Template, inheritance and operators - c++

I have some trouble with class template inheritance and operators (operator +),
please have a look at these lines:
Base vector class (TVector.h):
template<class Real, int Size>
class TVector {
protected:
Real* values;
public:
...
virtual TVector<Real, Size>& operator=(const TVector<Real, Size>& rTVector) { //WORKS
int i = 0;
while (i<Size) {
*(values+i) = *(rTVector.values+i);
i++;
}
return *this;
}
virtual TVector<Real, Size> operator+(const TVector<Real, Size>& rTVector) const {
int i = 0;
Real* mem = (Real*)malloc(sizeof(Real)*Size);
memcpy(mem, values, Size);
while (i<Size) {
*(mem+i) += *(rTVector.values+i);
i++;
}
TVector<Real, Size> result = TVector<Real, Size>(mem);
free(mem);
return result;
}
};
2D vector class (TVector2.h):
template<class Real>
class TVector2: public TVector<Real, 2> {
public:
...
TVector2& operator=(const TVector2<Real>& rTVector) { //WORKS
return (TVector2&)(TVector<Real, 2>::operator=(rTVector));
}
TVector2 operator+(TVector2<Real>& rTVector) const { //ERROR
return (TVector2<Real>)(TVector<Real, 2>::operator+(rTVector));
}
};
Test (main.cpp):
int main(int argc, char** argv) {
TVector2<int> v = TVector2<int>();
v[0]=0;
v[1]=1;
TVector2<int> v1 = TVector2<int>();
v1.X() = 10;
v1.Y() = 15;
v = v + v1; //ERROR ON + OPERATOR
return 0;
}
Compilation error (VS2010):
Error 2 error C2440: 'cast de type' : cannot convert from
'TVector<Real,Size>' to 'TVector2' ...
What is wrong here ? is there a way to do this kind of stuff ?
Just looking for a way to not redefine all my Vectors classes.
I keep searching to do it, but I will be glad to get some help from you guys.
Sorry for bad English,
Best regards.

#include <memory>
using namespace std;
template<class Real, int Size> class TVector {
protected:
Real *_values;
public:
TVector() {
// allocate buffer
_values = new Real[Size];
}
TVector(Real *prValues) {
// check first
if (prValues == 0)
throw std::exception("prValues is null");
// allocate buffer
_values = new Real[Size];
// initialize buffer with values
for (unsigned int i(0U) ; i < Size ; ++i)
_values[i] = prValues[i];
}
// Do not forget copy ctor
TVector(TVector<Real, Size> const &rTVector) {
// allocate buffer
_values = new Real[Size];
// initialize with other vector
*this = rTVector;
}
virtual ~TVector() {
delete [] _values;
}
virtual Real &operator[](int iIndex) {
// check for requested index
if (iIndex < 0 || iIndex >= Size)
throw std::exception("requested index is out of bounds");
// index is correct. Return value
return *(_values+iIndex);
}
virtual TVector<Real, Size> &operator=(TVector<Real, Size> const &rTVector) {
// just copying values
for (unsigned int i(0U) ; i < Size ; ++i)
_values[i] = rTVector._values[i];
return *this;
}
virtual TVector<Real, Size> &operator+=(TVector<Real, Size> const &rTVector) {
for (unsigned int i(0U) ; i < Size ; ++i)
_values[i] += rTVector._values[i];
return *this;
}
virtual TVector<Real, Size> operator+(TVector<Real, Size> const &rTVector) {
TVector<Real, Size> tempVector(this->_values);
tempVector += rTVector;
return tempVector;
}
};
template<class Real> class TVector2: public TVector<Real, 2> {
public:
TVector2() {};
TVector2(Real *prValues): TVector(prValues) {}
TVector2 &operator=(TVector2<Real> const &rTVector) {
return static_cast<TVector2 &>(TVector<Real, 2>::operator=(rTVector));
}
TVector2 &operator+=(TVector2<Real> const &rTVector) {
return static_cast<TVector2 &>(TVector<Real, 2>::operator+=(rTVector));
}
TVector2 operator+(TVector2<Real> const &rTVector) {
return static_cast<TVector2 &>(TVector<Real, 2>::operator+(rTVector));
}
Real &X() { return _values[0]; }
Real &Y() { return _values[1]; }
};
int main(int argc, char** argv) {
TVector2<int> v = TVector2<int>();
v[0]=0;
v[1]=1;
TVector2<int> v1 = TVector2<int>();
v1.X() = 10;
v1.Y() = 15;
v = v1;
v += v1;
v = v + v1;
return 0;
}
Some misc notes:
it's very bad that you use malloc against of new. Real can be POD only to allow vector work well in your case. Use new or provide custom creation policy if you think that malloc provides better performance on PODs. Also do not forget to use delete [] instead of free while destroying memory buffer.
