How to read the standard istream buffer in c++? - c++

I have the following problem. I have to implement a class that has an attribute that is a char pointer meant to point to the object's "code", as follows:
class foo{
private:
char* cod;
...
public:
foo();
void getVal();
...
}
So on, so forth. getVal() is a method that takes the code from the standard istream and fills in all the information, including the code. The thing is, the "code" that identifies the object can't be longer than a certain number of characters. This has to be done without using customized buffers for the method getVal(), so I can't do the following:
//suppose the maximum number of characters is 50
void foo::getVal()
{
char buffer[100];
cin >> buffer;
if (strlen(buffer) > 50) //I'm not sure this would work considering how the stream
of characters would be copied to buffer and how strlen
works, but suppose this tells me how long the stream of
characters was.
{
throw "Exception";
}
...
}
This is forbidden. I also can't use a customized istream, nor the boost library.
I thought I could find the place where istream keeps its information rather easily, but I can't find it. All I've found were mentions to other types of stream.
Can somebody tell me if this can be done or where the stream keeps its buffered information?
Thanks

yes using strlen would work definitely ..you can write a sample program
int main()
{
char buffer[10];
std::cout << "enter buffer:" ;
std::cin >>buffer;
if(strlen(buffer)>6)
std::cout << "size > 6";
getch();
}
for inputs greater than size 6 characters it will display size >6

uhm .... >> reads up to the first blank, while strlen counts up to the first null. They can be mixed if you know for sure no blanks are in the middle of string you're going to read and that there are no more than 100 consecutive characted. If not, you will overrun the buffer before throwing.
Also, accessing the buffer does not grant all the string to be already there (the string can go past the buffer space, requiring to partially read and refill the buffer...)
If blanks are separator, why not just read into an std::string, and react to its final state? All the dynamics above are already handled inside >> for std::string.
[EDIT after the comments below]
The only way to store a sequence of unknown size, is to dynamically allocate the space and make it grow as it is required to grow. This is, no more - no less, what sting and vector do.
Whether you use them or write your own code to allocate and reallocate where more space is required, doesn't change the substance.
I'm start thinking the only reason of those requirements is to see your capability in writing your own string class. So ... just write it:
declare a class holding a pointer a size and a capacity, allocate some space, track how much you store, and when no store is available, allocate another wider store, copy the old, destroy it, and adjust the data member accordingly.
Accessing directly the file buffer is not the way, since you don't control how the file buffer is filled in.

An istream uses a streambuf.
I find that www.cppreference.com is a pretty good place for quick C++ references. You can go there to see how to use a streambuf or its derivative filebuf.

Related

Why is the last character of character array is getting excluded?

