Printing Primitive Arrays in Clojure - clojure

I am at the REPL, and I create a java array:
=> (def arr (double-array [1 2 3]))
Of course, if I want to look at my arr, I get:
=> arr
#<double[] [D#2ce628d8>
Is there anything I can do that will make arrays of java primitives print like clojure's persistentVectors?
=> arr
[1.0 2.0 3.0]
I know I could wrap my arrays in some sort of nice printing function (which is what I currently do), but this is a pain in cases, for example, where the vectors are part of a map:
=> my-map
{"1" #<double[] [D#47254e47>, "2" #<double[] [D#11d2625d>}

Would something as simple as the following do?
user=> (seq arr)
(1.0 2.0 3.0)
If it's only for the REPL, then perhaps the technical semantics don't matter.
Update
It turns out that pretty print (pprint) works just fine with your map of vectors:
user=> (def my-map {"1" (double-array [1 2 3])
"2" (double-array [1 2 3])})
#'user/my-map
user=> (pprint my-map)
{"1" [1.0, 2.0, 3.0], "2" [1.0, 2.0, 3.0]}
Final Update: From the linked Google Groups discussion in the comments
Questioner found an answer he liked in a discussion paraphrased below:
> Is there any way to make the Clojure repl pretty-print by default?
Try:
(clojure.main/repl :print pprint)
> Thank you! That is exactly what I needed.

There is always the java interop solution:
(java.util.Arrays/toString arr)
So you would have
(map #(java.util.Arrays/toString (val %)) my-map)

The str function just calls the .toString of the Java object, which isn't too convenient on arrays. To get a nice representation (as others have also stated) (java.util.Arrays/toString arr) can be called.
However, how could this be implemented transparantly in normal clojure println and str code ? Could we implement a proxy on Array and replace the .toString method ? Or should we implement a new str2 protocol using str for everything except the Array class ?
My guess the proxied arr would be the best option, since that would work with other code that calls str on it, even if it was called from another namespace. No idea how to implement a proxy on Array though :)

Related

Create a map entry in Clojure

What is the built-in Clojure way (if any), to create a single map entry?
In other words, I would like something like (map-entry key value). In other words, the result should be more or less equivalent to (first {key value}).
Remarks:
Of course, I already tried googling, and only found map-entry? However, this document has no linked resources.
I know that (first {1 2}) returns [1 2], which seems a vector. However:
(class (first {1 2}))
; --> clojure.lang.MapEntry
(class [1 2])
; --> clojure.lang.PersistentVector
I checked in the source code, and I'm aware that both MapEntry and PersistentVector extend APersistentVector (so MapEntry is more-or-less also a vector). However, the question is still, whether I can create a MapEntry instance from Clojure code.
Last, but not least: "no, there is no built in way to do that in Clojure" is also a valid answer (which I strongly suspect is the case, just want to make sure that I did not accidentally miss something).
"no, there is no built in way to do that in Clojure" is also a valid answer
Yeah, unfortunately that's the answer. I'd say the best you can do is define a map-entry function yourself:
(defn map-entry [k v]
(clojure.lang.MapEntry/create k v))
Just specify a class name as follows
(clojure.lang.MapEntry. "key" "val")
or import the class to instantiate by a short name
(import (clojure.lang MapEntry))
(MapEntry. "key" "val")
As Rich Hickey says here: "I make no promises about the continued existence of MapEntry. Please don't use it." You should not attempt to directly instantiate an implementation class such clojure.lang.MapEntry. It's better to just use:
(defn map-entry [k v] (first {k v}))