It's better to perform bounds checking while overloading operator[]
for better performance use ++i instead of postfix form. In former no temporary value is created.

Related

proxy class in rvalue - how to implement assignment operator?

Suppose I have a simple vector class where elements are accessed through a proxy class.
Vector class:
class vec {
public:
vec(int len) {
length = len;
data = new double [len];
}
proxy operator[](int i) {
if (i >= 0 && i < length) {
return proxy(i, data);
}
else {
std::cerr << "AHHHH!\n";
exit(1);
}
}
private:
int length;
double * data;
};
Proxy class:
class proxy {
public:
proxy(int i, double * d) {
index = i;
data = d;
}
void operator=(double rhs) {
data[index] = rhs;
}
private:
int index;
double * data;
};
How can I assign elements from the vector (or rather, from the proxy) to a variable of type double? In other words, how do I accomplish the following:
int main() {
vec a(2);
double x = 3.14;
a[0] = x; // Works!
x = a[0]; // How to make work?
return 0;
}
Unfortunately, I can't write something like:
friend double operator=(double & lhs, const proxy & p) { ... }
since operator= must be a member.
Add a conversion function to your proxy class:
class proxy
{
public:
operator double() const { return data[index]; }
// ...
};

Decrease operation in fibonacci heap, boost

I'm trying to use in my implementation the fibonacci heap from boost but my program crashes, when I calling decrease function, this the example (W is a simple class):
struct heap_data
{
boost::heap::fibonacci_heap<heap_data>::handle_type handle;
W* payload;
heap_data(W* w)
{
payload = w;
}
bool operator<(heap_data const & rhs) const
{
return payload->get_key() < rhs.payload->get_key();
}
};
int main()
{
boost::heap::fibonacci_heap<heap_data> heap;
vector<heap_data> A;
for (int i = 0; i < 10; i++)
{
W* w = new W(i, i + 3);
heap_data f(w);
A.push_back(f);
boost::heap::fibonacci_heap<heap_data>::handle_type handle = heap.push(f);
(*handle).handle = handle; // store handle in node
}
A[5].payload->decr();
heap.decrease(A[5].handle);
return 0;
}
The problem is quite trivial.
You have two containers (vector A and heap heap).
The heap contains copies of the data in the vector:
A.push_back(f); // copies f!
handle_type handle = heap.push(f); // copies f again!
You set the handle only on the copy in the heap:
(*handle).handle = handle; // store handle in the heap node only
Hence, in the temporary f and the vector A's elements, the value of handle is indeterminate (you just didn't give it any value).
Therefore when you do
heap.decrease(A[5].handle);
you invoke Undefined Behaviour because you depend on the value of A[5].handle, which is uninitialized.