#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
cin.ignore();
char arr[n+1];
cin.getline(arr,n);
cin.ignore();
cout<<arr;
return 0;
}
Input:
11
of the year
Output:
of the yea
I'm already providing n+1 for the null character. Then why is the last character getting excluded?
You allocated n+1 characters for your array, but then you told getline that there were only n characters available. It should be like this:
int n;
cin>>n;
cin.ignore();
char arr[n+1];
cin.getline(arr,n+1); // change here
cin.ignore();
cout<<arr;
Per cppreference.com:
https://en.cppreference.com/w/cpp/io/basic_istream/getline
Behaves as UnformattedInputFunction. After constructing and checking the sentry object, extracts characters from *this and stores them in successive locations of the array whose first element is pointed to by s, until any of the following occurs (tested in the order shown):
end of file condition occurs in the input sequence (in which case setstate(eofbit) is executed)
the next available character c is the delimiter, as determined by Traits::eq(c, delim). The delimiter is extracted (unlike basic_istream::get()) and counted towards gcount(), but is not stored.
count-1 characters have been extracted (in which case setstate(failbit) is executed).
If the function extracts no characters (e.g. if count < 1), setstate(failbit)is executed.
In any case, if count > 0, it then stores a null character CharT() into the next successive location of the array and updates gcount().
In your case, n=11. You are allocating n+1 (12) chars, but telling getline() that only n (11) chars are available, so it reads only n-1 (10) chars into the array and then terminates the array with '\0' in the 11th char. That is why you are missing the last character.
of the year
^
10th char, stops here
You need to +1 when calling getline(), to match your actual array size:
cin.getline(arr,n+1);
john's answer should fix your issue. Variable-length arrays (your char arr[n+1]) are not part of the C++ standard, for justified reasons. Yet I've taken a few hours of my time to go way out of question's scope and create the...
Student's guide to C++ I/O
...and I/O in general, with an emphasis on the I part. Fear not, do it the C++ way! The following snippets should be compiled with a standard-conforming C++ compiler.
C++ I/O & standard library
Textual input
This is the recommended way of reading UTF-8 encoded strings in C++, the most widespread text encoding. We will use std::string for storage, which is the de-facto way for holding UTF-8 encoded strings, and std::getline for the reading itself.
#include <iostream> // std::cin, std::cout, std::ws
#include <string> // std::string, std::getline
int main() {
int size;
// std::ws ignores all whitespace in the stream,
// until the first non-whitespace character.
// it's prettier and handles cases a simple .ignore() does not.
std::cin >> size >> std::ws;
std::string input;
std::getline(std::cin, input);
// This condition will most certainly be true (output will be 1).
std::cout << (size == input.size()) << '\n';
}
std::string is dynamically allocated, or, as you may hear, on the heap. This is a broad subject, so feel free to venture on your own, from this given starting point! How does this help us? We can store strings of sizes unknown ahead of time on the heap, because we can always reallocate a bigger buffer! std::getline allocates and reallocates as it reads the input until newline is reached, so you can read without knowing a size beforehand. Your size variable will most probably be equal with the size of the string under the assumption that this is a school exercise where the input length is provided as you're probably not taught of dynamic memory. For good reason, though - it's complex and would needlessly distract from the actual subject (algorithms, data structures etc.). Good to keep in mind: std::strings, unlike C-style strings, are not null terminated, but you can get a null-terminated C-style string from an std::string by calling the .c_str() method.
Binary data
What's binary data? Everything that's not text: images, videos, music, 2003 MS Word documents (the .doc ones, wait 'til you see what .docx is) and many others. It's customary to store binary as raw bytes, which is a fancy way to say numbers. unsigned char is the C/C++ type used to represent these raw bytes (C++17 introduces std::byte for this purpose. To work with data from binary input we need to store it somewhere in memory - either on the stack, or on the heap. We could store the whole input at once, but binary files are considered too large for this (and, really, are - think about the size of a movie!), so we usually read it in chunks - that means, we read only a finite part of it at a time (say 256 characters, that's our buffer), and we keep reading until we reach the end of the input (usually called end-of-file or, short, EOF). As a rule of thumb, when a buffer is small and static (doesn't need to be resized, as our string above), we can store it on the stack. If any of those conditions is not met, it goes on the heap. We should note that the notions of small and large are quite context dependent - compiler, OS, hardware, runtime environment (see this thread on stack size limits and embedded systems). The buffer size you'll choose is also task-specific, so there's no rule here, too. Let's see some code now!
#include <array> // std::array
#include <fstream> // std::ifstream, std::ofstream
int main() {
// We open this file in binary mode.
// The default mode may modify the input.
std::ifstream input{"some_image.jpg", std::ios::binary};
// 256 is our buffer size, unsigned char is the array type.
// This is the C++ way of `unsigned char buffer[256]`.
std::array<unsigned char, 256> buffer;
while (input.read(buffer.data(), buffer.size())) {
// Buffer is filled, do something with it
}
// At this point, either EOF is reached or an error occurred.
if (input.eof()) {
// Less characters than the buffer's size have been read.
