Microcontrollers using C or C++ [duplicate] - c++

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Is there any reason to use C instead of C++ for embedded development?
I'm very curious about this: Why is it that when we deal with microcontrollers, they prefer C instead of C++? Based on my researches, C and Assembly language is the usual programming language for these devices. I only know C++ and Assembly Language. So in this case, should I start learning C or stick with Assembly language and if so, what compiler should I use because I only know the Turbo Assembler.
Thanks and more power! :)

Some C++ features like exceptions and virtual functions can add overhead to your program which is undesirable in highly resource constrained environments. This reduces the demand for C++ compilers on such platforms. It is also much more difficult to implement a C++ compiler than a C compiler. This difficulty plus lack of demand makes it so many micro-controllers only have C compilers available for them.
I would learn C for your micro-controller programming. It is not difficult to learn C after learning C++ and will be much easier to code in than assembly.

It is merely historical accident and practice (by old-time Luddites like me) that ucontrollers "prefer" ASM and C. If your compiler can compile C++ into ucontroller code, there's no theoretical reason that I know of why you should not use C++.
To me, it's much easier and more natural to use ASM and C but you can use whichever you prefer so long as your compiler (and linker, if you use it) can do the right thing; and your ucontroller has enough memory to accomodate the (perhaps bigger) compiled C++ code.

It's just the availability of resources, really, as explained by the other posters. By the time you've compiled in a couple virtual method tables and a couple dozen object pointers, that's all the RAM gone from a simple uC!
That said, I prefer C++ on today's 32-bit controllers with 8K upwards of RAM, plenty of flash, complex embedded peripherals and multitasking libs. After decades of OO, using plain C is nightmarish for anything non-trivial.
I currently use NXP ARM chips & Rowley Crossworks, (IDE, uses gcc). I only use C for lib interfaces and assembler for some drivers, all the rest is C++.

C is more low-level and does just exactly what you say. It is more adapted to low-resources environments such as micro-controllers.
C++ has some features which requires additional resources (such as OOP, exception, and so on).
Moreover the micro-controller does not have the same features as your computer's CPU. It could for example not support dynamic library loading and even for static libraries you're limited in size as your chip doesn't have many memory.
Usually, micro-controllers expose special input/output library, and the stdlib is not always available.
What you need is a cross-compiler for your micro-controller specifically.
Then you can write your program in C and ASM.
If the chip supports it, you can re-compile the stdlib to use the standard C features, and then you can eventually (once again if the chip has enough resources) build a C++ cross-compiler and then the STL. Then you will be able to build C++ program on your chip, but the program will weight much more than the original C program.

Microcontrollers are memory and bandwidth constrained processing units. C programming language generates tight code that is close to assembly language in terms of size and speed. C++ usually carries an overhead in memory and speed.
Another issue is dynamic memory allocation. Using object oriented design with C++ usually implies dynamically creating and destroying objects. Embedded applications using microcontrollers, typically allocate all the required memory statically and is not freed up for the life time of the application.
That being said, if you are using a 32 bit microcontroller and your application is complex enough that it handles either lot of data traffic or has significant user interface via touch screen / LCD etc., C++ (& sometimes even C# ) is the language of choice.
The compiler that you choose would depend on the microcontroller, check the microcontroller vendor website for the appropriate development tool suite to use.
Assembly language is used only for the lowest layers if it cannot be done in C. It is harder to maintain and port assembly language code, hence it is best to minimize its use in your application.

Microcontrollers are small devices which are not very powerfull compared to computers. They have limited resources. Firstly, the size of the stack is very limited, thus it is not recommanded to have many nested function calls (on some devices, the stack is limited to a few bytes). Secondly, it is often not possible to dynamically allocate memory (alloc, free...), and most of the program data must be global static variables or stored in the stack, so usefull classes such as std::vector would not be available.
Even if C++ compilers could be used for microcontrollers, it would not be very useful since the low capabilities of these devices would forbid plain usage of this powerful language. Using C is often easier for simple tasks, and microcontrollers are sized for simple tasks.