Simpler, correct, example:
Live On Coliru
#include <boost/heap/fibonacci_heap.hpp>
#include <boost/tuple/tuple_comparison.hpp>
struct W {
int a;
int b;
W(int a, int b) : a(a), b(b) { }
boost::tuple<int const&, int const&> get_key() const { return boost::tie(a, b); }
void decr() { b?a:--a, b?--b:b; }
};
struct heap_data;
using Heap = boost::heap::fibonacci_heap<heap_data>;
struct heap_data
{
W payload;
Heap::handle_type handle;
heap_data(W w) : payload(w), handle() {}
bool operator<(heap_data const & rhs) const {
return payload.get_key() < rhs.payload.get_key();
}
};
#include <vector>
#include <iostream>
int main()
{
Heap heap;
std::vector<Heap::handle_type> handles;
for (int i = 0; i < 10; i++)
{
Heap::handle_type h = heap.push(W { i, i + 3 });
handles.push_back(h);
(*h).handle = h;
}
(*handles[5]).payload.decr();
heap.decrease(handles[5]);
}

Declaring the templates in c++

// stdafx.h
// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//
#include "targetver.h"
#include <stdio.h>
#include <tchar.h>
#include <iostream>
using namespace std;
#include "Animal.h"
// TODO: reference additional headers your program requires here
class Animal
{
private:
int itsWeight;
public:
Animal(int);
Animal();
~Animal() {}
int getWeight() const { return itsWeight; }
void Display() const;
};
template <class T>
class Array
{
private:
T *pType;
int itsSize;
const int defaultSize = 10;
public:
//constructors
Array(int itsSize = defaultSize);
Array(const Array &rhs);
~Array() { delete[] pType; }
//operators
Array& operator=(const Array&);
T& operator[](int offSet){ return pType[offSet]; }
const T& operator[](int offSet) const { return pType[offSet]; }
//methods of Access
int getSize() const { return itsSize; }
};
//constructor
template <class T>
Array<T>::Array(int size) :
itsSize(size)
{
pType = new T[size];
for (int i = 0; i < size; i++)
{
pType[i] = 0;
}
}
//copy-constructor
template <class T>
Array<T>::Array(const Array &rhs)
{
itsSize = rhs.getSize();
pType = new T[itsSize];
for (int i = 0; i < itsSize; i++)
{
pType[i] = rhs[i];
}
}
//operator prisvoeniya
template <class T>
Array<T>& Array<T>::operator=(const Array &rhs)
{
if (this == &rhs)
return *this;
delete[] pType;
itsSize = rhs.getSize();
pType = new T[itsSize];
for (int i = 0; i < itsSize; i++)
{
pType[i] = rhs[i];
}
return *this;
}
//this is the file "Animal.cpp"
#include "stdafx.h"
#include "Animal.h"
Animal::Animal()
{
itsWeight = 0;
}
Animal::Animal(int weight)
{
itsWeight = weight;
}
void Animal::Display() const
{
cout << itsWeight;
}
// the main function
#include "stdafx.h"
int_tmain(int argc, _TCHAR* argv[])
{
Array<int> theArray; //Integer array
Array<Animal> theZoo; //Animal array
Animal *pAnimal;
//filling the array
for (int i = 0; i < theArray.getSize(); i++)
{
theArray[i] = i * 2;
pAnimal = new Animal[i * 3];
theZoo[i] = *pAnimal;
delete pAnimal;
}
for (int j = 0; j < theArray.getSize(); j++)
{
cout << "theArray[" << j << "]:\t";
cout << theArray[j]<<"\t\t";
cout << "theZoo[" << j << "]:\t";
theZoo[j].Display();
cout << endl;
}
return 0;
}
The problem is that: The compiler gives me the errors
Error 1 error C2648: 'Array<int>::defaultSize' : use of member as default parameter requires static member
d:\documents\work\c++ files\tigrans\homework10\templates\templates\templates\animal.h 28 1 Templates
Error 2 error C2648: 'Array<Animal>::defaultSize' : use of member as default parameter requires static member
d:\documents\work\c++ files\tigrans\homework10\templates\templates\templates\animal.h 28 1 Templates
Anybody can help me to understand that. I change the
const int defaultSize=10;
to
static const int defaultSize=10
then there is not errors but in that time show Debug Assertion Failed!
This part of your code is dodgy
{
pAnimal = new Animal[i * 3];
theZoo[i] = *pAnimal;
delete pAnimal;
}
The first line allocates an array of i*3 Animals, using their default constructor (which makes an Animal with itsWeight=0). In the second line you assign the first these newly allocated Animals to theZoo[i]. Finally, the third line tries to de-allocate the Animals.
The last line contains an error, since you call delete on a pointer obtained with new [].
The whole concept of creating objects on the heap only to immediately destroy them is quite dubious -- perhaps you come from another programming language, where this is the only way to create things? First, you could simply use an automatic variable
{
Animal a; // or a(i*3);
theZoo[i] = a;
}
or yet briefer
{
theZoo[i] = Animal(i*3);
}
(Note the if you would use a std container, you could say theZoo.emplace_back(i*3);, avoiding the copy of Animal.)