// .gcount() returns the number of characters read by
// the last operation.
const std::streamsize chunk_size = input.gcount();
// Do something with these characters, as in the loop.
// Valid range to access in the buffer is [0, chunk_size).
// chunk_size can be 0, too. In that case, there is no more data
// to handle.
} else {
// Some other failure, handle error.
}
}
This snippet is reading through a file using a small, stack-allocated buffer of 256 bytes. std::array makes usage convenient and safe with its methods - read the linked docs! If we want to use a large buffer (say, 16MB), we replace the std::array with an std::vector:
std::vector buffer(1 << 24); // 1 << 24 gives 16MB in bytes
Rest is the same. You could also use std::string here, too, as std::string does not imply/force UTF-8 encoding of input. It's useful to have a convention that easily differentiates between binary and text data, in code.
Something to note is that reading in smaller chunks uses less space, but takes more time - taking bytes from a file involves making OS system calls and moving disks or electrons, when reading from a hard drive or an SSD, respectively. C++'s fstream objects already do buffering for you to speed up reads, which is usually a much-needed optimization. You'll know if this affects you.
Another thing to note is the EOF and error handling, using the .eof() method. We have omitted error handling in the textual input retrieval, but here we are forced into doing it, if we don't want to lose data. When EOF is reached, usually less bytes than the buffer size have been read, so we need a way to know how much of the buffer was filled with data. This is what .gcount() tells us. Depending on the program you're making, you may deem the EOF error as "unexpected" if the buffer is partially filled (.gcount() returns a non-0 value) - for example, the data read is incomplete, according to the rules it was assumed to be created after, or in other words, the end of file was reached before the data was supposed to end. Other than that, EOF is a condition that all files are in after being fully read.
C-style I/O
This may look closer to what's taught in school. As we've explained the general concepts above, this section will be richer in coding and explanations of code. We still use C++ as a language, so the C++ version of the C headers and the std namespace will be used - to have the code that follows work in a C compiler, replace the <csomething> headers with <something.h> and remove the std:: namespace prefix from types and functions. Let's dive into it!
Textual input
The equivalent of a C++ stream (std::cin, std::fstream etc.) in C is the std::FILE. FILEs are buffered by default, as are C++ streams. We'll use std::fscanf for reading the size of the input, which is just scanf but it takes as parameter the stream you read from, and std::fgets for reading the text line.
#include <cstdio> // std::FILE, std::fscanf, std::fgets, stdin
#include <cstring> // std::strcspn
// discard_whitespace does what std::ws did above.
// It consumes all whitespace before a non-whitespace
// character from stream f.
void discard_whitespace(std::FILE* f) {
char discard;
// The leading space in the format string
// tells fscanf to consume all whitespace.
std::fscanf(f, " %c", &discard);
}
int main() {
int size;
// stdin is a macro, doesn't have a namespace,
// hence no std:: prefix.
std::fscanf(stdin, "%d", &size);
// fscanf, like std::cin, doesn't consume whitespace
discard_whitespace(stdin);
// Your school exercise will probably have a size limit for the input.
// We consider it to be 256.
const int SIZE_UPPER_BOUND = 256;
// We add some extra bytes so the maximum length input can be accomodated.
// 1 is added for the null terminator of C-style strings.
// The other 2 is because `fgets` will also read the newline,
// which can be \n or \r\n, depending on OS. See explanation after code.
char input[SIZE_UPPER_BOUND + 3];
// The actual read - sizeof gets the size of our input buffer,
// we don't have to write it twice.
std::fgets(input, sizeof input, stdin);
// fgets also reads the newline, unlike `std::getline` or
// `std::cin.getline` - we have to remove it ourselves.
input[std::strcspn(input, "\r\n")] = '\0';
// This condition will be true, as in the C++ example.
std::fprintf(stdin, "%d\n", std::strlen(input) == size);
}
Let's unpack that newline removal. std::strcspn finds the first position of any of the given characters in the input. We provide both \r and \n, to support UNIX (\n) and Windows (\r\n) newline terminators - yeah, they're different, see Wikipedia, on "Newline". By adding the null terminator, '\0', we move the ending of the string where the newline was, basically "removing" the newline. If this is a school assignment, we can assume input is correct, so we could have used size + 1 instead of std::strcspn to remove the newline:
input[size + 1] = '\0';
This doesn't work when we don't know the input size or the input may be invalid.
As an optimization trick, observe that std::strcspn returns the line length, in this case. When you don't know the size, but you need it for later, you can save the result of std::strcspn in a variable before, and then use it instead of std::strlen:
// std::size_t is an unsigned integral type, used to represent
// array sizes and indexes in C/C++
const std::size_t input_size = std::strcspn(input, "\r\n");
input[input_size] = '\0';
You'll see some people use 0 or NULL for the terminator. I recommend against it - unlike the \0 literal, that is of char type, the other two variants are implicitly casted to char. If you read the linked documentation, you'll realize NULL is even incorrect, according to the spec, as it's meant to be used in contexts that require pointers only.
An alternative method to fgets is fscanf, again. Thread carefully, though - while a simple %s may do it, it makes your code vulnerable to buffer overflow exploits. See this StackOverflow thread on disadvantages of scanf, too. Let's see the (safe) code:
