Related
I want to give the expression in the form of parenthesis through CIN, like: ()). then, through push & pop operation of the stack, I want the program to print me weather the given expression is BALANCED or NOT. The program works perfectly but only one issue has been found & that is when I enter like ()(, so it tells me that this expression is IMBALANCED which is fine but when I enter like () (, so then it tell me that this expression is BALANCED which is actually not balanced.
#include <iostream>
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
using namespace std;
char Stack[10];
int top=-1;
void push(char ch)
{
if(top<10)
{
top++;
Stack[top] = ch;
}
else
cout<<"Stack Overflow";
}
void pop()
{
if(top > -1)
{
top--;
}
else
cout<<"Stack Underflow";
}
int show(){
cout<<"It is imbalanced.";
}
int main(int argc, char** argv)
{
int a=0,b=0;
string exp;
cout << "Write down the parenthesis:" ;
cin >> exp;
bool check = true;
for(int i=0; i<exp.length(); i++)
{
if(exp[i]== '(')
{
push(exp[i]);
}
else if(exp[i]== ')')
{
if(top == -1)
{
check = false;
break;
}
else
{
pop();
}
}
}
for(int i=0; i<exp.length(); i++)
{
if(exp[i]=='('){
++a;
}
else if (exp[i]==')')
{
b++;
}
}
if(a>b){
cout<<"\n\nGiven Combination is IMBALANCED";
return 0;
}
if(check == true)
cout<<"\n\nGiven Combination is BALANCED";
else
cout<<"\n\nGiven Combination is IMBALANCED";
return 0;
}
The main comments boil down to:
Don’t use a stack when no stack is needed.
And if you do use one, don’t limit it to an arbitrary fixed depth.
Handle errors and report malformed expressions.
Make sure you get the right input; std::getline() may be less error-prone than input tokenized using the >> operators. Just skip spaces (or whatever insignificant characters are allowed in the input).
using namespace std; is an antipattern and a bad habit.
The basic idea: Calculate the nesting depth as you iterate over the string. It must be zero, ultimately. It must not drop below zero at any point.
#include <cstdlib>
#include <iostream>
#include <stdexcept>
#include <string>
#include <string_view>
using std::size_t;
bool correctly_parenthesized(std::string_view expression) {
size_t depth{0};
for (const auto character : expression) {
switch (character) {
case '(': ++depth; break;
case ')': if (depth) { --depth; break; } else { return false; }
case ' ': break;
default: throw std::invalid_argument("invalid character");
}
}
return depth == 0;
}
int main() {
std::cout << "Write down the parentheses: ";
std::string exp;
std::getline(std::cin, exp);
try {
std::cout << (correctly_parenthesized(exp) ? "YES" : "NO") << std::endl;
} catch (const std::exception &e) {
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
}
}
My lecturer gave me an assignment to create a program to convert and infix expression to postfix using Stacks. I've made the stack classes and some functions to read the infix expression.
But this one function, called convertToPostfix(char * const inFix, char * const postFix) which is responsible to convert the inFix expression in the array inFix to the post fix expression in the array postFix using stacks, is not doing what it suppose to do. Can you guys help me out and tell me what I'm doing wrong?
The following is code where the functions to convert from inFix to postFix is and convertToPostfix(char * const inFix, char * const postFix) is what I need help fixing:
void ArithmeticExpression::inputAndConvertToPostfix()
{
char inputChar; //declaring inputChar
int i = 0; //inizalize i to 0
cout << "Enter the Arithmetic Expression(No Spaces): ";
while( ( inputChar = static_cast<char>( cin.get() ) ) != '\n' )
{
if (i >= MAXSIZE) break; //exits program if i is greater than or equal to 100
if(isdigit(inputChar) || isOperator(inputChar))
{
inFix[i] = inputChar; //copies each char to inFix array
cout << inFix[i] << endl;
}
else
cout << "You entered an invalid Arithmetic Expression\n\n" ;
}
// increment i;
i++;
convertToPostfix(inFix, postFix);
}
bool ArithmeticExpression::isOperator(char currentChar)
{
if(currentChar == '+')
return true;
else if(currentChar == '-')
return true;
else if(currentChar == '*')
return true;
else if(currentChar == '/')
return true;
else if(currentChar == '^')
return true;
else if(currentChar == '%')
return true;
else
return false;
}
bool ArithmeticExpression::precedence(char operator1, char operator2)
{
if ( operator1 == '^' )
return true;
else if ( operator2 == '^' )
return false;
else if ( operator1 == '*' || operator1 == '/' )
return true;
else if ( operator1 == '+' || operator1 == '-' )
if ( operator2 == '*' || operator2 == '/' )
return false;
else
return true;
return false;
}
void ArithmeticExpression::convertToPostfix(char * const inFix, char * const postFix)
{
Stack2<char> stack;
const char lp = '(';
stack.push(lp); //Push a left parenthesis ‘(‘ onto the stack.
strcat(inFix,")");//Appends a right parenthesis ‘)’ to the end of infix.
// int i = 0;
int j = 0;
if(!stack.isEmpty())
{
for(int i = 0;i < 100;){
if(isdigit(inFix[i]))
{
postFix[j] = inFix[i];
cout << "This is Post Fix for the first If: " << postFix[j] << endl;
i++;
j++;
}
if(inFix[i] == '(')
{
stack.push(inFix[i]);
cout << "The InFix was a (" << endl;
i++;
//j++;
}
if(isOperator(inFix[i]))
{
char operator1 = inFix[i];
cout << "CUrrent inFix is a operator" << endl;
if(isOperator(stack.getTopPtr()->getData()))
{
cout << "The stack top ptr is a operator1" << endl;
char operator2 = stack.getTopPtr()->getData();
if(precedence(operator1,operator2))
{
//if(isOperator(stack.getTopPtr()->getData())){
cout << "The stack top ptr is a operato2" << endl;
postFix[j] = stack.pop();
cout << "this is post fix " << postFix[j] << endl;
i++;
j++;
// }
}
}
else
stack.push(inFix[i]);
// cout << "Top Ptr is a: "<< stack.getTopPtr()->getData() << endl;
}
for(int r = 0;r != '\0';r++)
cout << postFix[r] << " ";
if(inFix[i] == ')')
{
while(stack.stackTop()!= '(')
{
postFix[j] = stack.pop();
i++;
j++;
}
stack.pop();
}
}
}
}
Note the function convertToPostfix was made using this algorithm:
Push a left parenthesis ‘(‘ onto the stack.