Check for changes in POD variables

I'm looking for an efficient way to check if a POD variable is altered between two cycles. I've come up with this solution:
class Foo {
public:
template<typename T>
bool isChanged(T& entry);
void endCycle();
private:
std::map<void*,size_t> entryMap; // <Address orig.,Size>
std::map<void*,void*>oldVals; // <Address orig., Address cpy.>
};
template<typename T> bool Foo::isChanged(T& entry)
{
entryMap[&entry] = sizeof(T);
if(oldVals[&entry] == NULL)
return false;
if(memcmp(&entry, oldVals[&entry], entryMap[&entry]))
return true;
else
return false;
}
void Foo::endCycle()
{
// Copy all the bytes to save them for the next cycle
for( std::map<void*,size_t>::iterator entryIt = entryMap.begin();
entryIt != entryMap.end();
++entryIt)
{
if(oldVals[entryIt->first] == NULL)
oldVals[entryIt->first] = malloc(entryIt->second);
memcpy(oldVals[entryIt->first], entryIt->first, entryIt->second);
}
}
Now i can use it like this:
Foo gBar;
void aFunction()
{
int ar;
char ba[3][3];
// Some code where ar and ba are filled
if(gBar.isChanged(ar))
// Do Something
if(gBar.isChanged(ba))
// Do Something
gBar.endCycle();
}
Is this an efficient way? My goal was a method which is very easy to use inside various cyclically called functions. I cleaned all the init and free logic from the code. Any suggestions? I especially don't like the oldshool malloc, memcpy and memcmp stuff but i don't know any other way how to do it.
Edit: Found a good solution based on Red Alerts suggestions.
I think you can use templates a little more effectively here.
template <typename T>
class Foo
{
public:
static std::map<T*, T> values;
static bool isChanged(T& entry)
{
auto it = values.find(&entry);
if(it == values.end())
{
values[&entry] = entry;
}
else if(entry != it->second)
{
it->second = entry;
return true;
}
return false;
}
};
template <typename T>
std::map<T*, T> Foo<T>::values;
int main() {
int ar = 3;
cout << Foo<int>::isChanged(ar) << endl; // 0
ar = 4;
cout << Foo<int>::isChanged(ar) << endl; // 1
for(auto& value : Foo<int>::values)
cout << value.second << endl; // 4
return 0;
}
This way you get one map per type, and you don't have to worry about inadvertently messing up an alias. You do need to define operator != and have a working copy constructor for your types, but that is much better than blindly using memcmp and memcpy.
You can also make further template specializations for arrays if you need to compare those (will be a bit more code, but nothing very complicated)
Edit: To get you started, this is what your template signature should look like:
template<class T, size_t N> bool isChanged(T(&entry)[N]); //will be called for stack allocated arrays
Or you can use char* to alias all of your values. This will let you use a single map for everything (like you were doing before, but this has no memcpy/memcmp). It will only work for POD. We could manually call the destructor when overwriting the buffer, but since there is no good way to do this in the class's destructor, it's probably best to leave out heap allocated data altogether.
class Foo
{
std::map<char**, char*> values;
public:
~Foo()
{
for(auto& value : values)
{
delete[] value.second;
}
}
template<typename T> bool isChanged(T& entry)
{
char** addr = reinterpret_cast<char**>(&entry);
auto it = values.find(addr);
if(it == values.end())
{
alignas(T) char* oldBuf = new char[sizeof(T)];
T* oldEntry = new(oldBuf) T;
*oldEntry = entry;
values[addr] = oldBuf;
}
else if(entry != *(reinterpret_cast<T*>(it->second)))
{
T* oldEntry = new(it->second) T;
*oldEntry = entry;
return true;
}
return false;
}
};
After many hours i think i found a good solution. The call stays easy and there are no casts. It's a lot more complex than the C-Style version with memcopy but I think its nicer and has also the benefit that it works with complex data not just POD.