std::fscanf(stdin, "%256[^\r\n]s", input);
That number limits the input size to our SIZE_UPPER_BOUND, and the [^\r\n] tells fscanf to read all characters up to \r or \n. With this method you can remove the discard_whitespace call, as fscanf with the %s verb consumes leading whitespace. A downside to fscanf is that you have to keep the size limit in the input string and the buffer size in sync - you have no way to specify the input size dynamically other than building the format string dynamically, which is overkill for a school assignment). This is a problem in more sizable codebases, but for a one-file, one-time school assignment it's not a big deal, so you may prefer fscanf over fgets, as it's less work. fscanf doesn't read the newline in the buffer, too.
Binary data
The equivalent of C++'s std::cin.read in C world is std::fread. Code will resemble its C++ counterpart:
#include <cstdio>
int main() {
// The second parameter is the file access mode.
// In this case, it is read (r) binary (b).
std::FILE* f = std::fopen("some_image.jpg", "rb");
unsigned char buffer[256];
std::size_t chunk_size;
while (chunk_size = std::fread(buffer, sizeof buffer[0], sizeof buffer, f)) {
// chunk_size == sizeof buffer, do something with the buffer
}
if (std::feof(f)) {
// chunk_size != sizeof buffer, do something with buffer
// or handle as error
} else {
// an error occurred, handle it
}
// We need to close the file, unlike in C++, where it is closed automatically.
std::fclose(f);
}
The arguments to std::fread are hairy: read the documentation. Everything else looks very similar to the C++ way, from the loop to the error handling. Why? Because it's literally the same thing - we're just using different (standard) libraries. Another similarity is that C I/O is also buffered by default, just like C++'s. What's different is the line at the end - the call to std::fclose. We're not doing anything similar in the C++ code, right? No. Remember that C++ classes have constructors and destructors, functions that are automatically called at the beginning, respectively at the end of a variable's lifetime. These two allow us to implement the RAII technique, which will do the resource management automatically (opening the file in the constructor, closing it in the destructor). RAII is used inside std::string and std::vector (and other containers, smart pointers & others). In other words, the destructor of std::ifstream closes the file at the end of main(), just as we are doing here, manually.
Hybrid approach (??)
Would you ever want to combine the two? So it seems. Let's talk drawbacks:
The C++ I/O library, due to the way it's built, takes more care to use in a performant manner compared to C's (virtual function calls and extra function calls in general, especially when using << and >> operators & stream manipulators, as each of these is a function call, compared to a single plain function call/operation with the C library). See this StackOverflow thread on i/ostream speed, too. The C++ library is also more verbose, especially in the case of outputting (ever heard of the "chevrone hell"?)
The C I/O library is easy to use improperly/unsafely, the terse, shorthand namings make code difficult to follow, and output cannot be extended to support custom types (this is a problem when using C-style I/O in C++). It also takes great care to handle dynamic buffers correctly, given that the only way of managing heap memory in C is malloc and free.
Some schools may crucify you if any trace of std::string is left in sight (or so I've heard)
Using C-style types (char[N] instead of std::array<char, N>, for example), is easier - no headers to include, as the types are builtin primitives and less to type. May be preferred in short, throwaway programs like algorithmic exercises at school.
With these in mind, we can take a look at how to conveniently combine the two when reading text and binary!
Textual input
We will take advantage of the terseness of C-style types and the ease of use of C++'s I/O library:
#include <iostream>
int main() {
int size;
std::cin >> size >> std::ws;
const int SIZE_UPPER_BOUND = 256;
char input[SIZE_UPPER_BOUND + 1];
std::cin.getline(input, sizeof input);
// Input done, solve the problem.
}
Teachers don't have to scratch their head at the presence of std::string and std::getline and all the standard library shenanigans you start using after diving in this rabbit hole. You, the programmer, don't have to clean up newline endings and memorize arcane format specifiers just to read a string and an int. Focus on code and solve problems without having to debug the input reading logic, ever - it just works!
Binary data
The convoluted hierarchical tree of C++'s I/O library types scares you, the clean assembly output enjoyer, just like Linus Torvalds. You're still somehow afraid to manually manage memory, so you choose this solution:
#include <cstdio>
#include <vector>
int main() {
// The second parameter is the file access mode.
// In this case, it is read (r) binary (b).
std::FILE* f = std::fopen("some_image.jpg", "rb");
std::vector<unsigned char> buffer(1 << 24);
std::size_t chunk_size;
while (chunk_size = std::fread(buffer.data(), sizeof buffer[0], buffer.size(), f)) {
// use the buffer
}
if (std::feof(f)) {
// handle EOF
} else {
// handle error
}
std::fclose(f);
}
Weird choice, given that you still manage the file's lifetime manually. While this may not be the best example, using C++ RAII containers together with C libraries is not uncommon - memory safety is crucial.
Trivia
as usual, weigh your decision of using namespace std;
Cool things you won't need:
speed up C++ I/O using a single line at the beginning of the program (but be careful)
disable C I/O buffering
disable C++ I/O buffering
Conclusion
I/O is the crowded junction of fundamental CS concepts, hardware & software inner workings and C++'s features and quirks. Take in what you can at a time & focus on what matters, and make sure you're building on sturdy fundamentals.

