Best way to create a string buffer for binary data - c++

When I try the following, I get an error:
unsigned char * data = "00000000"; //error: cannot convert const char to unsigned char
Is there a special way to do this which I'm missing?
Update
For the sake of brevity, I'll explain what I'm trying to achieve:
I'd like to create a StringBuffer in C++ which uses unsigned values for raw binary data. It seems that an unsigned char is the best way to accomplish this. If there is a better method?

std::vector<unsigned char> data(8, '0');
Or, if the data is not uniform:
auto & arr = "abcdefg";
std::vector<unsigned char> data(arr, arr + sizeof(arr) - 1);
Or, so you can assign directly from a literal:
std::basic_string<unsigned char> data = (const unsigned char *)"abcdefg";

Yes, do this:
const char *data = "00000000";
A string literal is an array of char, not unsigned char.
If you need to pass this to a function that takes const unsigned char *, well, you'll need to cast it:
foo(static_cast<const unsigned char *>(data));

You have many ways. One is to write:
const unsigned char *data = (const unsigned char *)"00000000";
Another, which is more recommended is to declare data as it should be:
const char *data = "00000000";
And when you pass it to your function:
myFunc((const unsigned char *)data);
Note that, in general a string of unsigned char is unusual. An array of unsigned chars is more common, but you wouldn't initialize it with a string ("00000000")
Response to your update
If you want raw binary data, first let me tell you that instead of unsigned char, you are better off using bigger containers, such as long int or long long. This is because when you perform operations on the binary literal (which is an array), your operations are cut by 4 or 8, which is a speed boost.
Second, if you want your class to represent binary values, don't initialize it with a string, but with individual values. In your case would be:
unsigned char data[] = {0x30, 0x30, 0x30, 0x30, /* etc */}
Note that I assume you are storing binary as binary! That is, you get 8 bits in an unsigned char. If you, on the other hand, mean binary as in string of 0s and 1s, which is not really a good idea, but either way, you don't really need unsigned char and just char is sufficient.

unsigned char data[] = "00000000";
This will copy "00000000" into an unsigned char[] buffer, which also means that the buffer won't be read-only like a string literal.
The reason why the way you're doing it won't work is because your pointing data to a (signed) string literal (char[]), so data has to be of type char*. You can't do that without explicitly casting "00000000", such as: (unsigned char*)"00000000".
Note that string literals aren't explicitly of type constchar[], however if you don't treat them as such and try and modify them, you will cause undefined behaviour - a lot of the times being an access violation error.

You're trying to assign string value to pointer to unsigned char. You cannot do that. If you have pointer, you can assign only memory address or NULL to that.
Use const char instead.

Your target variable is a pointer to an unsigned char. "00000000" is a string literal. It's type is const char[9]. You have two type mismatches here. One is that unsigned char and char are different types. The lack of a const qualifier is also a big problem.
You can do this:
unsigned char * data = (unsigned char *)"00000000";
But this is something you should not do. Ever. Casting away the constness of a string literal will get you in big trouble some day.
The following is a little better, but strictly speaking it is still unspecified behavior (maybe undefined behavior; I don't want to chase down which it is in the standard):
const unsigned char * data = (const unsigned char *)"00000000";
Here you are preserving the constness but you are changing the pointer type from char* to unsigned char*.

#Holland -
unsigned char * data = "00000000";
One very important point I'm not sure we're making clear: the string "00000000\0" (9 bytes, including delimiter) might be in READ-ONLY MEMORY (depending on your platform).
In other words, if you defined your variable ("data") this way, and you passed it to a function that might try to CHANGE "data" ... then you could get an ACCESS VIOLATION.
The solution is:
1) declare as "const char *" (as the others have already said)
... and ...
2) TREAT it as "const char *" (do NOT modify its contents, or pass it to a function that might modify its contents).