class Manager
{
public:
~Manager()
{
funcPtrs.clear();
}
void adFnc(void(*function)())
{
funcPtrs.push_back(function);
}
void runAll()
{
for(auto& val : funcPtrs)
val();
}
private:
std::vector<void (*)()> funcPtrs;
};
Manager gAllClearManager;
template<typename T>
class Data
{
public:
Data()
{
gAllClearManager.adFnc(clearValues);
}
static void clearValues()
{
values.clear();
}
static std::map<T*,std::vector<T>>& getValues() { return values; }
private:
static std::map<T*,std::vector<T>> values;
};
template <typename T>
static bool isChanged(T& entry)
{
const static Data<T>* dataP = new Data<T>();
static std::map<T*,std::vector<T>>& values = dataP->getValues();
auto it = values.find(&entry);
if(it == values.end())
{
values[&entry].push_back(entry);
}
else if(entry != it->second[0])
{
it->second[0] = entry;
return true;
}
return false;
}
template<typename T, size_t N>
bool isChanged(T (&entry)[N])
{
const static Data<T>* dataP = new Data<T>();
static std::map<T*,std::vector<T>>& values = dataP->getValues();
auto it = values.find(entry);
if( it == values.end())
{
for(int i = 0; i < N ; ++i )
values[entry].push_back(entry[i]);
return false;
}
else
{
for(int i = 0; i < N ; ++i )
{
if(it->second[i] != entry[i])
{
for(int j = 0; j < N ; ++j )
{
it->second[j] = entry[j];
}
return true;
}
}
}
return false;
}
template<typename T>
std::map<T*, std::vector<T>> Data<T>::values;
Now i can use it like:
int main() {
int ar;
std::string ba[6];
if(isChange(ar))
// Do something
if(isChange(ba))
// Do something
}
My first template is finally working! :) Thanks again Red Alert.

how to create a contiguous 2d array in c++?

I want to create a function that returns a contiguous 2D array in C++.
It is not a problem to create the array using the command:
int (*v)[cols] = new (int[rows][cols]);
However, I am not sure how to return this array as a general type for a function. The function is:
NOT_SURE_WHAT_TYPE create_array(int rows, int cols)
{
int (*v)[cols] = new (int[rows][cols]);
return v;
}
I tried double*[] and double** and both don't work. I wouldn't want to use double*, since I want to access this array from outside as a 2D array.
Related question: How do I declare a 2d array in C++ using new?
If you want to create an array where the data is contiguous and you don't want a 1-dimensional array (i.e. you want to use the [][] syntax), then the following should work. It creates an array of pointers, and each pointer points to a position into a pool of memory.
#include <iostream>
#include <exception>
template <typename T>
T** create2DArray(unsigned nrows, unsigned ncols, const T& val = T())
{
if (nrows == 0)
throw std::invalid_argument("number of rows is 0");
if (ncols == 0)
throw std::invalid_argument("number of columns is 0");
T** ptr = nullptr;
T* pool = nullptr;
try
{
ptr = new T*[nrows]; // allocate pointers (can throw here)
pool = new T[nrows*ncols]{val}; // allocate pool (can throw here)
// now point the row pointers to the appropriate positions in
// the memory pool
for (unsigned i = 0; i < nrows; ++i, pool += ncols )
ptr[i] = pool;
// Done.
return ptr;
}
catch (std::bad_alloc& ex)
{
delete [] ptr; // either this is nullptr or it was allocated
throw ex; // memory allocation error
}
}
template <typename T>
void delete2DArray(T** arr)
{
delete [] arr[0]; // remove the pool
delete [] arr; // remove the pointers
}
int main()
{
try
{
double **dPtr = create2DArray<double>(10,10);
dPtr[0][0] = 10; // for example
delete2DArray(dPtr); // free the memory
}
catch(std::bad_alloc& ex)
{
std::cout << "Could not allocate array";
}
}
Note that only 2 allocations are done. Not only is this more efficient due to the lesser amounts of allocations done, we now have a better chance of doing a rollback of the allocated memory if a memory allocation fails, unlike the "traditional" way of allocating a 2D array in non-contiguous memory:
// The "traditional" non-contiguous allocation of a 2D array (assume N x M)
T** ptr;
ptr = new T*[N];
for (int i = 0; i < N; ++i)
ptr[i] = new T [M]; // <<-- What happens if new[] throws at some iteration?