Output info from 2 struct arrays into one file

I apologize if this doesn't make sense. I Am not sure what to google.
Lets say I have two arrays
string a_1[16];
string a_2[20];
I need to output these to a file with a function, first, a_1[0] to a_1[n].
Then reads in the a_2's.
It's also possible to run the function again to add in more a_1's and a_2's to the output file.
so the format will be:
//output_file.txt
a_1[0].....a_1[n]
a_2[0].....a_2[M]
a_1[n+1]...a_1[16]
a_2[M+1]...a_2[20]
my question is. Is there a way to read output_file.txt back so that it will read in all of the a_1's to be in order, a_1[0] to a_1[16].
and then input a_2[0] to a_2[20].
maybe just put "something" between each group so that when "something" is read, it knows to stop reading a_1's and switch to reading in for a_2....
What the OP calls "Something" is typically called a Sentinel or Canary value. To be used as a sentinel, you have to find a pattern that cannot exist in the data stream. This is hard because pretty much anything can be in a string. If you use, say, "XxXxXx" as your sentinel, then you have to be very careful that it is never written to the file.
The concept of Escape Characters (Look it up) can be used here, but a better approach could be to store a count of stored strings at the beginning of the file. Consider an output file that looks like
4
string a1_1
string a1_2
string a1_3
string a1_4
2
string a2_1
string a2_2
Read the cont, four, and then read count strings, then read for the next count and then read count more strings
OK, so you're thinking his sucks. I can't just insert a new string into a1 without also changing the number at the front of the file.
Well, good luck with inserting data into the middle of a file without totally smurfing up the file. It can be done, but only after moving everything after the insertion over by the size of the insertion, and that's not as trivial as it sounds. At the point in a programming career where this is the sort of task to which you are assigned, and you have to ask for help, you are pretty much doomed to reading the file into memory, inserting the new values, and writing the file back out again, so just go with it.
So what does this look like in code? First we ditch the arrays in favour of std::vector. Vectors are smart. They grow to fit. They know how much stuff is in them. They look after themselves so there is no unnecessary new and delete nonsense. You gotta be stupid not to use them.
Reading:
std::ifstream infile(file name);
std::vector<std::string> input;
int count;
if (infile >> count)
{
infile.ignore(); // discard end of line
std::string line;
while (input.size() < count && getline(infile, line))
{
input.push_back(line);
}
if (input.size() != count)
{
//handle bad file
}
}
else
{
// handle bad file
}
and writing
std::ofstream outfile(file name);
if(outfile << output.size())
{
for (std::string & out: output)
{
if (!outfile << out << '\n')
{
// handle write error
}
}
}
else
{
// handle write error
}
But this looks like homework, so OP's probably not allowed to use one. In that case, the logic is the same, but you have to
std::unique_ptr<std::string[]> inarray(new std::string[count]);
or
std::string * inarray = new std::string[count];
to allocate storage for the string you are reading in. The second one looks like less work than the first. Looks are deceiving. The first one looks after your memory for you. The second requires at least one delete[] in your code at the right pace to put the memory away. Miss it and you have a memory leak.
You also need to have a variable keeping track of the size of the array, because pointers don't know how big whatever they are pointing at is. This makes the write for loop less convenient.

How to clear the buffer in a (char*)?