Append a right parenthesis ‘)’ to the end of infix.
While the stack is not empty, read infix from left to right and do the following:
If the current character in infix is a digit, copy it to the next element of postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator,
Pop operator(s) (if there are any) at the top of the stack while they have equal or higher precedence than the current operator, and insert the popped operators in postfix.
Push the current character in infix onto the stack.
If the current character in infix is a right parenthesis
Pop operators from the top of the stack and insert them in postfix until a left parenthesis is at the top of the stack.
Pop (and discard) the left parenthesis from the stack.
This is basically a comment to the answer from Yuushi.
The outer while(!stack.empty()) loop is wrong. just remove it. (keep the loop body ofc). At the end of the function, check that the stack is empty, else the expression had syntax errors.
As Yuushi already said the precedence function looks bogus. First you should give the parameters better names: one is the operator to the left, and the other to the right. (Right now you call it precedence(rightOp, leftOp)). Then you should document what the result means - right now you return true if a rOp b lOp c == (a rOp b) lOp c (yes, the operator order doesn't match what you call - "+" and "-" are not the same in both orders for example).
If you find a new operator you need to loop over the old operators on the stack, for example after reading a - b * c your output is a b c and the stack is [- *]. now you read a +, and you need to pop both operators, resulting in a b c * -. I.e., the input a - b * c + d should result in a b c * - d +
Update: appended complete solution (based on Yuushi's answer):
bool isOperator(char currentChar)
{
switch (currentChar) {
case '+':
case '-':
case '*':
case '/':
case '^':
case '%':
return true;
default:
return false;
}
}
// returns whether a `lOp` b `rOp` c == (a `lOp` b) `rOp` c
bool precedence(char leftOperator, char rightOperator)
{
if ( leftOperator == '^' ) {
return true;
} else if ( rightOperator == '^' ) {
return false;
} else if ( leftOperator == '*' || leftOperator == '/' || leftOperator == '%' ) {
return true;
} else if ( rightOperator == '*' || rightOperator == '/' || rightOperator == '%' ) {
return false;
}
return true;
}
#include <stdexcept>
#include <cctype>
#include <sstream>
#include <stack>
std::string convertToPostfix(const std::string& infix)
{
std::stringstream postfix; // Our return string
std::stack<char> stack;
stack.push('('); // Push a left parenthesis ‘(‘ onto the stack.
for(std::size_t i = 0, l = infix.size(); i < l; ++i) {
const char current = infix[i];
if (isspace(current)) {
// ignore
}
// If it's a digit or '.' or a letter ("variables"), add it to the output
else if(isalnum(current) || '.' == current) {
postfix << current;
}
else if('(' == current) {
stack.push(current);
}
else if(isOperator(current)) {
char rightOperator = current;
while(!stack.empty() && isOperator(stack.top()) && precedence(stack.top(), rightOperator)) {
postfix << ' ' << stack.top();
stack.pop();
}
postfix << ' ';
stack.push(rightOperator);
}
// We've hit a right parens
else if(')' == current) {
// While top of stack is not a left parens
while(!stack.empty() && '(' != stack.top()) {
postfix << ' ' << stack.top();
stack.pop();
}
if (stack.empty()) {
throw std::runtime_error("missing left paren");
}
// Discard the left paren
stack.pop();
postfix << ' ';
} else {
throw std::runtime_error("invalid input character");
}
}
// Started with a left paren, now close it:
// While top of stack is not a left paren
while(!stack.empty() && '(' != stack.top()) {
postfix << ' ' << stack.top();
stack.pop();
}
if (stack.empty()) {
throw std::runtime_error("missing left paren");
}
// Discard the left paren
stack.pop();
// all open parens should be closed now -> empty stack
if (!stack.empty()) {
throw std::runtime_error("missing right paren");
}
return postfix.str();
}
#include <iostream>
#include <string>
int main()
{
for (;;) {
if (!std::cout.good()) break;
std::cout << "Enter the Arithmetic Expression: ";
std::string infix;
std::getline(std::cin, infix);
if (infix.empty()) break;
std::cout << "Postfix: '" << convertToPostfix(infix) << "'\n";
}
return 0;
}
So there are a number of problems with your code. I'll post what (should be) a corrected solution, which has copious comments to explain what's happening and where you've made mistakes. A few things up front:
I'll use std::string instead of char * because it makes things much cleaner, and honestly, you should be using it in C++ unless you have a very good reason not to (such as interoperability with a C library). This version also returns a string instead of taking a char * as a parameter.
I'm using the stack from the standard library, <stack>, which is slightly different to your home-rolled one. top() shows you the next element without removing it from the stack, and pop() returns void, but removes the top element from the stack.
It's a free function, not part of a class, but that should be easy to modify - it's simply easier for me to test this way.
I'm not convinced your operator precedence tables are correct, however, I'll let you double check that.
#include <stack>
#include <cctype>
#include <iostream>
std::string convertToPostfix(std::string& infix)
{
std::string postfix; //Our return string
std::stack<char> stack;
stack.push('('); //Push a left parenthesis ‘(‘ onto the stack.
infix.push_back(')');
//We know we need to process every element in the string,
//so let's do that instead of having to worry about
//hardcoded numbers and i, j indecies
for(std::size_t i = 0; i < infix.size(); ++i) {
//If it's a digit, add it to the output
//Also, if it's a space, add it to the output
//this makes it look a bit nicer
if(isdigit(infix[i]) || isspace(infix[i])) {
postfix.push_back(infix[i]);
}
//Already iterating over i, so
//don't need to worry about i++
//Also, these options are all mutually exclusive,
//so they should be else if instead of if.