If new[] throws an exception somewhere during the operation of the for loop, you have to roll back all of the successful calls to new[] that happened previously -- that requires more code and adds complexity.
Note how you deallocate the memory in the contiguous version -- just two calls to delete[] when allocated contiguously instead of a loop calling delete[] for each row.
Also, since the data is in contiguous memory, algorithms, functions, etc. that assume that the data is in contiguous memory, just like a one-dimensional array, can now be used by specifying the start and end range for the M*N matrix:
[&array[0][0], &array[M-1][N])
For example:
std::sort(&myArray[0][0], &myArray[M-1][N]);
will sort the entire matrix in ascending order, starting from index [0][0] up until the last index [M-1][N-1].
You can improve on the design by making this a true class instead of having allocation / deallocation as 2 separate functions.
Edit: The class is not RAII-like, just as the comment says. I leave that as an exercise for the reader. One thing missing from the code above is the check that nRows and nCols are > 0 when creating such an array.
Edit 2: Added a try-catch to ensure a proper roll back of the memory allocation is done if a std::bad_alloc exception is thrown attempting to allocate memory.
Edit: For a 3 dimensional array example of code similar to the above see this answer. Included is code to roll back allocations if the allocation fails.
Edit: Rudimentary RAII class added:
template <typename T>
class Array2D
{
T** data_ptr;
unsigned m_rows;
unsigned m_cols;
T** create2DArray(unsigned nrows, unsigned ncols, const T& val = T())
{
T** ptr = nullptr;
T* pool = nullptr;
try
{
ptr = new T*[nrows]; // allocate pointers (can throw here)
pool = new T[nrows*ncols]{ val }; // allocate pool (can throw here)
// now point the row pointers to the appropriate positions in
// the memory pool
for (unsigned i = 0; i < nrows; ++i, pool += ncols)
ptr[i] = pool;
// Done.
return ptr;
}
catch (std::bad_alloc& ex)
{
delete[] ptr; // either this is nullptr or it was allocated
throw ex; // memory allocation error
}
}
public:
typedef T value_type;
T** data() {
return data_ptr;
}
unsigned get_rows() const {
return m_rows;
}
unsigned get_cols() const {
return m_cols;
}
Array2D() : data_ptr(nullptr), m_rows(0), m_cols(0) {}
Array2D(unsigned rows, unsigned cols, const T& val = T())
{
if (rows == 0)
throw std::invalid_argument("number of rows is 0");
if (cols == 0)
throw std::invalid_argument("number of columns is 0");
data_ptr = create2DArray(rows, cols, val);
m_rows = rows;
m_cols = cols;
}
~Array2D()
{
if (data_ptr)
{
delete[] data_ptr[0]; // remove the pool
delete[] data_ptr; // remove the pointers
}
}
Array2D(const Array2D& rhs) : m_rows(rhs.m_rows), m_cols(rhs.m_cols)
{
data_ptr = create2DArray(m_rows, m_cols);
std::copy(&rhs.data_ptr[0][0], &rhs.data_ptr[m_rows-1][m_cols], &data_ptr[0][0]);
}
Array2D(Array2D&& rhs) noexcept
{
data_ptr = rhs.data_ptr;
m_rows = rhs.m_rows;
m_cols = rhs.m_cols;
rhs.data_ptr = nullptr;
}
Array2D& operator=(Array2D&& rhs) noexcept
{
if (&rhs != this)
{
swap(rhs, *this);
rhs.data_ptr = nullptr;
}
return *this;
}
void swap(Array2D& left, Array2D& right)
{
std::swap(left.data_ptr, right.data_ptr);
std::swap(left.m_cols, right.m_cols);
std::swap(left.m_rows, right.m_rows);
}
Array2D& operator = (const Array2D& rhs)
{
if (&rhs != this)
{
Array2D temp(rhs);
swap(*this, temp);
}
return *this;
}
T* operator[](unsigned row)
{
return data_ptr[row];
}
const T* operator[](unsigned row) const
{
return data_ptr[row];
}
void create(unsigned rows, unsigned cols, const T& val = T())
{
*this = Array2D(rows, cols, val);
}
};
int main()
{
try
{
Array2D<double> dPtr(10, 10);
std::cout << dPtr[0][0] << " " << dPtr[1][1] << "\n";
}
catch (std::exception& ex)
{
std::cout << ex.what();
}
}
Unless the size of the two dimensions is known at compile time, your don't have much choice: allocate a single rows*cols array of ints, and roll your own 2D indexing with integer multiplication and addition. Wrapping this in a class can produce a nice-looking syntax for accessing array elements with square bracket operator. Since your array is 2D, you will need to use proxy (AKA "surrogate") objects for the first level of data access.