In my program I have a char* buffer which is being used inside a thread sequence which carries text from one function into another, but the text is different through the run-time in my program. The question that I am asking is, which function can I use to clear the previously used text out of the char* ?
For example, I have the following code:
int GameUtils::GetText(char *text)
{
for(int i=0; i<LINES_OF_TEXT; i++)
{
if(line[i][0]!=0)
{
strcpy(text, line[i]);
MessageBox(0, text, 0, 0);
line[i][0]=0;
return 1;
}
}
return 0;
}
line is defined as such: char GameUtils::line[2][32];
When the messagebox is output on the screen (while code is executed). I get some random junk characters in the text field. Can anyone tell me why this is?
Also! Note that line is assigned as stated in my previous question.
The function which assigns line is:
for (int x=0; x<((int)(strlen(szLine)+1)); x++)
{
if (szLine[x]==' ' || szLine[x]=='\0')
{
m=x;
for (y=0, z=n; z<m; y++, z++)
{
line[w][y]=szLine[z];
}
n=x+1;
w++;
}
}
The above function simply takes a parameter szLine[512] which is passed from my game interface and splits up the line assorting each space as a new parameter.
As an example, if inside the game the user states the line:
/msg <player> <message>
The function would assign each separate word to the line variable, respectively.
Such that, after the function is finished. line would look like
line[0] = /msg
line[1] = <player>
line[2] = <message>
So my question overall is as follows. Am I taking the cleaniest/most appropriate approach at this problem? If not, can anyone show me a better way to approach this problem? Also, can anyone explain to me why I am getting junk characters in the text parameter when the messagebox executes?
EDIT
After viewing the preview of my submitted question; I noticed I have defined char GameUtils::line[2][32] as a 2-dimensional array. I had done this earlier to test. I now understand this could have been the cause to my problem. Can anyone suggest me a replacement for this if I don't know the exact amount of parameters that could be inputted into this variable. The user can issue different requests each time like "/help ", "/msg ", "/whois ", "/create "...
When memory is allocated it isn't zeroed first (at least when using malloc, calloc - however, does zero memory first).
To clear a buffer in C (rather than C++), you have a few options:
Allocate the buffer using calloc instead of malloc.
Use Win32's ZeroMemory function
Use memset, like so: memset( buffer, 0x00, BUFFER_SIZE );
However you're clearly using C++, so you should use the standard library and C++ idioms rather than C-style things, that means using std::string instead of char*, and if you have to use buffers directly then the C++ way of zeroing (or filling) an array or buffer is std::fill.
First off, I would avoid using double dimensional arrays if you can avoid it. Maybe look into std::string:
http://www.cplusplus.com/reference/string/string/
As for why a char array might have "random junk" in it, when you allocate a buffer in C++, it always has data in it. You have to manually set the data to 0 if you want it to be empty. So when you first allocate an array, it might be a idea to zero out all the values first.

Is it possible to use an std::string for read()?

Is it possible to use an std::string for read() ?
Example :
std::string data;
read(fd, data, 42);
Normaly, we have to use char* but is it possible to directly use a std::string ? (I prefer don't create a char* for store the result)
Thank's
Well, you'll need to create a char* somehow, since that's what the
function requires. (BTW: you are talking about the Posix function
read, aren't you, and not std::istream::read?) The problem isn't
the char*, it's what the char* points to (which I suspect is what
you actually meant).
The simplest and usual solution here would be to use a local array:
char buffer[43];
int len = read(fd, buffer, 42);
if ( len < 0 ) {
// read error...
} else if ( len == 0 ) {
// eof...
} else {
std::string data(buffer, len);
}
If you want to capture directly into an std::string, however, this is
possible (although not necessarily a good idea):
std::string data;
data.resize( 42 );
int len = read( fd, &data[0], data.size() );
// error handling as above...
data.resize( len ); // If no error...
This avoids the copy, but quite frankly... The copy is insignificant
compared to the time necessary for the actual read and for the
allocation of the memory in the string. This also has the (probably
negligible) disadvantage of the resulting string having an actual buffer
of 42 bytes (rounded up to whatever), rather than just the minimum
necessary for the characters actually read.
(And since people sometimes raise the issue, with regards to the
contiguity of the memory in std:;string: this was an issue ten or more
years ago. The original specifications for std::string were designed
expressedly to allow non-contiguous implementations, along the lines of
the then popular rope class. In practice, no implementor found this
to be useful, and people did start assuming contiguity. At which point,
the standards committee decided to align the standard with existing
practice, and require contiguity. So... no implementation has ever not
been contiguous, and no future implementation will forego contiguity,
given the requirements in C++11.)
No, you cannot and you should not. Usually, std::string implementations internally store other information such as the size of the allocated memory and the length of the actual string. C++ documentation explicitly states that modifying values returned by c_str() or data() results in undefined behaviour.
If the read function requires a char *, then no. You could use the address of the first element of a std::vector of char as long as it's been resized first. I don't think old (pre C++11) strings are guarenteed to have contiguous memory otherwise you could do something similar with the string.
No, but
std::string data;
cin >> data;
works just fine. If you really want the behaviour of read(2), then you need to allocate and manage your own buffer of chars.
Because read() is intended for raw data input, std::string is actually a bad choice, because std::string handles text. std::vector seems like the right choice to handle raw data.
Using std::getline from the strings library - see cplusplus.com - can read from an stream and write directly into a string object. Example (again ripped from cplusplus.com - 1st hit on google for getline):
int main () {
string str;
cout << "Please enter full name: ";
getline (cin,str);
cout << "Thank you, " << str << ".\n";
}
So will work when reading from stdin (cin) and from a file (ifstream).