//(Mutually exclusive in that if something is a digit,
//it can't be a parens or an operator or anything else).
else if(infix[i] == '(') {
stack.push(infix[i]);
}
//This is farily similar to your code, but cleaned up.
//With strings we can simply push_back instead of having
//to worry about incrementing some counter.
else if(isOperator(infix[i]))
{
char operator1 = infix[i];
if(isOperator(stack.top())) {
while(!stack.empty() && precedence(operator1,stack.top())) {
postfix.push_back(stack.top());
stack.pop();
}
}
//This shouldn't be in an else - we always want to push the
//operator onto the stack
stack.push(operator1);
}
//We've hit a right parens - Why you had a for loop
//here originally I don't know
else if(infix[i] == ')') {
//While top of stack is not a right parens
while(stack.top() != '(') {
//Insert into postfix and pop the stack
postfix.push_back(stack.top());
stack.pop();
}
// Discard the left parens - you'd forgotten to do this
stack.pop();
}
}
//Remove any remaining operators from the stack
while(!stack.empty()) {
postfix.push_back(stack.top());
stack.pop();
}
}
Here's mine using C with multiple digits evaluation.
#include <stdio.h>
#include <math.h>
#define MAX 50
void push(char[],char);
void in_push(double[], double);
int pop();
int prec(char);
double eval(char[],int,double[]);
int top = 0;
void main() {
double eval_stack[MAX];
int op_count=0;
char stack[MAX], exps[MAX], symbols[MAX];
int i=0,j=0,len,check;
while((symbols[i]=getchar())!='\n') {
if(symbols[i]!=' ' || symbols[i]!='\t') {
if(symbols[i]=='+' || symbols[i]=='-' || symbols[i]=='/' || symbols[i]=='*' || symbols[i]=='^')
op_count++;
i++;
}
}
symbols[i]='#';
symbols[++i]='\0';
len = strlen(symbols);
stack[top] = '#';
for(i=0; i<=len; i++) {
if(symbols[i]>='a' && symbols[i]<='z') {
exps[j]=symbols[i];
j++;
}
switch(symbols[i]) {
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
//if(symbols[i]>='a' && symbols[i]<='z') {
exps[j]=symbols[i];
j++;
break;
case '+': case '-': case '*': case '/': case '^':
exps[j++] = ' ';
while(prec(symbols[i]) <= prec(stack[top])) {
exps[j] = stack[top];
pop();
//printf("\n\t\t%d\t\t%d\n", top,j);
j++;
}
if(prec(symbols[i]) > prec(stack[top])) {
push(stack,symbols[i]);
}
break;
case '(':
push(stack,symbols[i]);
break;
case ')':
while(stack[top]!='(') {
exps[j] = stack[top];
pop();
j++;
}
pop();
break;
case '#':
exps[j++] = ' ';
while(stack[top]!='#') {
exps[j] = stack[top];
pop();
j++;
}
pop();
break;
}
}
exps[j]='\0';
printf("Postfix: %s", exps);
for(i=0; i<j; i++)
if(exps[i]=='a')
check = 1;
if(check!=1)
printf("\nSolution: %.1f", eval(exps,j,eval_stack));
}
double eval(char exps[],int exps_len,double eval_stack[]) {
int i; int len=exps_len,temp;
double in_temp[MAX],t;
int count,power,j,in_count;
count=power=j=t=in_count=0;
double result;
for(i=0; i<len; i++) {
switch(exps[i]) {
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
in_temp[i] = exps[i]-'0';
j=i+1;
while(exps[j]>='0' && exps[j]<='9') {
in_temp[j] = exps[j]-'0';
j++; // 2
}
count = i; // 3
while(in_temp[count]<='0' && in_temp[count]<='9') {
power = (j-count)-1;
t = t + in_temp[count]*(pow(10,power));
power--;
count++;
}
in_push(eval_stack,t);
i=j-1;
t=0;
break;
case '+':
temp = pop();
pop();
result = eval_stack[temp] + eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '-':
temp = pop();
pop();
result = eval_stack[temp] - eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '*':
temp = pop();
pop();
result = eval_stack[temp] * eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '/':
temp = pop();
pop();
result = eval_stack[temp] / eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '^':
temp = pop();
pop();
result = pow(eval_stack[temp],eval_stack[temp+1]);
in_push(eval_stack,result);
break;
}
}
return eval_stack[top];
}
int prec(char a) {
if(a=='^')
return 3;
else if(a=='*' || a=='/' || a=='%')
return 2;
else if(a=='+' || a=='-')
return 1;
else if(a=='(')
return 0;
else
return -1;
}
void push(char stack[], char ele) {
if(top>=MAX) {
printf("\nStack Overflow");
exit(1);
}
stack[++top] = ele;
}
void in_push(double stack[], double ele) {
if(top>=MAX) {
printf("\nStack Overflow");
exit(1);
}
stack[++top] = ele;
}
int pop() {
if(top<0) {
printf("\nStack Underflow");
exit(1);
}
top = top - 1;
return top;
}
This is my implementation of converting infix to postfix expression
//Infix to Postfix conversion
#include <bits/stdc++.h>
using namespace std;
bool isoperator(char c) // function to check if the character is an operator
{
if(c=='+'||c=='-'||c=='*'||c=='/'||c=='^')
return true;
else
return false;
}
int precedence(char c) // function to given the precedence of the operators
{
if(c == '^')
return 3;
else if(c == '*' || c == '/')
return 2;
else if(c == '+' || c == '-')
return 1;
else
return -1;
}
void infixToPostfix(string s) // funtion to convert infix to postfix
{
stack<char>st;
string postfix;
for(int i=0;i<s.length();i++)
{
if((s[i]>='a'&&s[i]<='z')||(s[i]>='A'&&s[i]<='Z')) // if the given character is alphabet add it to the postfix string
postfix+=s[i];
