looping for a series - c++

I have this question:
Write a program to display the sum of the series 1+1/2+2/3+3/4+...
+(n-1)/n (using for loop).
I did not understand the series well, kindly explaint it for me if n = 6. (no need for coding).

For n = 6, you need to calculate 1 + (1/2) + (2/3) + (3/4) + (4/5) + (5/6)

The question is asking you to fill the details in to the following program:
sum = 0;
for (int i=1; i<=n; ++i) {
sum += ???
}
return sum;
where ??? should give you the following values:
i | ???
-------
1 | 1
2 | 1/2
3 | 2/3
4 | 3/4
5 | 4/5
6 | 5/6
.
.
.
n | (n-1)/n

It is simple. The biggest hint is the nth term itself : (n-1)/n
Except the first term, every other term can be represented by an expression of the form of (i-1)/i, which means the algorithm boils down to this:
double sum = 1.0; //first term
for(int i = 2 ; i <= n ; ++i) //2nd to nth term!
sum += (i-1.0)/i;
Why did I write (i-1.0) instead of (i-1)?
You need to figure that out yourself, as I already have explained and written almost the whole code.

Write a loop that evaluates (n-1)/n for each value of n and adds the outcome to some variable.
That "some variable" is the answer.
Set n=6

The final term of the series can also be written as n / (n + 1) where n is a value that iterates.