Related

Kernel development and C++ [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 2 years ago.
Improve this question
From what I know, even though the common OS have parts written in other languages, the kernel is entirely written in C.
I want to know if it's feasible to write a Kernel in C++ and if not, what would be the drawbacks.
There are plenty of examples of well-used operating systems (or parts of them) implemented in C++ - IOKit - the device driver subsystem of MacOSX and IOS is implemented in EC++. Then there's the eCOS RTOS - where the kernel is implemented in C++, even making use of templates.
Operating systems are traditionally awash with examples of OO concepts implemented the hard way in C. In the linux device model kobject is effectively the base-class for driver and device objects, complete with DIY v-tables and some funky arrangements implemented in macros for up and down-casting.
The Windows NT kernel has an even more deeply rooted inheritance hierarchy of kernel objects. And for all of the neigh-sayers complaining about the suitability of exception handling in kernel code, exactly such a mechanism is provided.
Traditionally, the arguments against using C++ in kernel code have been:
Portability: availability of C++ compilers for all intended target platforms. This is not really an issue any more
Cost of C++ language mechanisms such as RTTI and exceptions. Clearly if they were to be used, the standard implementation isn't suitable and a kernel-specific variant needs using. This is generally the driver behind the use of EC++
Robustness of C++ APIs, and particularly the Fragile base-class problem
Undoubtedly, the use of exceptions and RAII paradigm would vastly improve kernel code quality - you only have to look at source code for BSD or linux to see the alternative - enormous amounts of error handling code implemented with gotos.
This is covered explicitly in the OSDev Wiki.
Basically, you either have to implement runtime support for certain things (like RTTI, exceptions), or refrain from using them (leaving only a subset of C++ to be used).
Other than that, C++ is the more complex language, so you need to have a bit more competent developers that won't screw it up. Linus Torvalds hating C++ being purely coincidental, of course.
To address Torvalds' concerns and others mentioned elsewhere here:
In hard-RT systems written in C++, STL/RTTI/exceptions are not used and that same principal can be applied to the much more lenient Linux kernel. Other concerns about "OOP memory model" or "polymorphism overhead" basically show programmers that never really checked what happens at the assembly level or the memory structure. C++ is as efficient, and due to optimized compilers many times more efficient than a C programmer writing lookup tables badly since he doesn't have virtual functions at hand.
In the hands of an average programmer C++ doesn't add any additional assembly code vs a C written piece of code. Having read the asm translation of most C++ constructs and mechanisms, I'd say that the compiler even has more room to optimize vs C and can create even leaner code at times. So as far as performance it's pretty easy to use C++ as efficiently as C, while still utilizing the power of OOP in C++.
So the answer is that it's not related to facts, and basically revolves around prejudice and not really knowing what code CPP creates. I personally enjoy C almost as much as C++ and I don't mind it, but there is no rational against layering an object oriented design above Linux, or in the Kernel itself, it would've done Linux a lot of good.
You can write an OS kernel in more or less any language you like.
There are a few reasons to prefer C, however.
It is a simple language! There's very little magic. You can reason about the machinecode the compiler will generate from your source code without too much difficulty.
It tends to be quite fast.
There's not much of a required runtime; there's minimal effort needed to port that to a new system.
There are lots of decent compilers available that target many many different CPU and system architectures.
By contrast, C++ is potentially a very complex language which involves an awful lot of magic being done to translate your increasingly high-level OOP code into machine code. It is harder to reason about the generated machine code, and when you need to start debugging your panicky kernel or flaky device driver the complexities of your OOP abstractions will start becoming extremely irritating... especially if you have to do it via user-unfriendly debug ports into the target system.
Incidentally, Linus is not the only OS developer to have strong opinions on systems programming languages; Theo de Raadt of OpenBSD has made a few choice quotes on the matter too.
The feasibility of writing a kernel in C++ can be easily established: it has already been done. EKA2 is the kernel of Symbian OS, which has been written in C++.
However, some restrictions to the usage of certain C++ features apply in the Symbian environment.
While there is something "honest" about (ANSI) C, there is also something "honest", in a different way, about C++.
C++'s syntactic support for abstracting objects is very worthwhile, no matter what the application space. The more tools available for misnomer mitigation, the better ... and classes are such a tool.
If some part of an existing C++ compiler does not play well with kernel-level realities, then whittle up a modified version of the compiler that does it the "right" way, and use that.
As far as programmer caliber and code quality, one can write either hideous or sublime code in either C or C++. I don't think it is right to discriminate against people who can actually code OOP well by disallowing it at the kernel level.
That said, and even as a seasoned programmer, I miss the old days of writing in assembler. I like 'em both ... C++ and ASM ... as long as I can use Emacs and source level debuggers (:-).
Revision after many years:
Looking back, I'd say the biggest problem is actually with the tons of high level features in C++, that are either hidden or outside the control of the programmer. The standard doesn't enforce any particular way of implementing things, even if most implementations follow common sanity, there are many good reasons to be 100% explicit and have full control over how things are implemented in a OS kernel.
This allows (as long as you know what you are doing) to reduce memory footprint, optimize data layout based on access patterns rather than OOP paradigms, thus improve cache-friendliness and performance, and avoid potential bugs that might come hidden in the tons of high level features of C++.
Note that even tho far more simple, even C is too unpredictable in some cases, which is one of the reasons there is also a lot of platform specific assembly in the kernel code.
Google's new-coming operating system Fuchsia is based on the kernel called Zircon, which is written mostly in C++, with some parts in assembly language[1] [2]. Plus, the rest of the OS is also written mostly in C++[3]. I think modern C++ gives programmers many reasons to use it as a general programming environment for huge codebases. It has lots of great features, and new features are added regularly. I think this is the main motive behind Google's decision. I think C++ could easily be the future of system programming.
One of the big benefits of C is it's readability. If you have a lot of code, which is more readable:
foo.do_something();
or:
my_class_do_something(&foo);
The C version is explicit about which type foo is every time foo is used. In C++ you have lots and lots of ambiguous "magic" going on behind the scenes. So readability is much worse if you are just looking at some small piece of code.