Clojure: Validation in a Variadic function

Bearing in mind, “Programs are meant to be read by humans and only incidentally for computers to execute.”
I want to better understand how I can best express the intent of the argument(s) passed to a function.
For example, I have a very simple function:
user=> (defn add-vecs
"Add multiple vectors of numbers together"
[& vecs]
(when (seq vecs)
(apply mapv + vecs)))
Which in action will do the following:
user=> (add-vecs [1 2 3] [1 2 3] [1 2 3])
[3 6 9]
I don’t like relying on the doc-string to tell the reader of the code the requirements of the argument because comments often lie, developers don’t always read them and code changes but comments rarely do.
I could rename vecs something like "vecs-of-numbers" but that feels clumsy.
I appreciate Clojure is both dynamic and strongly typed and this question is clearly in the area of typing. So in general, and if possible some examples for this case, what would make the function argument(s) more readable?
When what you want is a type, use a type. There are several approaches to typing available. I'll use prismatic.schema in this case because it's fairly unimposing:
(require '[schema [core :as schema]]])
(schema/defn add-vecs [& vecs :- [Schema/Number]]
... code here ... )
or you can add a pre-condition to check it as runtime:

What's the one-level sequence flattening function in Clojure?

What's the one-level sequence flattening function in Clojure? I am using apply concat for now, but I wonder if there is a built-in function for that, either in standard library or clojure-contrib.
My general first choice is apply concat. Also, don't overlook (for [subcoll coll, item subcoll] item) -- depending on the broader context, this may result in clearer code.
There's no standard function. apply concat is a good solution in many cases. Or you can equivalently use mapcat seq.
The problem with apply concat is that it fails when there is anything other than a collection/sequential is at the first level:
(apply concat [1 [2 3] [4 [5]]])
=> IllegalArgumentException Don't know how to create ISeq from: java.lang.Long...
Hence you may want to do something like:
(defn flatten-one-level [coll]
(mapcat #(if (sequential? %) % [%]) coll))
(flatten-one-level [1 [2 3] [4 [5]]])
=> (1 2 3 4 [5])
As a more general point, the lack of a built-in function should not usually stop you from defining your own :-)
i use apply concat too - i don't think there's anything else in the core.
flatten is multiple levels (and is defined via a tree-walk, not in terms of repeated single level expansion)
see also Clojure: Semi-Flattening a nested Sequence which has a flatten-1 from clojure mvc (and which is much more complex than i expected).
update to clarify laziness:
user=> (take 3 (apply concat (for [i (range 1e6)] (do (print i) [i]))))
012345678910111213141516171819202122232425262728293031(0 1 2)
you can see that it evaluates the argument 32 times - this is chunking for efficiency, and is otherwise lazy (it doesn't evaluate the whole list). for a discussion of chunking see comments at end of http://isti.bitbucket.org/2012/04/01/pipes-clojure-choco-1.html

Error when using Integer/parseInt with map in Clojure

I'm learning Clojure and am confused by the following:
(vector "1")
;; returns ["1"]
(map vector '("1" "2" "3"))
;; returns (["1"] ["2"] ["3"])
However:
(Integer/parseInt "1")
;; returns 1
(map Integer/parseInt '("1" "2" "3"))
;; throws error "Unable to find static field: parseInt in class java.lang.Integer"
Instead, I need:
(map #(Integer/parseInt %) '("1" "2" "3"))
;; returns (1 2 3)
If I can use a function like vector with map, why can't I use Integer/parseInt?
You have to wrap it in #() or (fn ...). This is because Integer/parseInt is a Java method and Java methods can't be passed around. They don't implement the IFn interface.
Clojure is built on Java and sometimes this leaks through, and this is one of those cases.
As others have stated, you need to wrap Integer/parseInt in order to convert it from a Java method into a Clojure function:
(map #(Integer/parseInt %) '("1" "2" "3"))
The reason for this is that Clojure functions must implement the IFn interface in order to be passed as arguments into higher order functions such as map.
This is a little bit ugly if you are doing this kind of conversion many times, so I'd recommend wrapping your parse-int function as follows:
(defn parse-int [s] (Integer/parseInt s))
(map parse-int '("1" "2" "3"))
As a final alternative, you may want to use the built-in read-string function - this will return integers in your case but would also work for doubles etc.:
(map read-string '("1" "2" "3"))
Have a look at the Stack Overflow question Convert a sequence of strings to integers (Clojure). The answer says: You have to wrap Integer/parseInt in an anonymous function because Java methods aren't functions.