else if(s[i]=='(') // if the given character is "(" add it to the postfix string
st.push('(');
else if(s[i]==')') // if we find a closing bracket we pop everything from stack till opening bracket and add it to postfix string
{
while(st.top()=='(' && !st.empty())
{
postfix+=st.top();
st.pop();
}
if(st.top()=='(') // popping the opening bracket
st.pop();
}
else if(isoperator(s[i])) // if we find a operator
{
if(st.empty()) // if stack is empty add it to the stack
st.push(s[i]);
else
{
if(precedence(s[i])>precedence(st.top())) // if operator precedence is grater push it in stack
st.push(s[i]);
else if((precedence(s[i])==precedence(st.top()))&&(s[i]=='^')) // unique case for ^ operator
st.push(s[i]);
else
{
while((!st.empty())&&(precedence(s[i])<=precedence(st.top()))) // if precedence of st.top() is greater than s[i] adding it the postfix string
{
postfix+=st.top();
st.pop();
}
st.push(s[i]); // pushing s[i] in the stack
}
}
}
}
while(!st.empty()) // popping the remaining items from the stack and adding it to the postfix string
{
postfix+=st.top();
st.pop();
}
cout<<postfix<<endl; // printing the postfix string
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
string s;
cin>>s;
infixToPostfix(s);
return 0;
}
Example:
Input: a+b*(c^d-e)^(f+g*h)-i
Output: abcd^efgh*+i-(^-(*+
ps: If you find any mistakes, comment below :)
C++ implementation is given below:
void infix2postfix(string s)
{
stack<char>st;
for(int i=0; i<s.length(); i++)
{
if(isdigit(s[i]) || isalpha(s[i])) cout<<s[i];
else if( s[i]==')' )
{
while(st.top()!='(')
{
cout<<st.top();
st.pop();
}
st.pop();
}
else st.push(s[i]);
}
}
Operator Precedence is the problem in this case. The correct operator precedence in descending order is:
mul, div, mod << *, /, % >>
add, sub << +, - >>
XOR << ^ >>
In the question above consider the precedence function
bool ArithmeticExpression::precedence(char operator1, char operator2)
{
if ( operator1 == '^' )
return true;
else if ( operator2 == '^' )
return false;
else if ( operator1 == '*' || operator1 == '/' )
return true;
else if ( operator1 == '+' || operator1 == '-' )
if ( operator2 == '*' || operator2 == '/' )
return false;
else
return true;
return false;
}
for each value in operator1 corresponding value of operator2 should be checked for precedence, according to OPERATOR PRECEDENCE TABLE mentioned above. Do not return any value without proper comparison.
I use stack to evaluate an expression.
The most important function is below:
double Expression_Eval()
{
SeqStack<char,100> OPTR;
SeqStack<double,100> OPND;
OPTR.Push('#');
char ch;
ch=getchar();
while (ch!='#' || OPTR.GetTop()!='#')
{
if (!InOPTR(ch))
{
int n=ch-'0';
double num=(double)n;
OPND.Push(num);
ch=getchar();
}
else
{
char pre_op=OPTR.GetTop();
switch (Precede(pre_op, ch))
{
case '<': OPTR.Push(ch);
ch=getchar();
break;
case '=': OPTR.Pop();
ch=getchar();
break;
case '>': double b=OPND.Pop();
double a=OPND.Pop();
pre_op=OPTR.Pop();
OPND.Push(Operate(a, pre_op, b));
ch=getchar();
break;
}
}
}
return OPND.GetTop();
}
Then, when I input 8/(5-3)#, it will not print the result.
I think the loop termination condition ch!='#' || OPTR.GetTop()!='#' is wrong.
When I press Enter, getchar() get the last char is CR but not #.
But, I don't know how to revise it to make my program work.
The other part of my program is below:
#include<iostream>
using namespace std;
template<typename DataType,int StackSize>
class SeqStack
{
private:
DataType data[StackSize];
int top;
public:
SeqStack()
{ top=-1; }
~SeqStack() {}
void Push(DataType x)
{
if(top == StackSize-1)
throw "error";
data[++top]=x;
}
DataType Pop()
{
if(top == -1)
throw "error";
DataType x=data[top--];
return x;
}
DataType GetTop()
{
if(top != -1)
return data[top];
else
cout<<"error";
}
};
bool InOPTR(char ch)
{
if( (ch>='(' && ch<='+') || ch=='-' || ch=='/' )
{
return true;
}else{
return false;
}
}
char Precede(char op1, char op2)
{
char pri[7][7]={ {'>','>','<','<','<','>','>'}
, {'>','>','<','<','<','>','>'}
, {'>','>','>','>','<','>','>'}
, {'>','>','>','>','<','>','>'}
, {'<','<','<','<','<','=','#'}
, {'>','>','>','>','#','>','>'}
, {'<','<','<','<','<','#','='} };
int m,n;
switch(op1)
{
case '+': m=0;break;
case '-': m=1;break;
case '*': m=2;break;
case '/': m=3;break;
case '(': m=4;break;
case ')': m=5;break;
case '#': m=6;break;
}
switch(op2)
{
case '+': n=0;break;
case '-': n=1;break;
case '*': n=2;break;
case '/': n=3;break;
case '(': n=4;break;
case ')': n=5;break;
case '#': n=6;break;
}
return pri[m][n];
}
double Operate(double a, char op, double b)
{
double result;
switch(op)
{
case '+': result=a+b; break;
case '-': result=a-b; break;
case '*': result=a*b; break;
case '/': result=a/b; break;
}
return result;
}
int main()
{
double r=Expression_Eval();
cout<<r<<endl;
return 0;
}
Problem seem to be that '#' is considered a number, but it should be considered an operation:
Use:
bool InOPTR(char ch) {
if ((ch >= '(' && ch <= '+') || ch == '-' || ch == '/' || ch=='#'){
return true;
}
else {
return false;
}
}
Note that '#' is ASCII 64 which is not covered in the ranage '(' to '+' [40-43]
Hope this helps.
