I have to reset system date and time either on Linux, or on Windows.
How do I check OS without using ifdef, or if defined?
With CMake, you can conditionally add files to a target by using generator expressions. With that, you can isolate any platform-specific code in files, and use them in your build specification as follows.
add_executable(reset-time
$<$<PLATFORM_ID:Darwin>:resettime-macos.cpp>
$<$<PLATFORM_ID:Linux>:resettime-linux.cpp>
$<$<PLATFORM_ID:Windows>:resettime-windows.cpp>)
And as #eeroika pointed out in the comments, a good alternative is
add_executable(reset-time
resettime-$<LOWER_CASE:${CMAKE_SYSTEM_NAME}>.cpp)
as it requires not adjustment (of the CMakeLists.txt) when porting your project to a new system and you can catch a missing implementation file earlier, i.e., before linking.
You could set a global macro definition to the compiler based on which operating system you are compiling for. For example -D IS_WINDOWS=1. You could then use #if IS_WINDOWS instead of #ifdef. I don't know why this would be useful but it achieves what you asked.
I was reading on Clang and Ch (c++ interpreters), but its not clear for me, is it possible to run a newly generated .cpp file without any installations? Because i need to run the final program on any pc...
ps. if yes, does anyone have a good example, where a .cpp file is being executed within c++ code?
This is probably impossible or at least very hard. You would have to include the whole compiler (including linker, assembler, optimizer, preprocessor, ...) inside your program and that would make it extremely big.
One way of doing this is with Clang (as you already noted), there is even a demo project called "Clang interpreter" in the source: http://llvm.org/viewvc/llvm-project/cfe/trunk/examples/clang-interpreter/
However I once tried to compile this "beast" into my program and gave up halfway, because the file size of the result binary (or binaries with external libraries) gets into tens of megabytes (maybe even a hundred).
My suggestion is to either produce a different script (e.g. bash/sh script, which you could execute on any unix machine) that can be interpreted easily.
As far as I know, it is impossible, because compilation process of a CPP file is like this-
Preprocessing: the preprocessor takes a C++ source code file and deals with the #includes, #defines and other preprocessor directives. The output of this step is a "pure" C++ file without pre-processor directives.
Compilation: the compiler takes the pre-processor's output and produces an object file from it.
Linking: the linker takes the object files produced by the compiler and produces either a library or an executable file.
So, there should be intermediate files and executable files.
More can be found here-
https://stackoverflow.com/a/6264256/7725220
Kind of depends on what you mean by "installations".
Yes you can distribute your program with a full compiler, compile the source code and then execute the final result (all from the original exe).
Is there an automated way to take a large amount of C++ header files and combine them in a single one?
This operation must, of course, concatenate the files in the right order so that no types, etc. are defined before they are used in upcoming classes and functions.
Basically, I'm looking for something that allows me to distribute my library in two files (libfoo.h, libfoo.a), instead of the current bunch of include files + the binary library.
As your comment says:
.. I want to make it easier for library users, so they can just do one single #include and have it all.
Then you could just spend some time, including all your headers in a "wrapper" header, in the right order. 50 headers are not that much. Just do something like:
// libfoo.h
#include "header1.h"
#include "header2.h"
// ..
#include "headerN.h"
This will not take that much time, if you do this manually.
Also, adding new headers later - a matter of seconds, to add them in this "wrapper header".
In my opinion, this is the most simple, clean and working solution.
A little bit late, but here it is. I just recently stumbled into this same problem myself and coded this solution: https://github.com/rpvelloso/oneheader
How does it works?
Your project's folder is scanned for C/C++ headers and a list of headers found is created;
For every header in the list it analyzes its #include directives and assemble a dependency graph in the following way:
If the included header is not located inside the project's folder then it is ignored (e.g., if it is a system header);
If the included header is located inside the project's folder then an edge is create in the dependency graph, linking the included header to the current header being analyzed;
The dependency graph is topologically sorted to determine the correct order to concatenate the headers into a single file. If a cycle is found in the graph, the process is interrupted (i.e., if it is not a DAG);
Limitations:
It currently only detects single line #include directives (e.g., #include );
It does not handles headers with the same name in different paths;
It only gives you a correct order to combine all the headers, you still need to concatenate them (maybe you want remove or modify some of them prior to merging).