Common programming mistakes for Clojure developers to avoid [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
What are some common mistakes made by Clojure developers, and how can we avoid them?
For example; newcomers to Clojure think that the contains? function works the same as java.util.Collection#contains. However, contains? will only work similarly when used with indexed collections like maps and sets and you're looking for a given key:
(contains? {:a 1 :b 2} :b)
;=> true
(contains? {:a 1 :b 2} 2)
;=> false
(contains? #{:a 1 :b 2} :b)
;=> true
When used with numerically indexed collections (vectors, arrays) contains? only checks that the given element is within the valid range of indexes (zero-based):
(contains? [1 2 3 4] 4)
;=> false
(contains? [1 2 3 4] 0)
;=> true
If given a list, contains? will never return true.
Literal Octals
At one point I was reading in a matrix which used leading zeros to maintain proper rows and columns. Mathematically this is correct, since leading zero obviously don't alter the underlying value. Attempts to define a var with this matrix, however, would fail mysteriously with:
java.lang.NumberFormatException: Invalid number: 08
which totally baffled me. The reason is that Clojure treats literal integer values with leading zeros as octals, and there is no number 08 in octal.
I should also mention that Clojure supports traditional Java hexadecimal values via the 0x prefix. You can also use any base between 2 and 36 by using the "base+r+value" notation, such as 2r101010 or 36r16 which are 42 base ten.
Trying to return literals in an anonymous function literal
This works:
user> (defn foo [key val]
{key val})
#'user/foo
user> (foo :a 1)
{:a 1}
so I believed this would also work:
(#({%1 %2}) :a 1)
but it fails with:
java.lang.IllegalArgumentException: Wrong number of args passed to: PersistentArrayMap
because the #() reader macro gets expanded to
(fn [%1 %2] ({%1 %2}))
with the map literal wrapped in parenthesis. Since it's the first element, it's treated as a function (which a literal map actually is), but no required arguments (such as a key) are provided. In summary, the anonymous function literal does not expand to
(fn [%1 %2] {%1 %2}) ; notice the lack of parenthesis
and so you can't have any literal value ([], :a, 4, %) as the body of the anonymous function.
Two solutions have been given in the comments. Brian Carper suggests using sequence implementation constructors (array-map, hash-set, vector) like so:
(#(array-map %1 %2) :a 1)
while Dan shows that you can use the identity function to unwrap the outer parenthesis:
(#(identity {%1 %2}) :a 1)
Brian's suggestion actually brings me to my next mistake...
Thinking that hash-map or array-map determine the unchanging concrete map implementation
Consider the following:
user> (class (hash-map))
clojure.lang.PersistentArrayMap
user> (class (hash-map :a 1))
clojure.lang.PersistentHashMap
user> (class (assoc (apply array-map (range 2000)) :a :1))
clojure.lang.PersistentHashMap
While you generally won't have to worry about the concrete implementation of a Clojure map, you should know that functions which grow a map - like assoc or conj - can take a PersistentArrayMap and return a PersistentHashMap, which performs faster for larger maps.
Using a function as the recursion point rather than a loop to provide initial bindings
When I started out, I wrote a lot of functions like this:
; Project Euler #3
(defn p3
([] (p3 775147 600851475143 3))
([i n times]
(if (and (divides? i n) (fast-prime? i times)) i
(recur (dec i) n times))))
When in fact loop would have been more concise and idiomatic for this particular function:
; Elapsed time: 387 msecs
(defn p3 [] {:post [(= % 6857)]}
(loop [i 775147 n 600851475143 times 3]
(if (and (divides? i n) (fast-prime? i times)) i
(recur (dec i) n times))))
Notice that I replaced the empty argument, "default constructor" function body (p3 775147 600851475143 3) with a loop + initial binding. The recur now rebinds the loop bindings (instead of the fn parameters) and jumps back to the recursion point (loop, instead of fn).
Referencing "phantom" vars
I'm speaking about the type of var you might define using the REPL - during your exploratory programming - then unknowingly reference in your source. Everything works fine until you reload the namespace (perhaps by closing your editor) and later discover a bunch of unbound symbols referenced throughout your code. This also happens frequently when you're refactoring, moving a var from one namespace to another.