Why are drivers and firmwares almost always written in C or ASM and not C++?

I am just curious why drivers and firmwares almost always are written in C or Assembly, and not C++?
I have heard that there is a technical reason for this.
Does anyone know this?
Lots of love,
Louise
Because, most of the time, the operating system (or a "run-time library") provides the stdlib functionality required by C++.
In C and ASM you can create bare executables, which contain no external dependencies.
However, since windows does support the C++ stdlib, most Windows drivers are written in (a limited subset of) C++.
Also when firmware is written ASM it is usually because either (A) the platform it is executing on does not have a C++ compiler or (B) there are extreme speed or size constraints.
Note that (B) hasn't generally been an issue since the early 2000's.
Code in the kernel runs in a very different environment than in user space. There is no process separation, so errors are a lot harder to recover from; exceptions are pretty much out of the question. There are different memory allocators, so it can be harder to get new and delete to work properly in a kernel context. There is less of the standard library available, making it a lot harder to use a language like C++ effectively.
Windows allows the use of a very limited subset of C++ in kernel drivers; essentially, those things which could be trivially translated to C, such as variable declarations in places besides the beginning of blocks. They recommend against use of new and delete, and do not have support for RTTI or most of the C++ standard library.
Mac OS X use I/O Kit, which is a framework based on a limited subset of C++, though as far as I can tell more complete than that allowed on Windows. It is essentially C++ without exceptions and RTTI.
Most Unix-like operating systems (Linux, the BSDs) are written in C, and I think that no one has ever really seen the benefit of adding C++ support to the kernel, given that C++ in the kernel is generally so limited.
1) "Because it's always been that way" - this actually explains more than you think - given that the APIs on pretty much all current systems were originally written to a C or ASM based model, and given that a lot of prior code exists in C and ASM, it's often easier to 'go with the flow' than to figure out how to take advantage of C++.
2) Environment - To use all of C++'s features, you need quite a runtime environment, some of which is just a pain to provide to a driver. It's easier to do if you limit your feature set, but among other things, memory management can get very interesting in C++, if you don't have much of a heap. Exceptions are also very interesting to consider in this environment, as is RTTI.
3) "I can't see what it does". It is possible for any reasonably skilled programmer to look at a line of C and have a good idea of what happens at a machine code level to implement that line. Obviously optimization changes that somewhat, but for the most part, you can tell what's going on. In C++, given operator overloading, constructors, destructors, exception, etc, it gets really hard to have any idea of what's going to happen on a given line of code. When writing device drivers, this can be deadly, because you often MUST know whether you are going to interact with the memory manager, or if the line of code affects (or depends on) interrupt levels or masking.
It is entirely possible to write device drivers under Windows using C++ - I've done it myself. The caveat is that you have to be careful about which C++ features you use, and where you use them from.
Except for wider tool support and hardware portability, I don't think there's a compelling reason to limit yourself to C anymore. I often see complicated hand-coded stuff done in C that can be more naturally done in C++:
The grouping into "modules" of functions (non-general purpose) that work only on the same data structure (often called "object") -> Use C++ classes.
Use of a "handle" pointer so that module functions can work with "instances" of data structures -> Use C++ classes.
File scope static functions that are not part of a module's API -> C++ private member functions, anonymous namespaces, or "detail" namespaces.
Use of function-like macros -> C++ templates and inline/constexpr functions
Different runtime behavior depending on a type ID with either hand-made vtable ("descriptor") or dispatched with a switch statement -> C++ polymorphism
Error-prone pointer arithmetic for marshalling/demarshalling data from/to a communications port, or use of non-portable structures -> C++ stream concept (not necessarily std::iostream)
Prefixing the hell out of everything to avoid name clashes: C++ namespaces
Macros as compile-time constants -> C++11 constexpr constants
Forgetting to close resources before handles go out of scope -> C++ RAII
None of the C++ features described above cost more than the hand-written C implementations. I'm probably missing some more. I think the inertia of C in this area has more to do with C being mostly used.
Of course, you may not be able to use STL liberally (or at all) in a constrained environment, but that doesn't mean you can't use C++ as a "better C".