Related

find the minimum lucky number that has the sum of digits equal to N

The lucky numbers are the positive integers whose decimal representations contain only the digits 4 or 7 .enter code here`
For example, numbers 47 , 474 , 4 are lucky and 3 , 13 , 567 are not
if there is no such no then output should -1.
input is sum of digits.
i have written this code:
int main(){
long long int s,no=0,minimum=999999999999999999999;
cin>>s;
for(int i=0; i<=s; i++){
for(int j=0; j<=s; j++){
if(i*4+j*7==s){no=0;
for(int k=0; k<i; k++){
no=no*10+4;
}
for(int l=0; l<j; l++){
no=no*10+7;
}if(no<minimum){
minimum=no;}
}
}
}if(minimum==999999999999999999999){cout<<-1;}
else {cout<<minimum;}
}
it is working fine smaller sum values but input is large then no formed is large due to which i am not able to compare them, the constraints for sum is 1<=n<=10^6
This answer shows a process, one of refinement to develop an efficient solution. The most efficient answer can be found in the paragraphs at the bottom, starting with the text "Of course, you can be even more clever ...".
I've left the entire process in so you can understand the sort of thinking that goes into algorithm development. So, let's begin.
First, I wouldn't, in this case, try to compare large numbers, it's totally unnecessary and limits the sort of ranges you want to handle. Instead, you simply have some number of fours and some number of sevens, which you can easily turn into a sum with:
sum = numFours * 4 + numSevens * 7
In addition, realising that the smallest number is, first and foremost, the one with the least number of digits, you want the absolute minimum number of fours and maximum number of sevens. So start with no fours and as many sevens as needed until you're at or just beyond the required sum.
Then, as long as you're not at the sum, perform the following mutually exclusive steps:
If you're over the desired sum, take away a seven if possible. If there are no sevens to take away, you're done, and there's no solution. Log that fact and exit.
Otherwise (i.e., if you're under the sum), add a four.
At this point, you will have a solution (no solution possible means that you would have already performed an exit in the first bullet point above).
Hence you now have a count of the fours and sevens that sum to the desired number, so the lowest number will be the one with all the fours at the left (for example 447 is less than any of {474, 744}). Output that, and you're done.
By doing it this way, the limitation (say, for example, an unsigned 32-bit int) is no longer the number you use (about four billion, so nine digits), instead it is whatever number of fours you can hold in four billion (about a billion digits).
That's an increase of about 11 billion percent, hopefully enough of an improvement for you, well beyond the 106 maximum sum specified.
In reality, you won't get that many fours since any group of seven fours can always be replaced with four sevens, giving a smaller number (a7777b will always be less than a4444444b, where a is zero or more fours and b is zero or more sevens, same counts in both numbers), so the maximum count of fours will always be six.
Here's some pseudo-code (Python code, actually) to show it in action. I've chosen Python, even though you stated C++, for the following reasons:
This is almost certainly an educational question (there's very little call for this sort of program in the real world). That means you're better off doing the heavy lifting of writing the code yourself, to ensure you understand and also to ensure you don't fail for just copying code off the net.
Python is the most awesome pseudo-code language ever. It can easily read like normal English pseudo-code but has the added benefit that a computer can actually run it for testing and validation purposes :-)
The Python code is:
import sys
# Get desired sum from command line, with default.
try:
desiredSum = int(sys.argv[1])
except:
desiredSum = 22
# Init sevens to get at or beyond sum, fours to zero, and the sum.
(numSevens, numFours) = ((desiredSum + 6) // 7, 0)
thisSum = numSevens * 7 + numFours * 4
# Continue until a solution is found.
while thisSum != desiredSum:
if thisSum > desiredSum:
# Too high, remove a seven. If that's not possible, exit.
if numSevens == 0:
print(f"{desiredSum}: no solution")
sys.exit(0)
numSevens -= 1
thisSum -= 7
else:
# Too low, add a four.
numFours += 1
thisSum += 4
# Only get here if solution found, so print lowest
# possible number that matches four/seven count.
print(f"{desiredSum}: answer is {'4' * numFours}{'7' * numSevens}")
And here's a transcript of it in action for a small sample range:
pax:~> for i in {11..20} ; do ./test47.py ${i} ; done
11: answer is 47
12: answer is 444
13: no solution
14: answer is 77
15: answer is 447
16: answer is 4444
17: no solution
18: answer is 477
19: answer is 4447
20: answer is 44444
And here's the (rough) digit count for a desired sum of four billion, well over half a billion digits:
pax:~> export LC_NUMERIC=en_US.UTF8
pax:~> printf "%'.f\n" $(./test47.py 4000000000 | wc -c)
571,428,597
If you really need a C++ solution, see below. I wouldn't advise using this if this is course-work, instead suggesting you convert the algorithm shown above into your own code (for reasons previously mentioned). This is provided just to show the similar approach in C++:
#include <iostream>
int main(int argc, char *argv[]) {
// Get desired sum from command line, defaulting to 22.
int desiredSum = 22;
if (argc >= 2) desiredSum = atoi(argv[1]);
// Init sevens to get at or beyond desired sum, fours to zero,
// and the sum based on that.
int numSevens = (desiredSum + 6) / 7, numFours = 0;