Related

working with binary data and unsigned char

I'm writing a program that reads a content of a binary file (specificly Windows PE file. Wikipedia page and detailed PE structure).
Because of the binary data in the file, the characters often "fall out" of the ascii range (0-127) and that result in negative values.
To make sure I won't work with unwanted negative values, I can either pass const unsigned char * or convert the resulting char in the calculation to unsigned char.
On one hand, passing const unsigned char * makes sense because the data is non-ascii that has a numaric value and thus should be treated as positive.
In addition, it'll let me perform calculations without the need to cast the result to unsigned char.
On the other hand, I can't pass constant strings (const char *, such as pre-defined strings "MZ", "PE\0\0" etc.) to functions without first casting them to const unsigned char *.
What would be the better approach or best-practice in this scenario?
I think I'd use unsigned char, but avoid casting, and instead define a little class named ustring (or something similar). You have a couple of choices with that. One would be to instantiate std::basic_string over unsigned char. This can be useful (it gives you all of std::string's functionality, but with unsigned chars instead of chars. The obvious disadvantage is that it's probably overkill, and has essentially no compatibility with std::string, even though it's almost exactly the same thing.
The other obvious possibility would be to define your own class. Since you apparently care mostly about string literals, I'd probably go this way. The class would be initalized with a string literal, and it would just hold a pointer to the string, but as unsigned char * instead of just char *.
Then there's one more step to make life better: define a user defined literal operator named something like _us, so creating an object of your type from a string literal will look something like this: auto DOS_sig = "MZ"_us;
class ustring {
unsigned char const *data;
unsigned long long len;
public:
ustring(unsigned char const *s, unsigned long long len)
: data(s)
, len(len)
{}
operator char const *() const { return data; }
bool operator==(ustring const &other) const {
// note: memcmp treats what you pass it as unsigned chars.
return len == other.len && 0 == memcmp(data, other.data, len);
}
// you probably want to add more stuff here.
};
ustring operator"" _us(char const * const s, unsigned long long len) {
return ustring((unsigned char const *)s, len);
}
If I'm not mistaken, this should be pretty easy to work with. For example, let's assume you've memory mapped what you think is a PE file, with its base address at mapped_file. To see if it has a DOS signature, you might do something like this:
if (ustring(&mapped_file[0], 2) == "MZ"_us)
std::cerr << "File appears to be an executable.\n";
else
std::cerr << "file does not appear to be an executable.\n";
Caution: I haven't tested this, so fencepost errors and such are likely--for example, I don't remember whether the length passed to the user defined literal operator includes the NUL terminator or not. This isn't intended to represent finished code, just a sketch of a general direction that might be useful to explore.

Taking an index out of const char* argument

I have the following code:
int some_array[256] = { ... };
int do_stuff(const char* str)
{
int index = *str;
return some_array[index];
}
Apparently the above code causes a bug in some platforms, because *str can in fact be negative.
So I thought of two possible solutions:
Casting the value on assignment (unsigned int index = (unsigned char)*str;).
Passing const unsigned char* instead.
Edit: The rest of this question did not get a treatment, so I moved it to a new thread.
The signedness of char is indeed platform-dependent, but what you do know is that there are as many values of char as there are of unsigned char, and the conversion is injective. So you can absolutely cast the value to associate a lookup index with each character:
unsigned char idx = *str;
return arr[idx];
You should of course make sure that the arr has at least UCHAR_MAX + 1 elements. (This may cause hilarious edge cases when sizeof(unsigned long long int) == 1, which is fortunately rare.)
Characters are allowed to be signed or unsigned, depending on the platform. An assumption of unsigned range is what causes your bug.
Your do_stuff code does not treat const char* as a string representation. It uses it as a sequence of byte-sized indexes into a look-up table. Therefore, there is nothing wrong with forcing unsigned char type on the characters of your string inside do_stuff (i.e. use your solution #1). This keeps re-interpretation of char as an index localized to the implementation of do_stuff function.
Of course, this assumes that other parts of your code do treat str as a C string.