The comments I run into as why a shop is using C for an embedded system versus C++ are:
C++ produces code bloat
C++ exceptions take up too much
room.
C++ polymorphism and virtual tables
use too much memory or execution
time.
The people in the shop don't know
the C++ language.
The only valid reason may be the last. I've seen C language programs that incorporate OOP, function objects and virtual functions. It gets very ugly very fast and bloats the code.
Exception handling in C, when implemented correctly, takes up a lot of room. I would say about the same as C++. The benefit to C++ exceptions: they are in the language and programmers don't have to redesign the wheel.
The reason I prefer C++ to C in embedded systems is that C++ is a stronger typed language. More issues can be found in compile time which reduces development time. Also, C++ is an easier language to implement Object Oriented concepts than C.
Most of the reasons against C++ are around design concepts rather than the actual language.
The biggest reason C is used instead of say extremely guarded Java is that it is very easy to keep sight of what memory is used for a given operation. C is very addressing oriented. Of key concern in writing kernel code is avoiding referencing memory that might cause a page fault at an inconvenient moment.
C++ can be used but only if the run-time is specially adapted to reference only internal tables in fixed memory (not pageable) when the run-time machinery is invoked implicitly eg using a vtable when calling virtual functions. This special adaptation does not come "out of the box" most of the time.
Integrating C with a platform is much easier to do as it is easy to strip C of its standard library and keep control of memory accesses utterly explicit. So what with it also being a well-known language it is often the choice of kernel tools designers.
Edit: Removed reference to new and delete calls (this was wrong/misleading); replaced with more general "run-time machinery" phrase.
The reason that C, not C++ is used is NOT:
Because C++ is slower
Or because the c-runtime is already present.
It IS because C++ uses exceptions.
Most implementations of C++ language exceptions are unusable in driver code because drivers are invoked when the OS is responding to hardware interrupts. During a hardware interrupt, driver code is NOT allowed to use exceptions as that would/could cause recursive interrupts. Also, the stack space available to code while in the context of an interrupt is typically very small (and non growable as a consequence of the no exceptions rule).
You can of course use new(std::nothrow), but because exceptions in c++ are now ubiqutious, that means you cannot rely on any library code to use std::nothrow semantics.
It IS also because C++ gave up a few features of C :-
In drivers, code placement is important. Device drivers need to be able to respond to interrupts. Interrupt code MUST be placed in code segments that are "non paged", or permanently mapped into memory, as, if the code was in paged memory, it might be paged out when called upon, which will cause an exception, which is banned.
In C compilers that are used for driver development, there are #pragma directives that can control which type of memory functions end up on.
As non paged pool is a very limited resource, you do NOT want to mark your entire driver as non paged: C++ however generates a lot of implicit code. Default constructors for example. There is no way to bracket C++ implicitly generated code to control its placement, and because conversion operators are automatically called there is no way for code audits to guarantee that there are no side effects calling out to paged code.
So, to summarise :- The reason C, not C++ is used for driver development, is because drivers written in C++ would either consume unreasonable amounts of non-paged memory, or crash the OS kernel.
C is very close to a machine independent assembly language. Most OS-type programming is down at the "bare metal" level. With C, the code you read is the actual code. C++ can hide things that C cannot.
This is just my opinion, but I've spent a lot of time in my life debugging device drivers and OS related things. Often by looking at assembly language. Keep it simple at the low level and let the application level get fancy.
Windows drivers are written in C++.
Linux drivers are written in c because the kernel is written in c.
Probably because c is still often faster, smaller when compiled, and more consistent in compilation between different OS versions, and with fewer dependencies. Also, as c++ is really built on c, the question is do you need what it provides?
There is probably something to the fact that people that write drivers and firmware are usually used to working at the OS level (or lower) which is in c, and therefore are used to using c for this type of problem.
The reason that drivers and firmwares are mostly written in C or ASM is, there is no dependency on the actual runtime libraries. If you were to imagine this imaginary driver written in C here
#include <stdio.h>
#define OS_VER 5.10
#define DRIVER_VER "1.2.3"
int drivermain(driverstructinfo **dsi){
if ((*dsi)->version > OS_VER){
(*dsi)->InitDriver();
