Autotools: Including a prebuilt 3rd party library - c++

I'm currently working to upgrade a set of c++ binaries that each use their own set of Makefiles to something more modern based off of Autotools. However I can't figure out how to include a third party library (eg. the Oracle Instant Client) into the build/packaging process.
Is this something really simple that I've missed?
Edit to add more detail
My current build environment looks like the following:
/src
/lib
/libfoo
... source and header files
Makefile
/oci #Oracle Instant Client
... header and shared libraries
Makefile
/bin
/bar
... source and header files
Makefile
Makefile
/build
/bin
/lib
build.sh
Today the top level build.sh does the following steps:
Runs each lib's Makefile and copies the output to /build/lib
Runs each binary's Makefile and copied the output to /build/bin
Each Makefile has a set of hardcoded paths to the various sibling directories. Needless to say this has become a nightmare to maintain. I have started testing out autotools but where I am stuck is figuring out the equivalent to copying /src/lib/oci/*.so to /build/lib for compile time linking and bundling into a distribution.

I figured out how to make this happen.
First I switched to a non recursive make.
Next I made the following changes to configure.am as per this page http://www.openismus.com/documents/linux/using_libraries/using_libraries
AC_ARG_WITH([oci-include-path],
[AS_HELP_STRING([--with-oci-include-path],
[location of the oci headers, defaults to lib/oci])],
[OCI_CFLAGS="-$withval"],
[OCI_CFLAGS="-Ilib/oci"])
AC_SUBST([OCI_CFLAGS])
AC_ARG_WITH([oci-lib-path],
[AS_HELP_STRING([--with-oci-lib-path],
[location of the oci libraries, defaults to lib/oci])],
[OCI_LIBS="-L$withval -lclntsh -lnnz11"],
[OCI_LIBS='-L./lib/oci -lclntsh -lnnz11'])
AC_SUBST([OCI_LIBS])
In the Makefile.am you then use the following lines (assuming a binary named foo)
foo_CPPFLAGS = $(OCI_CFLAGS)
foo_LDADD = libnavycommon.la $(OCI_LIBS)
ocidir = $(libdir)
oci_DATA = lib/oci/libclntsh.so.11.1 \
lib/oci/libnnz11.so \
lib/oci/libocci.so.11.1 \
lib/oci/libociicus.so \
lib/oci/libocijdbc11.so

The autotools are not a package management system, and attempting to put that type of functionality in is a bad idea. Rather than incorporating the third party library into your distribution, you should simply have the configure script check for its existence and abort if the required library is not available. The onus is on the user to satisfy the dependency. You can then release a binary package that will allow the user to use the package management system to simplify dependency resolution.

Related

CMake with 3rd party libraries that need to be built along with the project

I am confused on the right way to get an external library integrated into my own Cmake project (This external project needs to be built along with my project, it's not installed separately, so we can't use find_library, or so I think)
Let's assume we have a project structure like this (simplified for this post):
my_proj/
--CMakeLists.txt
--src/
+---CMakeLists.txt
+---my_server.cpp
That is, we have a master CMakeLists.txt that basically sits at root and invokes CMakeLists for sub directories. Obviously, in this example, because its simplified, I'm not showing all the other files/directories.
I now want to include another C++ GitHub project in my build, which happens to be this C++ bycrypt implementation: https://github.com/trusch/libbcrypt
My goal:
While building my_server.cpp via its make process, I'd like to include the header files for bcrypt and link with its library.
What I've done so far:
- I added a git module for this external library at my project root:
[submodule "third_party/bcrypt"]
path = third_party/bcrypt
url = https://github.com/trusch/libbcrypt
So now, when I checkout my project and do a submodule update, it pulls down bcrypt to ${PROJ_ROOT}/third_party
Next up, I added this to my ROOT CMakeLists.txt
# Process subdirectories
add_subdirectory(third_party/bcrypt)
add_subdirectory(src/)
Great. I know see when I invoke cmake from root, it builds bcrypt inside third_party. And then it builds my src/ directory. The reason I do this is I assume this is the best way to make sure the bcrypt library is ready before my src directory is built.
Questions:
a) Now how do I correctly get the include header path and the library location of this built library into the CMakeLists.txt file inside src/ ? Should I be hardcoding #include "../third_party/bcrypt/include/bcrypt/bcrypt.h" into my_server.cpp and -L ../third_party/libcrypt.so into src/CMakeLists.txt or is there a better way? This is what I've done today and it works, but it looks odd
I have, in src/CMakeLists.txt
set(BCRYPT_LIB,"../third_party/bcrypt/libbcrypt.so")
target_link_libraries(my app ${MY_OTHERLIBS} ${BCRYPT_LIB})
b) Is my approach of relying on sequence of add_directory correct?
Thank you.
The best approach depends on what the bcrypt CMake files are providing you, but it sounds like you want to use find_package, rather than hard-coding the paths. Check out this answer, but there are a few different configurations for find_package: MODULE and CONFIG mode.
If bcrypt builds, and one of the following files gets created for you:
FindBcrypt.cmake
bcrypt-config.cmake
BcryptConfig.cmake
that might give you an idea for which find_package configuration to use. I suggest you check out the documentation for find_package, and look closely at how the search procedure is set up to determine how CMake is searching for bcrypt.