int thisSum = numSevens * 7 + numFours * 4;
// Continue until a solution is found.
while (thisSum != desiredSum) {
if (thisSum > desiredSum) {
// Too high, remove a seven if possible, exit if not.
if (numSevens == 0) {
std::cout << desiredSum << ": no solution\n";
return 0;
}
--numSevens; thisSum -= 7;
} else {
// Too low, add a four.
++numFours; thisSum += 4;
}
}
// Only get here if solution found, so print lowest
// possible number that matches four / seven count.
std::cout << desiredSum << ": answer is ";
while (numFours-- > 0) std::cout << 4;
while (numSevens-- > 0) std::cout << 7;
std::cout << '\n';
}
Of course, you can be even more clever when you realise that the maximum number of fours will be six, and that you can add one to the sum-of-digits by removing one seven and adding two fours.
So simply:
work out the number of sevens required to get at or just below the desired sum;
add a single four if that will still keep you at or below the desired sum;
then adjust by enough actions of "remove one seven and add two fours" until you get to that desired sum (keeping in mind you may already be there). This will be done exactly once for each unit the shortfall in your current sum (how far it is below the desired sum) so, if the shortfall was two, you would remove two sevens and add four fours (- 14 + 16 = 2). That means you can use a simple mathematical formula rather than a loop.
if that formula results in a negative count of sevens, there was no solution, otherwise use the counts as previously mentioned to form the lowest number (fours followed by sevens).
Just Python for this solution, given how easy it is:
import sys
# Get desired number.
desiredNum = int(sys.argv[1])
# Work out seven and four counts as per description in text.
numSevens = int(desiredNum / 7) # Now within six of desired sum.
shortFall = desiredNum - (numSevens * 7)
numFours = int(shortFall / 4) # Now within three of desired sum.
shortFall = shortFall - numFours * 4
# Do enough '+7-4-4's to reach desired sum (none if already there).
numSevens = numSevens - shortFall
numFours = numFours + shortFall * 2
# Done, output solution, if any.
if numSevens < 0:
print(f"{desiredNum}: No solution")
else:
print(f"{desiredNum}: {'4' * numFours}{'7' * numSevens}")
That way, no loop is required at all. It's all mathematical reasoning.
If I understand the question correctly, you are searching for the smallest number x which contains only the numbers 4 and 7 and the sum of its digits N. The smallest number is for sure written as:
4...47...7
and consists of m times 4 and n times 7. So we know that N = n · 4 + m · 7.
Here are a couple of rules that apply:
(n + m) · 7 ≥ N :: This is evident, just replace all 4's by 7's.
(n + m) · 4 ≤ N :: This is evident, just replace all 7's by 4's.
(n + m) · 7 − N = m · (7 − 4) :: in other words (m+n) · 7 − N needs to be divisible by 7 − 4
So with these two conditions, we can now write the pseudo-code very quickly:
# always assume integer division
j = N/7 # j resembles n+m (total digits)
if (N*7 < N) j++ # ensure rule 1
while ( (j*4 <= N) AND ((j*7 - N)%(7-4) != 0) ) j++ # ensure rule 2 and rule 3
m = (j*7 - N)/(7-4) # integer division
n = j-m
if (m>=0 AND n>=0 AND N==m*4 + n*7) result found
Here is a quick bash-awk implementation:
$ for N in {1..30}; do
awk -v N=$N '
BEGIN{ j=int(N/7) + (N%7>0);
while( j*4<=N && (j*7-N)%3) j++;
m=int((j*7-N)/3); n=j-m;
s="no solution";
if (m>=0 && n>=0 && m*4+n*7==N) {
s=""; for(i=1;i<=j;++i) s=s sprintf("%d",(i<=m?4:7))
}
print N,s
}'
done
1 no solution
2 no solution
3 no solution
4 4
5 no solution
6 no solution
7 7
8 44
9 no solution
10 no solution
11 47
12 444
13 no solution
14 77
15 447
16 4444
17 no solution
18 477
19 4447
20 44444
21 777
22 4477
23 44447
24 444444
25 4777
26 44477
27 444447
28 7777
29 44777
30 444477
The constraints for sum are 1 ≤ n ≤ 106
It means that you might have to find and print numbers with more than 105 digits (106 / 7 ≅ 142,857). You can't store those in a fixed-sized integral type like long long, it's better to directly generate them as std::strings composed by only 4 and 7 characters.
Some mathematical properties may help in finding a suitable algorithm.
We know that n = i * 4 + j * 7.
Of all the possible numbers generated by each combination of i digits four and j digits seven, the minimum is the one with all the fours at left of all the sevens. E.g. 44777 < 47477 < 47747 < ... < 77744.
The minimal lucky number has at max six 4 digits, because, even if the sum of their digits is equal, 4444444 > 7777.
Now, let's introduce s = n / 7 (integer division) and r = n % 7 (the remainder).
If n is divisible by 7 (or when r == 0), the lucky number is composed only by exactly s digits (all 7).
If the remainder is not zero, we need to introduce some 4. Note that
If r == 4, we can just put a single 4 at the left of s sevens
Every time we substitute (if we can) a single 7 with two 4s, the sum of the digits increases by 1.
We can calculate exactly how many 4 digits we need (6 at max) without a loop.
This is enough to write an algorithm.
#include <string>
struct lucky_t
{
long fours, sevens;
};
// Find the minimum lucky number (composed by only 4 and 7 digits)
// that has the sum of digits equal to n.
// Returns it as a string, if exists, otherwise return "-1".
std::string minimum_lucky(long n)
{
auto const digits = [multiples = n / 7L, remainder = n % 7L] {
return remainder > 3
? lucky_t{remainder * 2 - 7, multiples - remainder + 4}
: lucky_t{remainder * 2, multiples - remainder};
} ();
if ( digits.fours < 0 || digits.sevens < 0 )
{
return "-1";
}
else
{
std::string result(digits.fours, '4');
result.append(digits.sevens, '7');
return result;
}
}
Tested here.