printf("FooBar Driver Loaded\n");
printf("Version: %s", DRIVER_VER);
(*dsi)->Dispatch = fooDispatch;
}else{
(*dsi)->Exit(0);
}
}
void fooDispatch(driverstructinfo *dsi){
printf("Dispatched %d\n", dsi->GetDispatchId());
}
Notice that the runtime library support would have to be pulled in and linked in during compile/link, it would not work as the runtime environment (that is when the operating system is during a load/initialize phase) is not fully set up and hence there would be no clue on how to printf, and would probably sound the death knell of the operating system (a kernel panic for Linux, a Blue Screen for Windows) as there is no reference on how to execute the function.
Put it another way, with a driver, that driver code has privilege to execute code along with the kernel code which would be sharing the same space, ring0 is the ultimate code execution privilege (all instructions allowed), ring3 is where the front end of the operating system runs in (limited execution privilege), in other words, a ring3 code cannot have a instruction that is reserved for ring0, the kernel will kill the code by trapping it as if to say 'Hey, you have no privilege to tread up ring0's domain'.
The other reason why it is written in assembler, is mainly for code size and raw native speed, this could be the case of say, a serial port driver, where input/output is 'critical' to the function in relation to timing, latency, buffering.
Most device drivers (in the case of Windows), would have a special compiler toolchain (WinDDK) which can use C code but has no linkage to the normal standard C's runtime libraries.
There is one toolkit that can enable you to build a driver within Visual Studio, VisualDDK. By all means, building a driver is not for the faint of heart, you will get stress induced activity by staring at blue screens, kernel panics and wonder why, debugging drivers and so on.
The debugging side is harder, ring0 code are not easily accessible by ring3 code as the doors to it are shut, it is through the kernel trap door (for want of a better word) and if asked politely, the door still stays shut while the kernel delegates the task to a handler residing on ring0, execute it, whatever results are returned, are passed back out to ring3 code and the door still stays shut firmly. That is the analogy concept of how userland code can execute privileged code on ring0.
Furthermore, this privileged code, can easily trample over the kernel's memory space and corrupt something hence the kernel panic/bluescreens...
Hope this helps.
Perhaps because a driver doesn't require object oriented features, while the fact that C still has somewhat more mature compilers would make a difference.
There are many style of programming such as procedural, functional, object oriented etc. Object oriented programming is more suited for modeling real world.
I would use object-oriented for device drivers if it suites it. But, most of the time when you programming device drivers, you would not need the advantages provided by c++ such as, abstraction, polymorphism, code reuse etc.
Well, IOKit drivers for MacOSX are written in C++ subset (no exceptions, templates, multiple inheritance). And there is even a possibility to write linux kernel modules in haskell.)
Otherwise, C, being a portable assembly language, perfectly catches the von Neumann architecture and computation model, allowing for direct control over all it's peculiarities and drawbacks (such as the "von Neumann bottleneck"). C does exactly what it was designed for and catches it's target abstraction model completely and flawlessly (well except for implicit assumption in single control flow which could have been generalized to cover the reality of hardware threads) and this is why i think it is a beautiful language.) Restricting the expressive power of the language to such basics eliminates most of the unpredictable transformation details when different computational models are being applied to this de-facto standard. In other words, C makes you stick to basics and allows pretty much direct control over what you are doing, for example when modeling behavior commonality with virtual functions you control exactly how the function pointer tables get stored and used when comparing to C++'s implicit vtbl allocation and management. This is in fact helpful when considering caches.
Having said that, object-based paradigm is very useful for representing physical objects and their dependencies. Adding inheritance we get object-oriented paradigm which in turn is very useful to represent physical objects' structure and behavior hierarchy. Nothing stops anyone from using it and expressing it in C again allowing full control over exactly how your objects will be created, stored, destroyed and copied. In fact that is the approach taken in linux device model. They got "objects" to represent devices, object implementation hierarchy to model power management dependancies and hacked-up inheritance functionality to represent device families, all done in C.
because from system level, drivers need to control every bits of every bytes of the memory, other higher language cannot do that, or cannot do that natively, only C/Asm achieve~