preferred cmake project structure

I would like to have the following structure A -> B -> C, where:
C is boilerplate code, wrappers for third-party libraries, very
basic code etc.
B is the common classes, functions and data
structures specific to the project's domain.
A is the project itself.
I would like to make it easy to reuse C or B(+C) in future in my other projects. In addition, I have the following requirements:
As all three projects are in-progress, I would like to have an ability to build C, C+B and C+B+A in one shot.
I would prefer the static linkage over dynamic, so that C and C+B would be static libraries, and C+B+A would be the executable
I would like to keep cmake lists and config files simple and clean. Examples which I found in the official wiki and over the internet are pretty big and monstrous.
It would be great if it won't require changing more than a couple of lines if I'd change the locations of A, B or C in the filesystem.
All these three components are using google-test, but I'm not sure if it is important for the project layout.
I am pretty new to cmake and I don't even understand is it better to write XXXConfig.cmake or FindXXX.cmake files. Also, I am not sure, how should I pass relative paths from subcomponent to the parent component using X_INCLUDE_DIRS.
First I have to admit that I agree with #Tsyvarev. Your CMake environment should fit to your processes/workflow and should take project sizes and team structure into account. Or generally speaking the environment CMake will be used in. And this tends to be - in a positive way - very alive.
So this part of your question is difficult to answer and I'll concentrate on the technical part:
CMake has to know the location of the dependencies - relative or absolute - by
having a monolithic source tree (the one you don't want anymore)
CMake share library with multiple executables
CMake: How to setup Source, Library and CMakeLists.txt dependencies?
a common directory location for includes/libraries/binaries
Custom Directory for CMake Library Output
cmake install not installing libraries on windows
getting the paths via config files/variable definitions
How can I get cmake to find my alternative boost installation?
How to add_custom_command() for the CMake build process itself?
using registration in or installation from a database provided on the host
Making cmake library accessible by other cmake packages automatically
cmake wont run build_command in ExternalProject_Add correctly
To keep your CMake files as simple as possible I would recommend to group your CMake code into separate dedicated files:
Prefer toolchain files over if(SomeCompiler) statements
Move common/repeating code parts as function() bodies into a shared CMake include file
Move complex non-target specific code parts into their own (CMake) script files
Example Code
Since you have specifically asked for the find_package() variant, taking Use CMake-enabled libraries in your CMake project and the things listed above:
MyCommonCode.cmake
cmake_policy(SET CMP0022 NEW)
function(my_export_target _target _include_dir)
file(
WRITE "${CMAKE_CURRENT_BINARY_DIR}/${_target}Config.cmake"
"
include(\"\$\{CMAKE_CURRENT_LIST_DIR\}/${_target}Targets.cmake\")
set_property(
TARGET ${_target}
APPEND PROPERTY
INTERFACE_INCLUDE_DIRECTORIES \"${_include_dir}\"
)
"
)
export(
TARGETS ${_target}
FILE "${CMAKE_CURRENT_BINARY_DIR}/${_target}Targets.cmake"
EXPORT_LINK_INTERFACE_LIBRARIES
)
export(PACKAGE ${_target})
endfunction(my_export_target)
C/CMakeLists.txt
include(MyCommonCode.cmake)
...
my_export_target(C "${CMAKE_CURRENT_SOURCE_DIR}/include")
B/CMakeLists.txt
include(MyCommonCode.cmake)
find_package(C REQUIRED)
...
target_link_libraries(B C)
my_export_target(B "${CMAKE_CURRENT_SOURCE_DIR}/include")
A/CMakeLists.txt
include(MyCommonCode.cmake)
find_package(B REQUIRED)
...
target_link_libraries(A B)
This keeps all 3 build environments separate, only sharing the relatively static MyCommonCode.cmake file. So in this approach I have so far not covered your first point, but would recommend the use of a external script to chain/trigger your build steps for A/B/C.

Why does qmake put all object (.o) files to one directory?