Treating the for list comprehension like an imperative for loop
Essentially you're creating a lazy list based on existing lists rather than simply performing a controlled loop. Clojure's doseq is actually more analogous to imperative foreach looping constructs.
One example of how they're different is the ability to filter which elements they iterate over using arbitrary predicates:
user> (for [n '(1 2 3 4) :when (even? n)] n)
(2 4)
user> (for [n '(4 3 2 1) :while (even? n)] n)
(4)
Another way they're different is that they can operate on infinite lazy sequences:
user> (take 5 (for [x (iterate inc 0) :when (> (* x x) 3)] (* 2 x)))
(4 6 8 10 12)
They also can handle more than one binding expression, iterating over the rightmost expression first and working its way left:
user> (for [x '(1 2 3) y '(\a \b \c)] (str x y))
("1a" "1b" "1c" "2a" "2b" "2c" "3a" "3b" "3c")
There's also no break or continue to exit prematurely.
Overuse of structs
I come from an OOPish background so when I started Clojure my brain was still thinking in terms of objects. I found myself modeling everything as a struct because its grouping of "members", however loose, made me feel comfortable. In reality, structs should mostly be considered an optimization; Clojure will share the keys and some lookup information to conserve memory. You can further optimize them by defining accessors to speed up the key lookup process.
Overall you don't gain anything from using a struct over a map except for performance, so the added complexity might not be worth it.
Using unsugared BigDecimal constructors
I needed a lot of BigDecimals and was writing ugly code like this:
(let [foo (BigDecimal. "1") bar (BigDecimal. "42.42") baz (BigDecimal. "24.24")]
when in fact Clojure supports BigDecimal literals by appending M to the number:
(= (BigDecimal. "42.42") 42.42M) ; true
Using the sugared version cuts out a lot of the bloat. In the comments, twils mentioned that you can also use the bigdec and bigint functions to be more explicit, yet remain concise.
Using the Java package naming conversions for namespaces
This isn't actually a mistake per se, but rather something that goes against the idiomatic structure and naming of a typical Clojure project. My first substantial Clojure project had namespace declarations - and corresponding folder structures - like this:
(ns com.14clouds.myapp.repository)
which bloated up my fully-qualified function references:
(com.14clouds.myapp.repository/load-by-name "foo")
To complicate things even more, I used a standard Maven directory structure:
|-- src/
| |-- main/
| | |-- java/
| | |-- clojure/
| | |-- resources/
| |-- test/
...
which is more complex than the "standard" Clojure structure of:
|-- src/
|-- test/
|-- resources/
which is the default of Leiningen projects and Clojure itself.
Maps utilize Java's equals() rather than Clojure's = for key matching
Originally reported by chouser on IRC, this usage of Java's equals() leads to some unintuitive results:
user> (= (int 1) (long 1))
true
user> ({(int 1) :found} (int 1) :not-found)
:found
user> ({(int 1) :found} (long 1) :not-found)
:not-found
Since both Integer and Long instances of 1 are printed the same by default, it can be difficult to detect why your map isn't returning any values. This is especially true when you pass your key through a function which, perhaps unbeknownst to you, returns a long.
It should be noted that using Java's equals() instead of Clojure's = is essential for maps to conform to the java.util.Map interface.
I'm using Programming Clojure by Stuart Halloway, Practical Clojure by Luke VanderHart, and the help of countless Clojure hackers on IRC and the mailing list to help along my answers.
Forgetting to force evaluation of lazy seqs
Lazy seqs aren't evaluated unless you ask them to be evaluated. You might expect this to print something, but it doesn't.
user=> (defn foo [] (map println [:foo :bar]) nil)
#'user/foo
user=> (foo)
nil
The map is never evaluated, it's silently discarded, because it's lazy. You have to use one of doseq, dorun, doall etc. to force evaluation of lazy sequences for side-effects.
user=> (defn foo [] (doseq [x [:foo :bar]] (println x)) nil)
#'user/foo
user=> (foo)
:foo
:bar
nil
user=> (defn foo [] (dorun (map println [:foo :bar])) nil)
#'user/foo
user=> (foo)
:foo
:bar
nil