Developing embedded software library, C or C++?

I'm in the process of developing a software library to be used for embedded systems like an ARM chip or a TI DSP (for mostly embedded systems, but it would also be nice if it could also be used in a PC environment). Obviously this is a pretty broad range of target systems, so being able to easily port to different systems is a priority.The library will be used for interfacing with a specific hardware and running some algorithms.
I am thinking C++ is the best option, over C, because it is much easier to maintain and read. I think the additional overhead is worth it for being able to work in the object oriented paradigm. If I was writing for a very specific system, I would work in C but this is not the case.
I'm assuming that these days most compilers for popular embedded systems can handle C++. Is this correct?
Is there any other factors I should consider? Is my line of thinking correct?
If portability is very important for you, especially on an embedded system, then C is certainly a better option than C++. While C++ compilers on embedded platforms are catching up, there's simply no match for the widespread use of C, for which any self-respecting platform has a compliant compiler.
Moreover, I don't think C is inferior to C++ where it comes to interfacing hardware. The amount of abstraction is sufficiently low (i.e. no deep class hierarchies) to make C just as good an option.
There is certainly good support of C++ for ARM. ARM have their own compiler and g++ can also generate EABI compliant ARM code. When it comes to the DSPs, you will have to look at their toolchain to decide what you are going to do. Be aware that the library that comes with a DSP may well not implement the full C or C++ standard library.
C++ is suitable for low-level embedded development and is used in the SymbianOS Kernel. Having said that, you should keep things as simple as possible.
Avoid exceptions which may demand more library support than what is present (therefore use new (std::nothrow) Foo instead of new Foo).
Avoid memory allocations as much as possible and do them as early as possible.
Avoid complex patterns.
Be aware that templates can bloat your code.
I have seen many complaints that C++ is "bloated" and inappropriate for embedded systems.
However, in an interview with Stroustrup and Sutter, Bjarne Stroustrup mentioned that he'd seen heavily templated C++ code going into (IIRC) the braking systems of BMWs, as well as in missile guidance systems for fighter aircraft.
What I take away from this is that experts of the language can generate sophisticated, efficient code in C++ that is most certainly suitable for embedded systems. However, a "C With Classes"[1] programmer that does not know the language inside out will generate bloated code that is inappropriate.
The question boils down to, as always: in which language can your team deliver the best product?
[1] I know that sounds somewhat derogatory, but let me say that I know an awful lot of these guys, and they churn out an awful lot of relatively simple code that gets the job done.
C++ compilers for embedded platforms are much closer to 83's C with classes than 98's C++ standard, let alone C++0x. For instance, some platform we use still compile with a special version of gcc made from gcc-2.95!
This means that your library interface will not be able to provide interfaces with containers/iterators, streams, or such advanced C++ features. You'll have to stick with simple C++ classes, that can very easily be expressed as a C interface with a pointer to a structure as first parameter.
This also means that within your library, you won't be able to use templates to their full power. If you want portability, you will still be restricted to generic containers use of templates, which is, I'm sure you'll admit, only a very tiny part of C++ templates power.
C++ has little or no overhead compared to C if used properly in an embedded environment. C++ has many advantages for information hiding, OO, etc. If your embedded processor is supported by gcc in C then chances are it will also be supported with C++.
On the PC, C++ isn't a problem at all -- high quality compilers are extremely widespread and almost every C compiler is directly associated with a C++ compiler that's quite good, though there are a few exceptions such as lcc and the newly revived pcc.
Larger embedded systems like those based on the ARM are generally quite similar to desktop systems in terms of tool chain availability. In fact, many of the same tools available for desktop machines can also generate code to run on ARM-based machines (e.g., lots of them use ports of gcc/g++). There's less variety for TI DSPs (and a greater emphasis on quality of generated code than source code features), but there are still at least a couple of respectable C++ compilers available.
If you want to work with smaller embedded systems, the situation changes in a hurry. If you want to be able to target something like a PIC or an AVR, C++ isn't really much of an option. In theory, you could get (for example) Comeau to produce a custom port that generated code you could compile on that target's C compiler -- but chances are pretty good that even if you did, it wouldn't work out very well. These systems are really just too limitated (especially on memory size) for C++ to fit them well.
Depending on what your intended use is for the library, I think I'd suggest implementing it first as C - but the design should keep in mind how it would be incorporated into a C++ design. Then implement C++ classes on top of and/or along side of the C implementation (there's no reason this step cannot be done concurrently with the first). If your C design is done with a C++ design in mind, it's likely to be as clean, readable and maintainable as the C++ design would be. This is somewhat more work, but I think you'll end up with a library that's useful in more situations.
While you'll find C++ used more and more on various embedded projects, there are still many that restrict themselves to C (and I'd guess this is more often the case than not) - regardless of whether or not the tools support C++. It would be a shame to have a nice library of routines that you could bring to a new project you're working on, but be unable to use them because C++ isn't being used on that particular project.
In general, it's much easier to use a well-designed C library from C++ than the other way around. I've taken this approach with several sets of code including parsing Intel Hex files, a simple command parser, manipulating synchronization objects, FSM frameworks, etc. I'm planning on doing a simple XML parser at some point.
Here's an entirely different C++-vs-C argument: stable ABIs. If your library exports a C ABI, it can be compiled with any compiler that works on the system, because C ABIs are generally platform standards. If your library exports a C++ ABI, it can only be compiled with a matching compiler -- because C++ ABIs are usually not platform standards, and often differ from compiler to compiler and even version to version.
Interestingly, one of the rare exceptions to this is ARM; there's an ARM C++ ABI specification, and all compliant ARM compilers follow it. This is not true on x86; on x86, you're lucky if a C++ library compiled with a 4.1 version of GCC will link correctly with an application compiled with GCC 4.4, and don't even ask about 3.4.6.
Even if you export a C ABI, you can have problems. If your library uses C++ internally, it will then link to libstdc++ for things in the C++ std:: namespace. If your user compiles a C++ application that uses your library, they'll also link to libstdc++ -- and so the overall application gets linked to libstdc++ twice, and their libstdc++ may not be compatible with your libstdc++, which can (or so I understand) lead to odd errors from the intersection of the two. Considerably less likely, but still possible.
All of these arguments only apply because you're writing a library, and they're not showstoppers. But they are things to be aware of.

To write a bootloader in C or C++?