Let's say I have a Qt application where I have two classes with the same name in two different namespaces:
namespace namespace1
{
class SomeClass;
}
namespace namespace2
{
class SomeClass;
}
and I have a project directory structure according to it:
-->src/
-->namespace1/
-->someclass.cpp
-->namespace2/
-->someclass.cpp
When I compile the application with qmake, it puts all object (.o) files to one directory - so it creates someclass.o file first and then it rewrites it with the second someclass.o - which is a name collision so it is bad.
Why does qmake not take into account the directory structure of the source files and why does it not create something like namespace1_someclass.o and namespace2_someclass.o?
Yes, I can put my classes to one directory and name them namespace1_someclass.cpp and namespace2_someclass.cpp and there will be no name collisions, but this causes little inconvenience while looking at the source files in the project explorer in Qt Creator because when there are lot of source files in the project, it is much less readable than if there was the directory structure which I can expand or collapse.
One more extreme is to have the directory structure like this:
-->src/
-->namespace1/
-->namespace1_someclass.cpp
-->namespace2/
-->namespace2_someclass.cpp
which solves name collision but it redundantly duplicates the namespace names - and therefore again less readable.
Why does qmake not have at least an option to put the object files to the directory structure according to the source files? Do creators of Qt not see that this is an important feature?
And one more thing - you could recommend me to use cmake tool instead of qmake but I see the use of cmake much much much more difficult than qmake and qmake does its job excellent for me so far - except object files placement.
You can actually put object files alongside source files by using:
CONFIG += object_parallel_to_source
or
CONFIG += object_with_source
depending on your qmake version.
Source: https://wiki.qt.io/Undocumented_QMake#Config_features
Depending on what you are trying to build, you may be able to use the subdirs template in qmake to do this. You'll need to put a project file in each of your namespace directories, and in this you can specify different output directories for your object files.
-->src/main.pro
-->namespace1/n1.pro
-->someclass.cpp
-->namespace2/n2.pro
-->someclass.cpp
main.pro:
TEMPLATE = subdirs
SUBDIRS = namespace1 namespace2
n1.pro and n2.pro:
include("../common.pri")
OBJECTS_DIR = $${PWD}
TARGET = some_target
TEMPLATE = some_qmake_template
common.pri: configurations common to both projects.
Concerning your fears that CMake might be too complicated: I have been working on projects using both build systems. While I agree that qmake is probably easier to begin with, CMake definitely has its merits, too:
It makes out-of-source builds very easy. Just execute cmake <Path to source> in your build directory. This is great when your sources are on an NFS share, for example, and you want the object files to be placed on a local file system.
Its support for finding additional libraries is very powerful. Lots of FindXXX.cmake files are already shipped with your CMake distribution, making the inclusion of "heavy" libraries such as OpenCV as easy as FIND_PACKAGE(OpenCV REQUIRED).
It even has out-of-the-box support for Qt. In fact, I use it for a larger software project where Qt is used for the GUI part. We decided on CMake because we required platform independence and multiple libraries which we could not easily add via qmake.
All in all, use the build system you are comfortable with (as long as your build system does not inhibit your software development).

The right way to structure my c++ project with cmake?