Compiling:
g++ -Wall -ggdb -std=c++1y -lstdc++fs oneheader.cpp -o oneheader[.exe]
Usage:
./oneheader[.exe] project_folder/ > file_sequence.txt
(Adapting an answer to my dupe question:)
There are several other libraries which aim for a single-header form of distribution, but are developed using multiple files; and they too need such a mechanism. For some (most?) it is opaque and not part of the distributed code. Luckily, there is at least one exception: Lyra, a command-line argument parsing library; it uses a Python-based include file fuser/joiner script, which you can find here.
The script is not well-documented, but they way you use it is with 3 command-line arguments:
--src-include - The include file to convert, i.e. to merge its include directives into its body. In your case it's libfoo.h which includes the other files.
--dst-include - The output file to write - the result of the merging.
--src-include-dir - The directory relative to which include files are specified (i.e. an "include search path" of one directory; the script doesn't support the complex mechanism of multiple include paths and search priorities which the C++ compiler offers)
The script acts recursively, so if file1.h includes another file under the --src-include-dir, that should be merged in as well.
Now, I could nitpick at the code of that script, but - hey, it works and it's FOSS - distributed with the Boost license.
If your library is so big that you cannot build and maintain a single wrapping header file like Kiril suggested, this may mean that it is not architectured well enough.
So if your library is really huge (above a million lines of source code), you might consider automating that, with tools like
GCC make dependency generator preprocessor options like -M -MD -MF etc, with another hand made script sorting them
expensive commercial static analysis tools like coverity
customizing a compiler thru plugins or (for GCC 4.6) MELT extensions
But I don't understand why you want an automated way of doing this. If the library is of reasonable size, you should understand it and be able to write and maintain a wrapping header by hand. Automating that task will take you some efforts (probably weeks, not minutes) so is worthwhile only for very large libraries.
If you have a master include file that includes all others available, you could simply hack a C preprocessor re-implementation in Perl. Process only ""-style includes and recursively paste the contents of these files. Should be a twenty-liner.
If not, you have to write one up yourself or try at random. Automatic dependency tracking in C++ is hard. Like in "let's see if this template instantiation causes an implicit instantiation of the argument class" hard. The only automated way I see is to shuffle your include files into a random order, see if the whole bunch compiles, and re-shuffle them until it compiles. Which will take n! time, you might be better off writing that include file by hand.
While the first variant is easy enough to hack, I doubt the sensibility of this hack, because you want to distribute on a package level (source tarball, deb package, Windows installer) instead of a file level.
You really need a build script to generate this as you work, and a preprocessor flag to disable use of the amalgamate (that could be for your uses).
To simplify this script/program, it helps to have your header structures and include hygiene in top form.
Your program/script will need to know your discovery paths (hint: minimise the count of search paths to one if possible).
Run the script or program (which you create) to replace include directives with header file contents.
Assuming your headers are all guarded as is typical, you can keep track of what files you have already physically included and perform no action if there is another request to include them. If a header is not found, leave it as-is (as an include directive) -- this is required for system/third party headers -- unless you use a separate header for external includes (which is not at all a bad idea).
It's good to have a build phase/translation that includes header alone and produces zero warnings or errors (warnings as errors).
Alternatively, you can create a special distribution repository so they never need to do more than pull from it occasionally.
What you want to do sounds "javascriptish" to me :-) . But if you insist, there is always "cat" (or the equivalent in Windows):
$ cat file1.h file2.h file3.h > my_big_file.h
Or if you are using gcc, create a file my_decent_lib_header.h with the following contents:
#include "file1.h"
#include "file2.h"
#include "file3.h"
and then use
$ gcc -C -E my_decent_lib_header.h -o my_big_file.h
and this way you even get file/line directives that will refer to the original files (although that can be disabled, if you wish).
As for how automatic is this for your file order, well, it is not at all; you have to decide the order yourself. In fact, I would be surprised to hear that a tool that orders header dependencies correctly in all cases for C/C++ can be built.
usually you don't want to include every bit of information from all your headers into the special header that enables the potential user to actually use your library. The non-trivial removal of type definitions, further includes or defines, that are not necessary for the user of your interface to know can not be automatedly done. As far as I know.