Convert between signed char & unsigned char representing UTF8

I am using libxml2 and ICU in the same project. They represent
UTF8 differently. libxml2 uses unsigned char*, and ICU constructors take in plain char* (which on my Pentium 64-bit is equivalent to signed char).
Question: how do I convert between the two? Can I just
use static_cast?
I understand that UTF8 only cares that the underlying data
type be at least 8 bits long. Both signed char and unsigned
char satisfy this. I am just wondering if there is any
gotcha here? Any corner cases?
EDIT: at my compiler's (g++/Gentoo) insistence, only reinterpret_cast can do this conversion (without relying on the C-style cast). Let's say we have two unsigned char strings: 0000 and 1000. The conversion will turn them both into 0. Is this possible under UTF8?
Some libraries use char for storing UTF-8, others use unsigned char.
In this case you may need to cast between char* and unsigned char* using reinterpret_cast, since these types have the same storage unit size and alignment. E.g.:
char const* s = ...;
unsigned char const* p = reinterpret_cast<unsigned char const*>(s);
static_cast can always simulate reinterpret_cast through an intermediate conversion to void*, e.g. char* -> void* -> unsigned char*, e.g.:
char const* s = ...;
void const* intermediate = s;
unsigned char const* p = static_cast<unsigned char const*>(intermediate);
If unsigned char* is just a pointer to a string it should not cause any problem.
It should not matter. In any case as soon as you need to extract a char from the char * or unsigned char * stream you will need a function provided by the library that will extract an int and update the pointer/iterator in a manner that is opaque to you (the caller)
Thanks all. Mike said it best: the difference that makes no difference, and "a byte is a byte is a byte".

Passing string to function which accepts pointer to char

I've been working with OpenSSL library in C for a long time, but now I need to migrate to C++. OpenSSL's docs describe MD5 function like this.
unsigned char *MD5(const unsigned char *d, unsigned long n,
unsigned char *md);
I want to pass variable of type string to that function, but it accepts only char *.
Is it possible to pass string to parameter of type char * directly in C++? (I don't want to use extra manipulation with variable of type string)
You could use the c_str member function that std::string sports. Example
std::string data;
// load data somehow
unsigned char md[16] = { };
unsigned char *ret = MD5(reinterpret_cast<const unsigned char*>(data.c_str()),
data.size(),
md);
If you want to do away with the ugly cast operator, define a string class that holds unsigned chars instead of chars and use that.
typedef std::basic_string<unsigned char> ustring;
ustring data;
unsigned char *ret = MD5(data.c_str(), data.size(), md);
just a little note, which may save you a headache later on. MD5 takes an unsigned char pointer as a parameter. This is a clue that it's actually not a string, but a pointer to bytes.
In your program if you start storing byte vectors in a std::string, you're eventually going to initialise a string with a byte vector containing a zero, which opens the possibility of a bug that's difficult to detect down the line.
It is safer to store all your byte vectors in a std::vector<unsigned char> (or std::vector<uint8_t> because this forces safe initialisation.
std::vector<unsigned char> plaintext;
// initialise plaintext here
std::vector<unsigned char> my_hash(16);
MD5(plaintext.data(), plaintext.size(), &my_hash[0]);

How do I convert the contents of an unsigned char * to a const char *?

I can across reinterpret casts, and most of the time it was brought up, a warning was given, so I am wondering if there are other alternatives (or clean implementations of reinterpret cast of course)
You don't say what warning was given or what the problem was, but casting to char* with reinterpret_cast should work without warnings:
unsigned char *a;
const char *b = reinterpret_cast<char*>(a);
It depends on what you're trying to do.
If you just want to access the contents as char, then a simple
static_cast or using the value in a context where a char is expected
will do the trick.
If you need to pass the buffer to a function expecting a char const*,
a reinterpret_cast is about the only solution.
If you want a string, using the pointers into the buffer will be fine:
std::string
bufferToString( unsigned char const* buffer, size_t length )
{
return std::string( buffer, buffer + length );
}
or you can copy into an existing string:
myString.assign( buffer, buffer + length );
myString.append( buffer, buffer + length );
// etc.
Any string function (or algorithm, like std::copy) which takes two
iterators can be used. All that is required is that dereferencing the
iterator result in a type which converts implicitly to char, which is
the case of unsigned char.
(You cannot use the string functions which take a buffer address and a
length, as these are not templates, and require the buffer address to
have type char const*. And while unsigned char converts implicitly
to char, unsigned char* requires a reinterpret_cast to convert it
to char*.)