Here is a small sample code that uses std::vector<T> for maintaining a contiguous memory region in dynamic memory:
template<class T>
class Array2D {
vector<T> data;
size_t cols;
public:
// This is the surrogate object for the second-level indexing
template <class U>
class Array2DIndexer {
size_t offset;
vector<U> &data;
public:
Array2DIndexer(size_t o, vector<U> &dt) : offset(o), data(dt) {}
// Second-level indexing is done in this function
T& operator[](size_t index) {
return data[offset+index];
}
};
Array2D(size_t r, size_t c) : data (r*c), cols(c) {}
// First-level indexing is done in this function.
Array2DIndexer<T> operator[](size_t index) {
return Array2DIndexer<T>(index*cols, data);
}
};
You can now use Array2D<int> as if it were a built-in C++ array:
Array2D<int> a2d(10, 20);
for (int r = 0 ; r != 10 ; r++) {
for (int c = 0 ; c != 20 ; c++) {
a2d[r][c] = r+2*c+1;
}
}
Running demo on ideone.
Since you're using C++ and not C, I would recommend to use one vector instead of messing around with new/delete.
You can define one contiguous block of memory like this:
std::vector<int> my_matrix(rows*cols);
And now you access this vector in a 2d-array-like way with the formula i*n + j, with i being the row index, j the column index and n the length of a row:
my_matrix[i*n + j];
That's the same as accessing a 2d array with array[i][j]. But now you have the advantage of one contiguous block of memory, you don't need to bother about new/delete and you can easily share and return this vector object with functions.
handling raw memory ressources is often icky. Best shot is a simple wrapper as :
struct array2D : private std::vector<int>
{
typedef std::vector<int> base_type;
array2D() : base_type(), height_(0), width_(0) {}
array2D(std::size_t h, std::size_t w) : base_type(h*w), height_(h), width_(w);
int operator()(std::size_t i, std::size_t j) const
{
return base_type::operator[](i+j*height_);
}
int& operator()(std::size_t i, std::size_t j)
{
return base_type::operator[](i+j*height_);
}
std::size_t rows() const { return height_; }
std::size_t cols() const { return width_; }
private:
std::size_t height_, width_;
}
private inheritance let you grab all the goodies from vector, just add your 2D constructor. Ressources management is free as vector ctor/dtor will do their magic. Obviously, the i+h*j can be changed to whateever storage order you want.
vector< vector< int > > is 2D but won't be contiguous in memory.
Your function then become :
array2D create_array(int rows, int cols)
{
return array2D(cols,rows);
}
EDIT:
You can also retrieve other vector interface parts like begin/end or size with the usign clause to make the private inherited member functions public again.
None of the ways of defining a 2D dynamic array in standard C++ are entirely satisfactory in my opinion.
You end up having to roll your own solutions. Luckily there is already a solution in Boost. boost::multi_array:
#include "boost/multi_array.hpp"
template<typename T>
boost::multi_array<T, 2> create_array(int rows, int cols) {
auto dims = boost::extents[rows][cols];
return boost::multi_array<T, 2>(dims);
}
int main() {
auto array = create_array<int>(4, 3);
array[3][2] = 0;
}
Live demo.
The "Rudimentary RAll" class provided by PaulMcKenzie is an excellent solution. In my use of it I did find a memory leak which is fixed in the version shown below.
The memory leak was due to an issue with
Array2D& operator=(Array2D&& rhs) noexcept.
