaluates to...
// (sizeof(int) <= ~0ULL) == true
// ... so it applies the specialization of enable_if<true,void>
// (second parameter is void because none is provided, so it
// uses the default.
// so the enable_if template is valid (selected the specialization)
// and that means that the struct A<int,enable_if> specialization
// is valid too, so it is selected.
A<int> a;
a.f();
}
The compiler uses the template A<int, enable_if<true>:::type > when you declare A<int> since sizeof(int) <= ~0ULL evaluates to true.
There is no problem with enable_if<true>::type because the compiler is able to use enable_if<true, true>::type.
When you consider your enable_if:
template <bool B, typename T = void> struct enable_if{ };
template <typename T> struct enable_if<true, T>
{
typedef T type;
};
in
void test_EnableIf
{
static_assert(
std::is_same<
enable_if<(sizeof(int) > 0)>::type,
void>::value, "test_EnableIf failed." );
}
the result (type) is void, as no type was specified (as second
template parameter). The specialization of enable_if is selected
because of the boolean expression being true, and the default
parameter is selected (from primary template) because no other was
provided, and hence type is void, but NOTE that the definition
of type does exist (as the specialization was selected).
Now, in your definition of A...
template <typename T, typename Enable = void> struct A;
template <typename T>
struct A<T, typename enable_if<
(sizeof(T) <= ~0ULL)>::type>
{
void f() { }
};
...because type does exist in enable_if, it is a better match, which causes the specialization to be selected, and hence compiles.
A trivial example which amounts to the same thing is the following:
template <class T, class U = void>
struct X;
template <class T>
struct X<T,void>
{
static int foo(){ return 0; }
};
int main()
{
return X<int>::foo();
}