You need to consume carriage return or newline character after getchar(); which comes into play when you press enter button.
One trick is as below.
ch=getchar();
getchar(); //this getchar to consume CR.
since you have used ch = getchar() many times you have to use above solution at many places.
Better solution to this problem will be to enter string instead of entering single character using getchar()...
Hope you got what I am trying to say...
My lecturer gave me an assignment to create a program to convert and infix expression to postfix using Stacks. I've made the stack classes and some functions to read the infix expression.
But this one function, called convertToPostfix(char * const inFix, char * const postFix) which is responsible to convert the inFix expression in the array inFix to the post fix expression in the array postFix using stacks, is not doing what it suppose to do. Can you guys help me out and tell me what I'm doing wrong?
The following is code where the functions to convert from inFix to postFix is and convertToPostfix(char * const inFix, char * const postFix) is what I need help fixing:
void ArithmeticExpression::inputAndConvertToPostfix()
{
char inputChar; //declaring inputChar
int i = 0; //inizalize i to 0
cout << "Enter the Arithmetic Expression(No Spaces): ";
while( ( inputChar = static_cast<char>( cin.get() ) ) != '\n' )
{
if (i >= MAXSIZE) break; //exits program if i is greater than or equal to 100
if(isdigit(inputChar) || isOperator(inputChar))
{
inFix[i] = inputChar; //copies each char to inFix array
cout << inFix[i] << endl;
}
else
cout << "You entered an invalid Arithmetic Expression\n\n" ;
}
// increment i;
i++;
convertToPostfix(inFix, postFix);
}
bool ArithmeticExpression::isOperator(char currentChar)
{
if(currentChar == '+')
return true;
else if(currentChar == '-')
return true;
else if(currentChar == '*')
return true;
else if(currentChar == '/')
return true;
else if(currentChar == '^')
return true;
else if(currentChar == '%')
return true;
else
return false;
}
bool ArithmeticExpression::precedence(char operator1, char operator2)
{
if ( operator1 == '^' )
return true;
else if ( operator2 == '^' )
return false;
else if ( operator1 == '*' || operator1 == '/' )
return true;
else if ( operator1 == '+' || operator1 == '-' )
if ( operator2 == '*' || operator2 == '/' )
return false;
else
return true;
return false;
}
void ArithmeticExpression::convertToPostfix(char * const inFix, char * const postFix)
{
Stack2<char> stack;
const char lp = '(';
stack.push(lp); //Push a left parenthesis ‘(‘ onto the stack.
strcat(inFix,")");//Appends a right parenthesis ‘)’ to the end of infix.
// int i = 0;
int j = 0;
if(!stack.isEmpty())
{
for(int i = 0;i < 100;){
if(isdigit(inFix[i]))
{
postFix[j] = inFix[i];
cout << "This is Post Fix for the first If: " << postFix[j] << endl;
i++;
j++;
}
if(inFix[i] == '(')
{
stack.push(inFix[i]);
cout << "The InFix was a (" << endl;
i++;
//j++;
}
if(isOperator(inFix[i]))
{
char operator1 = inFix[i];
cout << "CUrrent inFix is a operator" << endl;
if(isOperator(stack.getTopPtr()->getData()))
{
cout << "The stack top ptr is a operator1" << endl;
char operator2 = stack.getTopPtr()->getData();
if(precedence(operator1,operator2))
{
//if(isOperator(stack.getTopPtr()->getData())){
cout << "The stack top ptr is a operato2" << endl;
postFix[j] = stack.pop();
cout << "this is post fix " << postFix[j] << endl;
i++;
j++;
// }
}
}
else
stack.push(inFix[i]);
// cout << "Top Ptr is a: "<< stack.getTopPtr()->getData() << endl;
}
for(int r = 0;r != '\0';r++)
cout << postFix[r] << " ";
if(inFix[i] == ')')
{
while(stack.stackTop()!= '(')
{
postFix[j] = stack.pop();
i++;
j++;
}
stack.pop();
}
}
}
}
Note the function convertToPostfix was made using this algorithm:
Push a left parenthesis ‘(‘ onto the stack.
Append a right parenthesis ‘)’ to the end of infix.
While the stack is not empty, read infix from left to right and do the following:
If the current character in infix is a digit, copy it to the next element of postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator,
Pop operator(s) (if there are any) at the top of the stack while they have equal or higher precedence than the current operator, and insert the popped operators in postfix.
Push the current character in infix onto the stack.
If the current character in infix is a right parenthesis
Pop operators from the top of the stack and insert them in postfix until a left parenthesis is at the top of the stack.
Pop (and discard) the left parenthesis from the stack.
This is basically a comment to the answer from Yuushi.
The outer while(!stack.empty()) loop is wrong. just remove it. (keep the loop body ofc). At the end of the function, check that the stack is empty, else the expression had syntax errors.
As Yuushi already said the precedence function looks bogus. First you should give the parameters better names: one is the operator to the left, and the other to the right. (Right now you call it precedence(rightOp, leftOp)). Then you should document what the result means - right now you return true if a rOp b lOp c == (a rOp b) lOp c (yes, the operator order doesn't match what you call - "+" and "-" are not the same in both orders for example).