count consecutive 1's in binary

I am writing code in Hackerrank. And recently the problem said, convert decimal to base 2 and then count the max consecutive 1's in the binary number. And first I come with following solution. It works fine. But I do not understand the counting part of it, even though I wrote it.
The code is
int main(){
int n,ind=0, count=0, mmax=0;
char bin[100];
cin >> n;
while(n){
if(n%2==0) {
bin[ind]='0';
n = n / 2;
ind = ind + 1;
}
else if(n%2==1) {
bin[ind]='1';
n = n / 2;
ind = ind + 1;
}
}
for(int i=0; i<=(ind-1); i++){
if(bin[i] == '1' && bin[i+1] == '1'){
count++;
if(mmax < count)
mmax = count;
}
else
count=0;
}
cout << mmax + 1 << endl;
return 0;
}
In the above code, I guess that variable mmax will give me the max consecutive number of 1's but it gives me value that has (max consecutive - 1), So I just wrote like that and submitted the code. But I am curious about. why it is working that way. I am little bit of confused the way that code works like this.
Thanks
Lets say you have this binary sequence:
11110
Your code will compare starting from the first and second:
|11|110 1 && 1 -> max = 1
1|11|10 1 && 1 -> max = 2
11|11|0 1 && 1 -> max = 3
111|10| 1 && 0 -> max = 3
you can see, that although there are 4 1's you only do 3 comparisons, so your max will always be -1 of the actual max. You can fix this by adding mmax += 1 after your for loop.
Just a little bit of trace using small example will show why.
First, lets say there is only 1 '1' in your array.
Since you require both the current position and your next position to be '1', you will always get 0 for this case.
Let's say I have "11111". At the first '1', since next position is also '1', you increment count once. This repeats until 4th '1' and you increment your count 4 times in total so far. When you reach 5th '1', your next position is not '1', thus your count stops at 4.
In general, your method is like counting gaps between fingers, given 5 fingers, you get 4 gaps.
Side note: your code will fail for the case when there is no '1' in your array.

Count the number of number x that has digit sum equal the digit sum of x*m

I was trying to solve the following problem but I am stuck. I think it is an dynamic programming problem.
Could you please give some ideas?
Problem:
Given a positive number n (n<=18) and a positive number m (m<=100).
Call S(x) is sum of digits of x.
For example S(123)=6
Count the number of integer number x that has n digits and S(x)=S(x*m)
Example:
n= 1, m= 2 result= 2
n= 18, m=1 result = 1000000000000000000
Thanks in advance.
First, we need to come up with a recursive formula:
Starting from the least significant digit (LSD) to the most significant digit (MSD), we have a valid solution if after we compute the MSD, we have S(x) = S(x*m)
To verify whether a number is a valid solution, we need to know three things:
What is the current sum of digit S(x)
What is the current sum of digit S(x*m)
What is the current digit.
So, to answer for the first and last, it is easy, we just need to maintain two parameters sumand digit. To compute the second, we need to maintain two additional parameters, sumOfProduct and lastRemaining.
sumOfProduct is the current S(x*m)
lastRemaining is the result of (m * current digit value + lastRemaining) / 10
For example, we have x = 123 and m = 23
First digit = 3
sum = 3
digit = 0
sumOfProduct += (lastRemaining + 3*m) % 10 = 9
lastRemaining = (m*3 + 0)/10 = 6
Second digit = 2
sum = 5
digit = 1
sumOfProduct += (lastRemaining + 2*m) % 10 = 11
lastRemaining = (m*2 + lastRemaining)/10 = 5
Last digit = 1
sum = 6
digit = 2
sumOfProduct += (lastRemaining + m) % 10 = 19
lastRemaining = (m + lastRemaining)/10 = 2
As this is the last digit, sumOfProduct += S(lastRemaining) = 21.
So, x = 123 and m = 23 is not a valid number. Check x*m = 2829 -> S(x*m) = S(2829) = 21.
So, we can have a recursive formula with state (digit, sum, sumOfProdut, lastRemaining).
Thus, our dynamic programming state is dp[18][18*9 + 1][18*9 + 1][200] (as m <= 100, so lastRemaining not larger than 200).
Now the dpstate is over 300 MB, but if we use an iterative approach, it will become smaller, using about 30MB
This problem can be calculated directly.
From those documents: 1, 2, and 3 (thanks to #LouisRicci for finding them), we can state:
The Repeating Cycle of Sum of Digits of Multiples starts repeating at the last digit but one from the base-number (9 for base-10)
S(x) can be defined as: let a equal x mod 9, if a is zero, take 9 as result, else take a. You can play it in the ES6 snippet below:
IN.oninput= (_=> OUT.value= (IN.value % 9) || 9);
IN.oninput();
Input x:<br>
<input id=IN value=123><br>
S(x):<br>
<input id=OUT disabled>
Multiplication rule: S(x * y) = S(S(x) * S(y)).
S(x) and S(x*m) will always be true for x=0, this way there is no zero result.
With the above statements in mind, we should calc the Repeating Cycle of Sum of Digits of Multiples for S(m):
int m = 88;
int Sm = S(m); // 7
int true_n_times_in_nine = 0;
for (int i=1; i<=9; i++) {
true_n_times_in_nine += i == S(i * Sm);
}
The answer then:
result = ((pow(10, n) / 9) * true_n_times_in_nine);
Plus one because of case zero:
result++;
Here is an ES6 solution:
S= x=> (x % 9) || 9;
TrueIn9= (m, Sm=S(m))=> [1,2,3,4,5,6,7,8,9].filter(i=> i==S(i*Sm)).length;
F= (n,m)=> ~~(eval('1e'+n)/9) * TrueIn9(m) + 1;
N.oninput=
M.oninput=
f=(_=> OUT.value= F(N.value | 0, M.value | 0));
f();
Input n: (number of digits)<br>
<input id=N value=1><br>
Input m: (multiplicative number)<br>
<input id=M value=2><br>
F(n,m):<br>
<input id=OUT disabled><br>