Reading a fixed number of chars with << on an istream

I was trying out a few file reading strategies in C++ and I came across this.
ifstream ifsw1("c:\\trys\\str3.txt");
char ifsw1w[3];
do {
ifsw1 >> ifsw1w;
if (ifsw1.eof())
break;
cout << ifsw1w << flush << endl;
} while (1);
ifsw1.close();
The content of the file were
firstfirst firstsecond
secondfirst secondsecond
When I see the output it is printed as
firstfirst
firstsecond
secondfirst
I expected the output to be something like:
fir
stf
irs
tfi
.....
Moreover I see that "secondsecond" has not been printed. I guess that the last read has met the eof and the cout might not have been executed. But the first behavior is not understandable.
The extraction operator has no concept of the size of the ifsw1w variable, and (by default) is going to extract characters until it hits whitespace, null, or eof. These are likely being stored in the memory locations after your ifsw1w variable, which would cause bad bugs if you had additional variables defined.
To get the desired behavior, you should be able to use
ifsw1.width(3);
to limit the number of characters to extract.
It's virtually impossible to use std::istream& operator>>(std::istream&, char *) safely -- it's like gets in this regard -- there's no way for you to specify the buffer size. The stream just writes to your buffer, going off the end. (Your example above invokes undefined behavior). Either use the overloads accepting a std::string, or use std::getline(std::istream&, std::string).
Checking eof() is incorrect. You want fail() instead. You really don't care if the stream is at the end of the file, you care only if you have failed to extract information.
For something like this you're probably better off just reading the whole file into a string and using string operations from that point. You can do that using a stringstream:
#include <string> //For string
#include <sstream> //For stringstream
#include <iostream> //As before
std::ifstream myFile(...);
std::stringstream ss;
ss << myFile.rdbuf(); //Read the file into the stringstream.
std::string fileContents = ss.str(); //Now you have a string, no loops!
You're trashing the memory... its reading past the 3 chars you defined (its reading until a space or a new line is met...).
Read char by char to achieve the output you had mentioned.
Edit : Irritate is right, this works too (with some fixes and not getting the exact result, but that's the spirit):
char ifsw1w[4];
do{
ifsw1.width(4);
ifsw1 >> ifsw1w;
if(ifsw1.eof()) break;
cout << ifsw1w << flush << endl;
}while(1);
ifsw1.close();
The code has undefined behavior. When you do something like this:
char ifsw1w[3];
ifsw1 >> ifsw1w;
The operator>> receives a pointer to the buffer, but has no idea of the buffer's actual size. As such, it has no way to know that it should stop reading after two characters (and note that it should be 2, not 3 -- it needs space for a '\0' to terminate the string).
Bottom line: in your exploration of ways to read data, this code is probably best ignored. About all you can learn from code like this is a few things you should avoid. It's generally easier, however, to just follow a few rules of thumb than try to study all the problems that can arise.
Use std::string to read strings.
Only use fixed-size buffers for fixed-size data.
When you do use fixed buffers, pass their size to limit how much is read.
When you want to read all the data in a file, std::copy can avoid a lot of errors:
std::vector<std::string> strings;
std::copy(std::istream_iterator<std::string>(myFile),
std::istream_iterator<std::string>(),
std::back_inserter(strings));
To read the whitespace, you could used "noskipws", it will not skip whitespace.
ifsw1 >> noskipws >> ifsw1w;
But if you want to get only 3 characters, I suggest you to use the get method:
ifsw1.get(ifsw1w,3);