If you find a new operator you need to loop over the old operators on the stack, for example after reading a - b * c your output is a b c and the stack is [- *]. now you read a +, and you need to pop both operators, resulting in a b c * -. I.e., the input a - b * c + d should result in a b c * - d +
Update: appended complete solution (based on Yuushi's answer):
bool isOperator(char currentChar)
{
switch (currentChar) {
case '+':
case '-':
case '*':
case '/':
case '^':
case '%':
return true;
default:
return false;
}
}
// returns whether a `lOp` b `rOp` c == (a `lOp` b) `rOp` c
bool precedence(char leftOperator, char rightOperator)
{
if ( leftOperator == '^' ) {
return true;
} else if ( rightOperator == '^' ) {
return false;
} else if ( leftOperator == '*' || leftOperator == '/' || leftOperator == '%' ) {
return true;
} else if ( rightOperator == '*' || rightOperator == '/' || rightOperator == '%' ) {
return false;
}
return true;
}
#include <stdexcept>
#include <cctype>
#include <sstream>
#include <stack>
std::string convertToPostfix(const std::string& infix)
{
std::stringstream postfix; // Our return string
std::stack<char> stack;
stack.push('('); // Push a left parenthesis ‘(‘ onto the stack.
for(std::size_t i = 0, l = infix.size(); i < l; ++i) {
const char current = infix[i];
if (isspace(current)) {
// ignore
}
// If it's a digit or '.' or a letter ("variables"), add it to the output
else if(isalnum(current) || '.' == current) {
postfix << current;
}
else if('(' == current) {
stack.push(current);
}
else if(isOperator(current)) {
char rightOperator = current;
while(!stack.empty() && isOperator(stack.top()) && precedence(stack.top(), rightOperator)) {
postfix << ' ' << stack.top();
stack.pop();
}
postfix << ' ';
stack.push(rightOperator);
}
// We've hit a right parens
else if(')' == current) {
// While top of stack is not a left parens
while(!stack.empty() && '(' != stack.top()) {
postfix << ' ' << stack.top();
stack.pop();
}
if (stack.empty()) {
throw std::runtime_error("missing left paren");
}
// Discard the left paren
stack.pop();
postfix << ' ';
} else {
throw std::runtime_error("invalid input character");
}
}
// Started with a left paren, now close it:
// While top of stack is not a left paren
while(!stack.empty() && '(' != stack.top()) {
postfix << ' ' << stack.top();
stack.pop();
}
if (stack.empty()) {
throw std::runtime_error("missing left paren");
}
// Discard the left paren
stack.pop();
// all open parens should be closed now -> empty stack
if (!stack.empty()) {
throw std::runtime_error("missing right paren");
}
return postfix.str();
}
#include <iostream>
#include <string>
int main()
{
for (;;) {
if (!std::cout.good()) break;
std::cout << "Enter the Arithmetic Expression: ";
std::string infix;
std::getline(std::cin, infix);
if (infix.empty()) break;
std::cout << "Postfix: '" << convertToPostfix(infix) << "'\n";
}
return 0;
}
So there are a number of problems with your code. I'll post what (should be) a corrected solution, which has copious comments to explain what's happening and where you've made mistakes. A few things up front:
I'll use std::string instead of char * because it makes things much cleaner, and honestly, you should be using it in C++ unless you have a very good reason not to (such as interoperability with a C library). This version also returns a string instead of taking a char * as a parameter.
I'm using the stack from the standard library, <stack>, which is slightly different to your home-rolled one. top() shows you the next element without removing it from the stack, and pop() returns void, but removes the top element from the stack.
It's a free function, not part of a class, but that should be easy to modify - it's simply easier for me to test this way.
I'm not convinced your operator precedence tables are correct, however, I'll let you double check that.
#include <stack>
#include <cctype>
#include <iostream>
std::string convertToPostfix(std::string& infix)
{
std::string postfix; //Our return string
std::stack<char> stack;
stack.push('('); //Push a left parenthesis ‘(‘ onto the stack.
infix.push_back(')');
//We know we need to process every element in the string,
//so let's do that instead of having to worry about
//hardcoded numbers and i, j indecies
for(std::size_t i = 0; i < infix.size(); ++i) {
//If it's a digit, add it to the output
//Also, if it's a space, add it to the output
//this makes it look a bit nicer
if(isdigit(infix[i]) || isspace(infix[i])) {
postfix.push_back(infix[i]);
}
//Already iterating over i, so
//don't need to worry about i++
//Also, these options are all mutually exclusive,
//so they should be else if instead of if.
//(Mutually exclusive in that if something is a digit,
//it can't be a parens or an operator or anything else).
else if(infix[i] == '(') {
stack.push(infix[i]);
}
//This is farily similar to your code, but cleaned up.
//With strings we can simply push_back instead of having
//to worry about incrementing some counter.
else if(isOperator(infix[i]))
{
char operator1 = infix[i];
if(isOperator(stack.top())) {
while(!stack.empty() && precedence(operator1,stack.top())) {
postfix.push_back(stack.top());
stack.pop();
}
}
//This shouldn't be in an else - we always want to push the
//operator onto the stack
stack.push(operator1);
}
//We've hit a right parens - Why you had a for loop
//here originally I don't know
else if(infix[i] == ')') {
//While top of stack is not a right parens
while(stack.top() != '(') {
//Insert into postfix and pop the stack
postfix.push_back(stack.top());
stack.pop();
}
// Discard the left parens - you'd forgotten to do this
stack.pop();
}
}
//Remove any remaining operators from the stack
while(!stack.empty()) {
postfix.push_back(stack.top());
stack.pop();
}
}
Here's mine using C with multiple digits evaluation.