Understanding log iteration of for-loop

Why does the following for-loop compute floor(log_2(m)), rather than ceil(log_2(m)) (which is what I would have expected)?
for (int m = <some number>; m > 1; m /= 2) //<some number> is integer >= 0
cout << “Here\n”;
Since, for example, 3 / 2 is 1 when both 3 and 2 are integers, the loop will terminate without considering the fractions. So you get log_2(3) = 1.

How does the modulus operator work?

Let's say that I need to format the output of an array to display a fixed number of elements per line. How do I go about doing that using modulus operation?
Using C++, the code below works for displaying 6 elements per line but I have no idea how and why it works?
for ( count = 0 ; count < size ; count++)
{
cout << somearray[count];
if( count % 6 == 5) cout << endl;
}
What if I want to display 5 elements per line? How do i find the exact expression needed?
in C++ expression a % b returns remainder of division of a by b (if they are positive. For negative numbers sign of result is implementation defined). For example:
5 % 2 = 1
13 % 5 = 3
With this knowledge we can try to understand your code. Condition count % 6 == 5 means that newline will be written when remainder of division count by 6 is five. How often does that happen? Exactly 6 lines apart (excercise : write numbers 1..30 and underline the ones that satisfy this condition), starting at 6-th line (count = 5).
To get desired behaviour from your code, you should change condition to count % 5 == 4, what will give you newline every 5 lines, starting at 5-th line (count = 4).
Basically modulus Operator gives you remainder
simple Example in maths what's left over/remainder of 11 divided by 3? answer is 2
for same thing C++ has modulus operator ('%')
Basic code for explanation
#include <iostream>
using namespace std;
int main()
{
int num = 11;
cout << "remainder is " << (num % 3) << endl;
return 0;
}
Which will display
remainder is 2
It gives you the remainder of a division.
int c=11, d=5;
cout << (c/d) * d + c % d; // gives you the value of c
This JSFiddle project could help you to understand how modulus work:
http://jsfiddle.net/elazar170/7hhnagrj
The modulus function works something like this:
function modulus(x,y){
var m = Math.floor(x / y);
var r = m * y;
return x - r;
}
You can think of the modulus operator as giving you a remainder. count % 6 divides 6 out of count as many times as it can and gives you a remainder from 0 to 5 (These are all the possible remainders because you already divided out 6 as many times as you can). The elements of the array are all printed in the for loop, but every time the remainder is 5 (every 6th element), it outputs a newline character. This gives you 6 elements per line. For 5 elements per line, use
if (count % 5 == 4)