Short answer to your main question:
No.
My suggestions:
manually make a new header, that contains all relevant information (nothing more, nothing less) for the user of your library interface. Add nice documentation comments for each component it contains.
use forward declarations where possible, instead of full-fledged included definitions. Put the actual includes in your implementation files. The less include statements you have in your headers, the better.
don't build a deeply nested hierarchy of includes. This makes it extremely hard to keep an overview on the contents of every bit you include. The user of your library will look into the header to learn how to use it. And he will probably not be able to distinguish relevant code from irrelevant on the first sight. You want to maximize the ratio of relevant code per total code in the main header for your library.
EDIT
If you really do have a toolkit library, and the order of inclusion really does not matter, and you have a bunch of independent headers, that you want to enumerate just for convenience into a single header, then you can use a simple script. Like the following Python (untested):
import glob
with open("convenience_header.h", 'w') as f:
for header in glob.glob("*.h"):
f.write("#include \"%s\"\n" % header)
Question: what is the best way to convert a .c/.h based project (which is forcefully compiled as C++ via the makefiles) to a .cpp/.hpp based project?
Obviously, this is a triple-step process. The first would be to rename everything with *.c at the end to *.cpp; the second would be to rename everything with *.h at the end to *.hpp. What I'm getting caught up on is the third step- somehow building a list of what the files /were/ named (ie, myfile.c), then iterating through every single affected file and replacing every instance of the old filename with the new (myfile.c -> myfile.cpp). Obviously this would have to be done so the source files can still find everything that they need.
The source code in question consists of around 2700 individual source files.
The reason why I'm doing this is mostly because I'm porting said software package to Mac OS X, and that involves Xcode. Things are getting bloody messy trying to keep track of precisely what is C, C++, and the associated headers for either (then overriding the compiler for C++ compilation). It would be much simpler if everything C++ was *.cpp (with the associated headers being *.hpp), since then I can just leave Xcode at the default compiler setting as per the file extension and everything should work without any fancy intervention on my end.
I should probably also note that I know precisely what files need to be converted, because they already compile properly and in a sane fashion if I'm overriding Xcode to compile as C++. That's not a problem- my issue is trying to figure out how to batch rename everything then run through all the files and update the #includes.
Thank you in advance!
-Keven Tipping
You don't need to mess with the headers. filename.h is a perfectly good name for a C++ header.
If you're not using the old makefile, but creating a new XCode project, then you have only one step:
Rename *.c to *.cpp
If the makefile was written right (using rule patterns and not specific per-file rules), there shouldn't be any changes needed there either.
There's no reason to rename those C language header and source files to C++ and there are many reasons not to. Just three of the many:
Reason #1: C and C++ are diverging, different languages. Force-compiling a C file as if it were C++ risks introducing a bug.
Reason #2: Xcode can handle C, C++, and C and C++ mixed together.
Reason #3: C++ can easily call C routines. All you need to do is wrap the declarations of those C functions inside an extern "C" { /* C declarations here */ } construct.
Sometimes I run across quite complicated macros and I would like to view what they will expand to given the parameters (there are string concatenations in there as well). Is there by any chance a program out there that will expand the macros?
I am aware of the compiler flag -E but what about a single file (or preferably a single macro?)
Eclipse will expand macros if you mouse over them. For macros which include other macros, Eclipse can even step through the macro expansions one step at a time.
(You can use Eclipse for this even if you normally use another IDE.)
A few options are:
In GCC:
gcc -E filename.c
Using computers precompiler:
cpp filename.c
In visual Studio:
Right-click on the file on the Solution Explorer, goto Properties. Under Configuration Properties->C/C++->Preprocessor & "Generate Preprocessed File"
The C and C++ preprocessor is called cpp on most systems - you can use it directly:
cpp somefile.c
will preprocess somefile.c, expanding macros and write the results to standard output. If you are using the Microsoft compiler:
cl -E somefile.c
will do the same, assuming you have the compiler on your PATH.
Netbeans IDE allows you to view what a macro expands to by holding Ctrl+Alt and hovering/clicking a macro.