#include <stdio.h>
#include <math.h>
#define MAX 50
void push(char[],char);
void in_push(double[], double);
int pop();
int prec(char);
double eval(char[],int,double[]);
int top = 0;
void main() {
double eval_stack[MAX];
int op_count=0;
char stack[MAX], exps[MAX], symbols[MAX];
int i=0,j=0,len,check;
while((symbols[i]=getchar())!='\n') {
if(symbols[i]!=' ' || symbols[i]!='\t') {
if(symbols[i]=='+' || symbols[i]=='-' || symbols[i]=='/' || symbols[i]=='*' || symbols[i]=='^')
op_count++;
i++;
}
}
symbols[i]='#';
symbols[++i]='\0';
len = strlen(symbols);
stack[top] = '#';
for(i=0; i<=len; i++) {
if(symbols[i]>='a' && symbols[i]<='z') {
exps[j]=symbols[i];
j++;
}
switch(symbols[i]) {
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
//if(symbols[i]>='a' && symbols[i]<='z') {
exps[j]=symbols[i];
j++;
break;
case '+': case '-': case '*': case '/': case '^':
exps[j++] = ' ';
while(prec(symbols[i]) <= prec(stack[top])) {
exps[j] = stack[top];
pop();
//printf("\n\t\t%d\t\t%d\n", top,j);
j++;
}
if(prec(symbols[i]) > prec(stack[top])) {
push(stack,symbols[i]);
}
break;
case '(':
push(stack,symbols[i]);
break;
case ')':
while(stack[top]!='(') {
exps[j] = stack[top];
pop();
j++;
}
pop();
break;
case '#':
exps[j++] = ' ';
while(stack[top]!='#') {
exps[j] = stack[top];
pop();
j++;
}
pop();
break;
}
}
exps[j]='\0';
printf("Postfix: %s", exps);
for(i=0; i<j; i++)
if(exps[i]=='a')
check = 1;
if(check!=1)
printf("\nSolution: %.1f", eval(exps,j,eval_stack));
}
double eval(char exps[],int exps_len,double eval_stack[]) {
int i; int len=exps_len,temp;
double in_temp[MAX],t;
int count,power,j,in_count;
count=power=j=t=in_count=0;
double result;
for(i=0; i<len; i++) {
switch(exps[i]) {
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
in_temp[i] = exps[i]-'0';
j=i+1;
while(exps[j]>='0' && exps[j]<='9') {
in_temp[j] = exps[j]-'0';
j++; // 2
}
count = i; // 3
while(in_temp[count]<='0' && in_temp[count]<='9') {
power = (j-count)-1;
t = t + in_temp[count]*(pow(10,power));
power--;
count++;
}
in_push(eval_stack,t);
i=j-1;
t=0;
break;
case '+':
temp = pop();
pop();
result = eval_stack[temp] + eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '-':
temp = pop();
pop();
result = eval_stack[temp] - eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '*':
temp = pop();
pop();
result = eval_stack[temp] * eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '/':
temp = pop();
pop();
result = eval_stack[temp] / eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '^':
temp = pop();
pop();
result = pow(eval_stack[temp],eval_stack[temp+1]);
in_push(eval_stack,result);
break;
}
}
return eval_stack[top];
}
int prec(char a) {
if(a=='^')
return 3;
else if(a=='*' || a=='/' || a=='%')
return 2;
else if(a=='+' || a=='-')
return 1;
else if(a=='(')
return 0;
else
return -1;
}
void push(char stack[], char ele) {
if(top>=MAX) {
printf("\nStack Overflow");
exit(1);
}
stack[++top] = ele;
}
void in_push(double stack[], double ele) {
if(top>=MAX) {
printf("\nStack Overflow");
exit(1);
}
stack[++top] = ele;
}
int pop() {
if(top<0) {
printf("\nStack Underflow");
exit(1);
}
top = top - 1;
return top;
}
This is my implementation of converting infix to postfix expression
//Infix to Postfix conversion
#include <bits/stdc++.h>
using namespace std;
bool isoperator(char c) // function to check if the character is an operator
{
if(c=='+'||c=='-'||c=='*'||c=='/'||c=='^')
return true;
else
return false;
}
int precedence(char c) // function to given the precedence of the operators
{
if(c == '^')
return 3;
else if(c == '*' || c == '/')
return 2;
else if(c == '+' || c == '-')
return 1;
else
return -1;
}
void infixToPostfix(string s) // funtion to convert infix to postfix
{
stack<char>st;
string postfix;
for(int i=0;i<s.length();i++)
{
if((s[i]>='a'&&s[i]<='z')||(s[i]>='A'&&s[i]<='Z')) // if the given character is alphabet add it to the postfix string
postfix+=s[i];
else if(s[i]=='(') // if the given character is "(" add it to the postfix string
st.push('(');
else if(s[i]==')') // if we find a closing bracket we pop everything from stack till opening bracket and add it to postfix string
{
while(st.top()=='(' && !st.empty())
{
postfix+=st.top();
st.pop();
}
if(st.top()=='(') // popping the opening bracket
st.pop();
}
else if(isoperator(s[i])) // if we find a operator
{
if(st.empty()) // if stack is empty add it to the stack
st.push(s[i]);
else
{
if(precedence(s[i])>precedence(st.top())) // if operator precedence is grater push it in stack
st.push(s[i]);
else if((precedence(s[i])==precedence(st.top()))&&(s[i]=='^')) // unique case for ^ operator
st.push(s[i]);
else
{
while((!st.empty())&&(precedence(s[i])<=precedence(st.top()))) // if precedence of st.top() is greater than s[i] adding it the postfix string
{
postfix+=st.top();
st.pop();
}
st.push(s[i]); // pushing s[i] in the stack
}
}
}
}
while(!st.empty()) // popping the remaining items from the stack and adding it to the postfix string
{
postfix+=st.top();
st.pop();
}
cout<<postfix<<endl; // printing the postfix string
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
string s;
cin>>s;
infixToPostfix(s);
return 0;
}
Example:
Input: a+b*(c^d-e)^(f+g*h)-i
Output: abcd^efgh*+i-(^-(*+
ps: If you find any mistakes, comment below :)
C++ implementation is given below:
void infix2postfix(string s)
{
stack<char>st;
for(int i=0; i<s.length(); i++)
{
if(isdigit(s[i]) || isalpha(s[i])) cout<<s[i];
else if( s[i]==')' )
{
while(st.top()!='(')
{
cout<<st.top();
st.pop();
}
st.pop();
}
else st.push(s[i]);
}
}
Operator Precedence is the problem in this case. The correct operator precedence in descending order is:
mul, div, mod << *, /, % >>
add, sub << +, - >>
XOR << ^ >>
In the question above consider the precedence function
bool ArithmeticExpression::precedence(char operator1, char operator2)
{
if ( operator1 == '^' )
return true;
else if ( operator2 == '^' )
return false;
else if ( operator1 == '*' || operator1 == '/' )
return true;
else if ( operator1 == '+' || operator1 == '-' )
if ( operator2 == '*' || operator2 == '/' )
return false;
else
return true;
return false;
}
for each value in operator1 corresponding value of operator2 should be checked for precedence, according to OPERATOR PRECEDENCE TABLE mentioned above. Do not return any value without proper comparison.