I am writing a program, more specifically a bootloader, for an embedded system. I am going to use a C library to interact with some of the hardware components and I have the choice of writing it either in C or C++. Is there any reason I should choose one over the other? I do not need the object oriented features of C++ but it does have a stronger type system. Could it have other language features that would make the program more robust? I know some people avoid C++ because it can (but not always) generate large firmware images.
This isn't a particularly straightforward question to answer. It depends on a number of factors including:
How you prefer to layout your code.
Whether there's a C++ compiler available for your target (and any other targets you may wish to use the bootloader on).
How critical the code size is for your application (we're talking about 10% extra maybe, not MB as suggested by another answer).
Personally, I really like classes as a way of laying out my code. Even when writing C code, I'll tend to keep everything in modular files with file-scope static functions "simulating" member functions and (a few) file-scope static variables to "simulate" member variables. Having said that, most of my existing embedded projects (all of which are relatively small scale, up to a maximum of 128kB flash including bootloader, but usually less) have tended to be written in C. Now that I have a C++ compiler though, I'm certainly considering moving to C++.
There are considerable benefits to C++ from simply using references, overloading and templates, even if you don't go as far as classes. Certainly, I'd stop short of using a lot of more advanced features, including the use of dynamic memory allocation (new). Then again, I'd avoid dynamic memory allocation (malloc etc) in embedded C as well if possible.
If you have a C++ compiler (even if it's only g++), it is worth running your code through it just for the additional type checking so that you can reduce the number of problems in your code. The C++ compiler can pick up on a few things that even static analysis tools won't spot.
For a good discussion on many invalid reasons people reject C++, see Dan Saks' article on Embedded.com.
For a boot-loader the obvious choice is C, especially on an embedded system. The generated code will need to be close to the metal, and very easy to debug, likely by dropping into assembly, which quickly becomes difficult without care in C++. Also C tool-chains are far more ubiquitous than C++ tool-chains, allowing your boot-loader to be used on more platforms. Lastly, generated binaries are typically smaller, and use less memory when written C style.
If you don't need to use Object Orientation, use C. Simple choice there. Its simpler and easier, whilst accomplishing the same task.
Some die hards will disagree, but OO is what makes C++ > C, and vice versa in a lot of circumstances.
I would use C unless there is a specific reason to use C++. For a Bootloader you are not really going to need OO.
Use the simplest tool that will accomplish the job.
Write programs in C is not the same as writing it in C++. If you know how to do it only in C++, then your choice is C++. For writing bootloader it will be better to minimize code, so you probably will have to disable standard C++ library. If you know how to write in C then you should use C — it is more common choice for such kind of tasks.
Most of the previous answers assume that your bootloader is small and simple which is typically the case; however, if it becomes more complex (i.e. you need to be able to load from an Ethernet port, a USB port, or a serial port...you need to validate the code that is being loaded before you wipe out your existing code, etc.) you may want to consider C++.
I have also found that the bootloader and the application typically share some amount of common code so you may also want to consider using the same language as your application to facilitate the code sharing.
The C language is substantially easier to parse than C++. This means a program that is both valid C and valid C++ will compile faster as a C program. Probably not a major concern, but it is just another reason why C++ is probably overkill.
Go with C++ and objchoose what language features you need. You still have full control of the output object code as long as you understand the C++ abstractions that you're using.
Use of OO can still run well if you avoid the use of virtual functions. Avoid immutable object types that require a lot of copying in order to pass values, like std::string. But, you can still use features like templates without any real impact on runtime performance.
Use C with µClibc. It will make your code simpler and reduce its footprint. Can be found in: www.uclibc.org.