The statement rhs.m_dataPtr = nullPtr needed to be removed in order to allow the rhs destructor to delete the original data (pool and pointers) swapped from lhs.
Here is the corrected code for the "Rudimentary RAll" class provided by PaulMcKenzie
template <typename T>
class Array2D
{
T** data_ptr;
unsigned m_rows;
unsigned m_cols;
T** create2DArray(unsigned nrows, unsigned ncols, const T& val = T())
{
T** ptr = nullptr;
T* pool = nullptr;
try
{
ptr = new T*[nrows]; // allocate pointers (can throw here)
pool = new T[nrows*ncols]{ val }; // allocate pool (can throw here)
// now point the row pointers to the appropriate positions in
// the memory pool
for (unsigned i = 0; i < nrows; ++i, pool += ncols)
ptr[i] = pool;
// Done.
return ptr;
}
catch (std::bad_alloc& ex)
{
delete[] ptr; // either this is nullptr or it was allocated
throw ex; // memory allocation error
}
}
public:
typedef T value_type;
T** data() {
return data_ptr;
}
unsigned get_rows() const {
return m_rows;
}
unsigned get_cols() const {
return m_cols;
}
Array2D() : data_ptr(nullptr), m_rows(0), m_cols(0) {}
Array2D(unsigned rows, unsigned cols, const T& val = T())
{
if (rows == 0)
throw std::invalid_argument("number of rows is 0");
if (cols == 0)
throw std::invalid_argument("number of columns is 0");
data_ptr = create2DArray(rows, cols, val);
m_rows = rows;
m_cols = cols;
}
~Array2D()
{
if (data_ptr)
{
delete[] data_ptr[0]; // remove the pool
delete[] data_ptr; // remove the pointers
}
}
Array2D(const Array2D& rhs) : m_rows(rhs.m_rows), m_cols(rhs.m_cols)
{
data_ptr = create2DArray(m_rows, m_cols);
std::copy(&rhs.data_ptr[0][0], &rhs.data_ptr[m_rows-1][m_cols], &data_ptr[0][0]);
}
Array2D(Array2D&& rhs) noexcept
{
data_ptr = rhs.data_ptr;
m_rows = rhs.m_rows;
m_cols = rhs.m_cols;
rhs.data_ptr = nullptr;
}
Array2D& operator=(Array2D&& rhs) noexcept
{
if (&rhs != this)
{
swap(rhs, *this);
}
return *this;
}
void swap(Array2D& left, Array2D& right)
{
std::swap(left.data_ptr, right.data_ptr);
std::swap(left.m_cols, right.m_cols);
std::swap(left.m_rows, right.m_rows);
}
Array2D& operator = (const Array2D& rhs)
{
if (&rhs != this)
{
Array2D temp(rhs);
swap(*this, temp);
}
return *this;
}
T* operator[](unsigned row)
{
return data_ptr[row];
}
const T* operator[](unsigned row) const
{
return data_ptr[row];
}
void create(unsigned rows, unsigned cols, const T& val = T())
{
*this = Array2D(rows, cols, val);
}
};
int main()
{
try
{
Array2D<double> dPtr(10, 10);
std::cout << dPtr[0][0] << " " << a2[0][0] << "\n";
}
catch (std::exception& ex)
{
std::cout << ex.what();
}
}
I think you should write a simple class to wrap a 1-dim array. Then you can implement a 2-dim array with operator() overloading for getting values and deconstruct func for release the memory. Code as below:
#include <assert.h>
template <typename T>
class Array_2D
{
private:
T *data_inside;
public:
int size[2];
Array_2D(int row, int column);
~Array_2D();
//
T operator()(int index1, int index2){
return data_inside[get_index(index1, index2)];
}
int get_index(int index1, int index2){
if(index1>=0 and index1<size[0] and index2>=0 and index2<=size[1]){
return index1*size[0] + index2;
}else{
assert("wrong index for array!" == "True");
}
}
};
template <typename T>
Array_2D<T>::Array_2D(int row, int column)
{
size[0] = row;
size[1] = column;
data_inside = new T[row*column];
}
template <typename T>
Array_2D<T>::~Array_2D()
{
// 使用析构函数,自动释放资源
delete[] data_inside;
}