This is taken right from The "C++ Programming Language" by Bjarne Stroustrup. I would just like some clarification on how he accumulating the digits into the variable (int number_value). Please don't rip on the code, I didn't write it (Complete code from chapter 6 at bottom of post).
Specifically as the parser is calling the lexer, how is the lexer building up a number by using cin. I believe the answer is in these eight lines, but I would like an explanation of how it works.
if( isalpha( ch ) ) {
(*input).putback( ch );
(*input) >> string_value;
return curr_tok=NAME;
} else {
error( "bad token " );
return curr_tok=PRINT;
}
It appears to me that the first time get_token( ) is called, it puts the full expression_list into cin or whatever input stream input points to (inside get_token( )).
(*input) >> ch;
I know ch is declared as a char, but what happens if you type 123.4+5.432; (assuming input is cin) cin now contains the "string" 123.4+5.432 contained in its stream. Then we move to the switch statement in the lexer (get_token( )). I am assuming: :
ch == 1?
at this point? Next inside the switch statement, we would "fall through" to the '.' case. Here we place '1' back into the stream and write it out to number_value?
(*input).putback( ch );
(*input) >> number_value;
Now number_value = 1, and we return to the parser. Since we found a NUMBER it calls get_token( ) again. And cin operator<< is called again. Wouldn't the next call to (*input)>> number_value place 2 into number value overwriting the 1 (assuming that the input is still 123.4+5.432)? What happens here. I guess I need a better understanding of how streams work. If someone could take the time, and give a brief explanation and point me to a good resource I would greatly appreciated.
Thank you,
Matthew Hoggan
For those that don't have the book, the code is:
#include <iostream>
#include <stdlib.h>
#include <string>
#include <sstream>
#include <map>
#include <cctype>
std::istream *input;
double number_value;
int no_of_errors;
std::string string_value;
std::map<std::string,double> table;
enum Token_value {
NAME, NUMBER, END,
PLUS='+', MINUS='-', MUL='*', DIV='/',
PRINT=';', ASSIGN='=', LP='(', RP=')'
};
Token_value curr_tok=PRINT;
double expr( bool );
double term( bool );
double prim( bool );
Token_value get_token( );
double error( std::string s ) {
no_of_errors++;
std::cerr << "error: " << s << std::endl;
return 1.0;
}
Token_value get_token( ) {
char ch = 0;
(*input) >> ch;
switch( ch ) {
case 0: {
return curr_tok=END;
}
case ';':
case '*':
case '/':
case '+':
case '-':
case '(':
case ')':
case '=': {
return curr_tok = static_cast<Token_value>( ch );
}
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case '.': {
(*input).putback( ch );
(*input) >> number_value;
return curr_tok=NUMBER;
}
default: {
if( isalpha( ch ) ) {
(*input).putback( ch );
(*input) >> string_value;
return curr_tok=NAME;
} else {
error( "bad token " );
return curr_tok=PRINT;
}
}
}
}
int main( int argc, char *argv[ ] ) {
switch( argc ) {
case 1: {
input = &std::cin;
break;
}
case 2: {
input = new std::istringstream( argv[1] );
break;
}
default: {
error(" To many arguments" );
return 1;
}
}
table["pi"] = 3.1415926535897932385;
table["e"] = 2.7182818284590452354;
while( (*input) ) {
get_token( );
if( curr_tok == END ) {
break;
}
if( curr_tok == PRINT ) {
continue;
}
std::cout << expr( false ) << std::endl;
}
if( input != &std::cin ) {
delete input;
}
return 0;
}
double expr( bool get ) {
double left = term( get );
for( ; ; ) {
switch( curr_tok ) {
case PLUS: {
left += term( true );
break;
}
case MINUS: {
left -= term( true );
break;
}
default: {
return left;
}
}
}
}
double term( bool get ) {
double left = prim( get );
for( ; ; ) {
switch( curr_tok ) {
case MUL: {
left *= prim( true );
break;
}
case DIV: {
if( double d = prim( true ) ) {
left /= d;
break;
}
else {
return error( "divide by 0" );
}
}
default: {
return left;
}
}
}
}
double prim( bool get ) {
if( get ) {
get_token( );
}
switch( curr_tok ) {
case NUMBER: {
double v = number_value;
get_token( );
return v;
}
case NAME: {
double &v = table[string_value];
if( get_token( ) == ASSIGN ) {
v = expr( true );
return v;
}
}
case MINUS: {
return -prim( true );
}
case LP: {
double e = expr( true );
if( curr_tok != RP ) {
return error( "')' expected" );
}
get_token( );
return e;
}
default: {
return error( "primary expected" );
}
}
}
The 'trick' is caused by the differing behaviour of the following three lines:
char ch; std::cin >> ch;
std::string string_value; std::cin >> string_value;
double number_value; std::cin >> number_value;
The first just gets a single character, the second and third get multiple characters to build a variable of the correct type.
Strings overload the global operator>> function to provide a version for strings, and this version uses whitespace as the delimiter (if you need to input spaces with your string, you should look into getline).
The double version uses the istream& operator>> (double& val); member function and will read characters only while they make sense in forming a double value.
So, let's say you enter abc. The code cin >> ch will populate ch with the character 'a', removing it from the input stream. You will then detect this with isapha in the default case since it matches none of the other cases.
At that point, you push that character 'a' back on to the input stream so you can re-read it, and execute cin >> string_value which gets the entire string abc, not a single character.
Similarly, if you entered 3.14159, it would be caught by the case '3' check, the character would be pushed back on to the input stream, and cin >> number_value would then get the whole value.
Now number_value = 1, and we return to the parser.
No. (*input) >> number_value; reads-in the whole double, i.e., 123.4 since number_value is of type double. Other than this, you are right.