Using C++ in an embedded environment

Today I got into a very interesting conversation with a coworker, of which one subject got me thinking and googling this evening. Using C++ (as opposed to C) in an embedded environment. Looking around, there seems to be some good trades for and against the features C++ provides, but others Meyers clearly support it. So, I was wondering who would be able to shed some light on this topic and what the general consensus of the community was.
C++ for embedded platforms is perfectly fine - as long as you treat it as a better C. I love the fact that the language is slightly more structured. You can still do all the things that you want to do with C. Just remember to stick to an embedded C library like Newlib or uClibc.
I particularly like the abstraction that we can build using C++, particularly for I/O devices. So, we can have a class for UART and a class for GPIO and what nots. It is cleaner than having a bunch of functions (IMHO).
The fear of C++ among embedded developers is largely a thing of the past, when C++ compilers were not as good as C compilers (optimizations and code quality wise).
This applies especially to modern platforms with 32 bit architectures.
But, C is certainly still the preferred choice for more confined environments (as is assembler for 8 bit or 4 bit targets).
So, it really boils down to the resources your target platform provides, and how much of these resources you are likely to actually require, i.e. if you can afford the 'luxury' of doing embedded development in C++ (or even Java for that matter), because you know that you'll hardly have any issues regarding memory or CPU constraints.
Nowadays, many modern embedded platforms (think gaming consoles, mobile phones, PDAs etc), have really become very capable targets, with RISC architectures, several MB of RAM, and 3D hardware acceleration.
It would be a poor decision, to program such platforms using just C or even assembler out of uninformed performance considerations, on the other hand programming a 16 bit PIC in C++ would probably also be a controversial decision.
So, it's really a matter of asking yourself how much of the power, you'll actually need and how much you can afford to sacrifice, in order to improve the development experience (high level language, faster development, less tedious/redundant tasks).
It sort of depends on the particular nature of your embedded system and which features of C++ you use. The language itself doesn't necessarily generate bulkier code than C.
For example, if memory is your tightest constraint, you can just use C++ like "C with classes" -- that is, only using direct member functions, disabling RTTI, and not having any virtual functions or templates. That will fit in pretty much the same space as the equivalent C code, since you've no type information, vtables, or redundant functions to clutter things up.
I've found that templates are the biggest thing to avoid when memory is really tight, since you get one copy of each template function for each type it's specialized on, and that can rapidly bloat code segment.
In the console video games industry (which is sort of the beefy end of the embedded world) C++ is king. Our constraints are hard limits on memory (512mb on current generation) and realtime performance. Generally virtual functions and templates are used, but not exceptions, since they bloat the stack and are too perf-costly. In fact, one major manufacturer's compiler doesn't even support exceptions at all.
In my previous company all embedded code was written in a small subset of C code due to security (SIL-2) and memory reasons. By introducing a richer language like C++ in that particular scenario would have maybe cause more trouble than benefits.
In all due respect to C++ (which is a language I really love) but I think C - in our particular scenario - was the better choice.
I bet in some cases C++ is just fine to use for embedded applications but it really depends on the application - there is a difference if your program is controlling a nuclear plant or administrating an address book on your cell phone.
I don't know about "general consensus", only the company I work for (which does a lot of development for mobile phones, car navigation systems, DPFs, etc.).
The main drawback I've encountered to using C++ on embedded platforms as opposed to C is that it isn't quite as portable - there are many more cases of compilers that don't adhere to the standard which can cause problems if you need to build your code with more than 1 compiler or outright have bugs in the implementation. Then there are environments where C++ code simply won't run - BREW's issues with relocatable code and its "native OOP" don't play so well with "regular" C++ classes and inheritance.
In the end, though, if you're only targeting 1 platform, I'd say use whatever you think is "better" (faster, less bugs, better design) for your development - in most cases the issues can be worked around quite easily.
Depends what kind of embedded development you are doing. I've done embedded development with both C++, C, and Assembly on various platforms, you can even use Java to write applications on smart phones.
For instance on a smart phone like device that's running Windows CE 5, almost all of the code is C++, including in the operating system. Only small bits are written in C or assembly.
On the other hand I've written code for an MSP430 microcontroller, which was in C, and I probably would have done that in C++ had the compiler been more reliable and standards compliant.
Also I seem to recall a university lecturer of mine talking about writing embedded code in Forth or something. So really any language can do.
Now a days it will all boil down to the C++ runtime support of the platform. You're likely to find a way to compile C++ code down to almost any embedded platform with GCC, but if you can't find a suitable C++ runtime for the platform your efforts will be futile, unless you write your own C++ runtime.
One of the few things I tend to agree with Linus is his opinion about C++ http://thread.gmane.org/gmane.comp.version-control.git/57643/focus=57918
Besides this, if you really really want to use C++ you might want to have a look at http://www.caravan.net/ec2plus/ which describes Embedded C++, or better to say you should not use in C++ for embedded systems.
The big thing keeping us with using C++ for a long time was the VxWorks support for it, which truly sucked. That supposidly has gotten better on VxWorks 6 (yes, it's been out a while... good 'ole vendor lock-in and lack of company vision has kept us stuck on VxWorks 5.5).
So for us it's mostly a question of the environment. After that, C++ can obviously be just as good as C... it's a matter of people understanding what their tool does and how to use it. C++ may make it easier to write incredibly inefficient code, but that doesn't mean we have to succomb to it.
I am currently fighting a problem with exceptions in an embedded Linux application. We are trying to port software written for a different platform that seemed to support exceptions well, but the new compiler tools (a port of gcc) reports errors when creating the eh_frame. I was against using exceptions for this tool, but the developer reassured me that modern compilers would support it well.
My opinion is that there are some advantages to C++, but I would stay away from exceptions and the standard template library. We haven't had problems using virtual functions.
C++ is suitable for microcontrollers and devices without an OS. You just have to know the architecture of the system and be conscious of time and space constrains, especially when doing mission critical programming.
With C++ you can do abstraction which often leads to an increased footprint in the code. You do not want this when programming for a resource-limited machine such as an 8-bit MCU.
Generally, avoid:
Dynamic memory allocation because it represents uncertainty in timing
Overloading
RTTI because the memory cost is large
Exceptions because of the execution speed lowering
Be cautious with virtual functions as they have a resource cost of a vtable per class and one pointer to the vtable per object. Also, use const in place of #define.
As you move up to 16 and 32-bit MCUs, with 10s or 100s of MB RAM, heavier features like the ones mentioned above may be used.
So to round up, C++ is useful for embedded systems. A main benefit is that OOP can be useful when you want to abstract aspects of the microcontroller, for example UART or state machines. But you may want to avoid certain features all of the time and some of the features some of the time, depending on the target you are programming for.