Using a bare map at the REPL kind of looks like it works, but it only works because the REPL forces evaluation of lazy seqs itself. This can make the bug even harder to notice, because your code works at the REPL and doesn't work from a source file or inside a function.
user=> (map println [:foo :bar])
(:foo
:bar
nil nil)
I'm a Clojure noob. More advanced users may have more interesting problems.
trying to print infinite lazy sequences.
I knew what I was doing with my lazy sequences, but for debugging purposes I inserted some print/prn/pr calls, temporarily having forgotten what it is I was printing. Funny, why's my PC all hung up?
trying to program Clojure imperatively.
There is some temptation to create a whole lot of refs or atoms and write code that constantly mucks with their state. This can be done, but it's not a good fit. It may also have poor performance, and rarely benefit from multiple cores.
trying to program Clojure 100% functionally.
A flip side to this: Some algorithms really do want a bit of mutable state. Religiously avoiding mutable state at all costs may result in slow or awkward algorithms. It takes judgement and a bit of experience to make the decision.
trying to do too much in Java.
Because it's so easy to reach out to Java, it's sometimes tempting to use Clojure as a scripting language wrapper around Java. Certainly you'll need to do exactly this when using Java library functionality, but there's little sense in (e.g.) maintaining data structures in Java, or using Java data types such as collections for which there are good equivalents in Clojure.
Lots of things already mentioned. I'll just add one more.
Clojure if treats Java Boolean objects always as true even if it's value is false. So if you have a java land function that returns a java Boolean value, make sure you do not check it directly
(if java-bool "Yes" "No")
but rather
(if (boolean java-bool) "Yes" "No").
I got burned by this with clojure.contrib.sql library that returns database boolean fields as java Boolean objects.
Keeping your head in loops.
You risk running out of memory if you loop over the elements of a potentially very large, or infinite, lazy sequence while keeping a reference to the first element.
Forgetting there's no TCO.
Regular tail-calls consume stack space, and they will overflow if you're not careful. Clojure has 'recur and 'trampoline to handle many of the cases where optimized tail-calls would be used in other languages, but these techniques have to be intentionally applied.
Not-quite-lazy sequences.
You may build a lazy sequence with 'lazy-seq or 'lazy-cons (or by building upon higher level lazy APIs), but if you wrap it in 'vec or pass it through some other function that realizes the sequence, then it will no longer be lazy. Both the stack and the heap can be overflown by this.
Putting mutable things in refs.
You can technically do it, but only the object reference in the ref itself is governed by the STM - not the referred object and its fields (unless they are immutable and point to other refs). So whenever possible, prefer to only immutable objects in refs. Same thing goes for atoms.
using loop ... recur to process sequences when map will do.
(defn work [data]
(do-stuff (first data))
(recur (rest data)))
vs.
(map do-stuff data)
The map function (in the latest branch) uses chunked sequences and many other optimizations. Also, because this function is frequently run, the Hotspot JIT usually has it optimized and ready to go with out any "warm up time".
Collection types have different behaviors for some operations:
user=> (conj '(1 2 3) 4)
(4 1 2 3) ;; new element at the front
user=> (conj [1 2 3] 4)
[1 2 3 4] ;; new element at the back
user=> (into '(3 4) (list 5 6 7))
(7 6 5 3 4)
user=> (into [3 4] (list 5 6 7))
[3 4 5 6 7]
Working with strings can be confusing (I still don't quite get them). Specifically, strings are not the same as sequences of characters, even though sequence functions work on them:
user=> (filter #(> (int %) 96) "abcdABCDefghEFGH")
(\a \b \c \d \e \f \g \h)
To get a string back out, you'd need to do:
user=> (apply str (filter #(> (int %) 96) "abcdABCDefghEFGH"))
"abcdefgh"
too many parantheses, especially with void java method call inside which results in NPE:
public void foo() {}
((.foo))
results in NPE from outer parantheses because inner parantheses evaluate to nil.
public int bar() { return 5; }
((.bar))
results in the easier to debug:
java.lang.Integer cannot be cast to clojure.lang.IFn
[Thrown class java.lang.ClassCastException]