I have been struggling with this for quite a while, and my adventures with cmake have only resulted in hackish solutions that I am pretty sure are not correct.
I created a library that consists of several files, as follows:
-libfolder
-codepart1folder
-CMakeLists.txt
-codepart1.cpp
-codepart1.hpp
-codepart2folder
-codepart3folder
-lib.cpp
-lib.hpp
-CMakeLists.txt
I wrote a CMakeLists file to compile the library (after some experimentation), and I can generate a lib.a file. Now I would like to include this code as a library in other projects, and access it through the interface in lib.hpp. What is the best way to do this, in terms of directory structure, and what I need to put into CMakeLists.txt in my root project?
My current attempt has been to add -libfolder as a subfolder to my current project, and add the commands:
include_directories(${PROJECT_SOURCE_DIR}/libfolder)
link_directories(${PROJECT_BINARY_DIR}/libfolder)
add_subdirectory(libfolder)
target_link_libraries(project lib)
When I run make, the library compiles fine, but when project.cpp compiles, it complains that it cannot find codepart1.hpp (which is included in lib.hpp, included from project.cpp).
I suspect that this is the wrong way about doing this, but I cannot wade through the CMake documentation and find a good tutorial on setting up projects like this. Please help, CMake gurus!
The clean way to import one CMake project into another is via the find_package command. The package declaration is done by using the export command. An advantage of using find_package is that it eliminates the need to hard-code paths to the package's files.
Regarding the missing hpp file, you didn't include codepart1folder, so it's not on the include path.
Ok, so after consulting a coworker of mine who is a CMake guru, it seems CMake does not have support for what I am trying to do, leaving one with 3 options:
Add all of the dependencies to the parent projects CMakeLists.txt - not very clean, but it will get the thing to work. You'll have to do this for every project you add the code to, and go back and fix things if your library changes.
clean up your library headers. This is done through some compiler hackery. The idea is to forward-declare every class, and use only pointers or boost::shared_ptr, and then include the dependencies only in the cpp file. That way you can build the cpp file using all the findpackage stuff, and you get the bonus of being able to use the lib by only including the header and linking to the library.
Look into build systems. Having portable code and fast code compilation with complex dependencies is not a solved problem! From my investigations it turned out to be quite complicated. I ended up adopting my coworkers build system which he created himself in cmake, using things he picked up from Google.
Looking at your post you don't seem to add 'codepart1folder' to the includes anywhere. How are you including codepart1.hpp as:
#include <codepart1.hpp>
#include "codepart1folder/codepart1.hpp"
I don't think there is a standard accepted way to structure cmake projects. I've looked at a bunch of cmake repos and they tend to have differences. Personally I do the following:
-project
CMakeLists.txt
-build
-cmake
OptionalCmakeModule.cmake
-src
-Main
Main.cpp
Main.hpp
-DataStructs
SomeTree.hpp
SomeObject.hpp
-Debug
Debug.hpp
-UI
Window.hpp
Window.cpp
Basically that dumps all the source code into 1 directory, then you perform an out of source build with: 'mkdir build && cd build && cmake .. && make' in the projects root folder.
If you have separate libs as part of your project, then you might want a separate libs directory with another subfolder for your specific lib.
I have some of my repos on: https://github.com/dcbishop/ if you want to look at the CMakeLists.txt files.
The main problems with my project structure are that I use the FILE_GLOB which is apparently the 'wrong' way to do things (if you add files after running 'cmake ..' then they won't be picked up hen you do a 'make'). I haven't figured out what the 'right' way to do it is (from what I can see it involves keeping a separate list of files) I also only use 1 CMakeLists.txt file.
Some projects also choose to separate their cpp and hpp files into separate directories. So you would have an include and src folders (at least for the hpp files that are intended to be used externally). I think that would mainly be for projects that are mainly large libraries. Would also make installing header files much easier.
You are probably missing
include_directories(${PROJECT_SOURCE_DIR}/libfolder/codepart1folder)
In such a case you might want to set( CMAKE_INCLUDE_CURRENT_DIR on) to add all folders to the include directory path variable.
Check cmake's output on the command line whether the correct include folders are set or not. Additionally you can always use message() as "print debugging" for cmake variables.
In case of include directories however you need to read the directory property to see what is actually in the include directories.
get_property(inc_dirs DIRECTORY PROPERTY INCLUDE_DIRECTORIES)
message("inc_dirs = ${inc_dirs}")
I hope this helps you figuring out what is missing.
Edit
I just saw your comment about added codepart1folder in the libfolder. It is only available in the libfolder's include_directory path and not propagated to the root folder.
Since the include codepart1.hpp is present in the lib.hpp however you need to have it also available in the project path otherwise you will get missing declaration errors when you build your project.

Include a (header-only) library in an autotools project

I want to integrate a header-only C++ library in my Autotools project. Since the library uses Autoconf and Automake, I use AC_CONFIG_SUBDIRS in configure.ac and added the library dir to the SUBDIRS = line in Makefile.am.
My question is: how do I prevent the header library from being installed by make install? I'm building a single binary, so my users don't need these headers.
I'd prefer not to tamper with the library, so I can fetch upgrade by just untarring the new version.
Here is an idea.
Move all the third-party libraries you do not want to see installed into a subdirectory called noinst/. So for instance if you want to ship your project with something like Boost, unpack it into the directory noinst/boost/. Use AC_CONFIG_SUBDIRS([noinst/boost]). Inside noinst/Makefile.am, do something like this:
SUBDIRS = boost
# Override Automake's installation targets with the command ":" that does nothing.
install:; #:
install-exec:; #:
install-data:; #:
uninstall:; #:
The effect is that whenever some of the recursive "make install*" or "make uninstall" commands are run from the top-level directory, the recursion will stop in noinst/ and not visit its subdirectories. Other recursive commands (like "make", "make clean" or "make dist") will still recurse into the subdirectories.
You could of course override install: and friends directly into the third-party package, and avoid the extra noinst/ directory. But if you are like me, you don't want to tamper with third-party packages to ease their update.
Also a nice property of the above setup is that if someone goes into noinst/boost/ and decide to run make install, it will work. It just does not occur by default when they install your package.
just came across a similar problem and found the solution in the automake manual:
noinst_HEADERS would be the right variable to use in a directory containing only headers and no associated library or program
Andreas
Don't use SUBDIRS then. The following hack may work:
all-local:
${MAKE} -C thatlib all
Of course it would be best if the library remained in its own directory outside of your project, and you just point to it via CFLAGS/LIBS flags.