Perl 5.14 source - Sample program failing - c++

Perl 5.14 source - Sample program failing
I'm trying to execute the below program on Linux 64 with libperl.so built with 5.14 source
and i'm getting an abort in the location
Program terminated with signal 11, Segmentation fault.
#0 0x00002abdc0eb2656 in Perl_sv_2mortal () from ./libperl.so
(gdb) where
#0 0x00002abdc0eb2656 in Perl_sv_2mortal () from ./libperl.so
#1 0x00000000004010ed in PerlPower ()
#2 0x0000000000401335 in main ()
(gdb)
My program:
#include <EXTERN.h>
#include <perl.h>
#include <stdio.h>
static PerlInterpreter *my_perl;
static void PerlPower(int a, int b)
{
dSP; /* initialize stack pointer */
ENTER; /* everything created after here */
SAVETMPS; /* ...is a temporary variable. */
PUSHMARK(SP); /* remember the stack pointer */
XPUSHs(sv_2mortal(newSViv(a))); /* push the base onto the stack */
XPUSHs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */
PUTBACK; /* make local stack pointer global */
call_pv("expo", G_SCALAR); /* call the function */
SPAGAIN; /* refresh stack pointer *
/* pop the return value from stack */
printf("%d to the %dth power is %d.\n", a, b, POPi);
PUTBACK;
FREETMPS; /* free that return value */
LEAVE; /* ...and the XPUSHed "mortal" args. */
}
int main(int argc, char **argv, char **env)
{
char *my_argv[] = { "", "power.pl" };
PERL_SYS_INIT3(&argc, &argv, &env);
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 2, my_argv, (char **)NULL);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
perl_run(my_perl);
PerlPower(3, 4);
/*** Compute 3 ** 4 ***/
perl_destruct(my_perl);
perl_free(my_perl);
PERL_SYS_TERM();
}
power.pl contains the below statements
sub expo {
my ($a, $b) = #_;
return $a ** $b;
}
The above sample C and perl program was taken from the link http://perldoc.perl.org/perlembed.html#Evaluating-a-Perl-statement-from-your-C-program
I'm using the below compiler options
Compiler:
cc='cc', ccflags ='-D_REENTRANT -D_GNU_SOURCE -DTHREADS_HAVE_PIDS -DDEBUGGING -fno-strict-aliasing -pipe -Wdeclaration-after-statement -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64',
optimize='-O2 -fmessage-length=0 -Wall -D_FORTIFY_SOURCE=2 -g -Wall -pipe',
cppflags='-D_REENTRANT -D_GNU_SOURCE -DTHREADS_HAVE_PIDS -DDEBUGGING -fno-strict-aliasing -pipe -Wdeclaration-after-statement'
ccversion='', gccversion='4.1.2 20070115 (prerelease) (SUSE Linux)', gccosandvers=''
intsize=4, longsize=8, ptrsize=8, doublesize=8, byteorder=12345678
d_longlong=define, longlongsize=8, d_longdbl=define, longdblsize=16
ivtype='long', ivsize=8, nvtype='double', nvsize=8, Off_t='off_t', lseeksize=8
alignbytes=8, prototype=define
Can you please help me to narrow down the problem?

I got one too, I got the win32 equivalent Faulting application power.exe, version 0.0.0.0, faulting module perl514.dll, version 0.0.0.0, fault address 0x000c155f.
but I also got an error message :)
$ power.exe
Can't open perl script "power.pl": No such file or directory
After copying power.pl from embed it works as expected
$ cat power.pl
sub expo {
my ($a, $b) = #_;
return $a ** $b;
}
$ power.exe
3 to the 4th power is 81.

The problem was while compiling the source i hadn't specified the new 5.14.2 header files location. I copied both the c and perl file to the folder containing new header file of 5.14.2 and compiling with below options resolved the problem
g++ -o test_perl test_perl.c -I . -L . -g perl -MExtUtils::Embed -e ccopts -e ldopts
LD_LIBRARY_PATH=.:LD_LIBRARY_PATH;export LD_LIBRARY_PATH

Related

Enabling C++ exceptions on ARM bare-metal bootloader

For learning purpose, I am trying to get full C++ support on an ARM MCU (STM32F407ZE). I am struggling at getting exceptions working, consequently carrying this question:
How to get C++ exceptions on a bare-metal ARM bootloader?
To extend a bit the question:
I understand that an exception, like exiting a function require unwinding the stack. The fact that exiting a function works out of the box, but the exception handling does not, make me to think that the compiler is adding the unwinding of functions-exit but can not do it for exceptions.
So the sub-question 1 is: Is this premise correct? Do I really need to implement/integrate an unwinding library for exception handling?
In my superficial understanding of unwinding, there is a frame in the stack and the unwinding "just" need to call the destructor on each object of it, and finally jump to the given catch.
Sub-question 2 is: How does the unwinding library perform this task? What is the strategy used? (to the extends appropriate for a SO answer)
In my searches, I found many explanations of WHAT is the unwinding, but very few of how to get it working. The closest is:
GCC arm-none-eabi (Codesourcery) and C++ Exceptions
The project
1) The first step and yet with some difficulties, was to get the MCU powered and communicating through JTAG.
This is just contextual information, please do not tag the question off-topic just because of this picture. Jump to step 2 instead.
I know there are testing boards available, but this is a learning project to get a better understanding on all the "magic" behind the scene. So I got a chip socket, a bread-board and setup the minimal power-up circuitry:
Note: JTAG is performed through the GPIO of a raspberry-pi.
Note2: I am using OpenOCD to communicate with the chip.
2) Second step, was to make a minimal software to blink the yellow led.
Using arm-none-eabi-g++ as a compiler and linker, the c++ code was straightforward, but my understanding of the linker script is still somewhat blurry.
3) Enable exceptions handling (not yet working).
For this goal, following informations where useful:
https://wiki.osdev.org/C++_Exception_Support
https://itanium-cxx-abi.github.io/cxx-abi/exceptions.pdf
https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
However, it seems quite too much complexity for a simple exception handling, and before to start implementing/integrating an unwinding library, I would like to be sure I am going in the correct direction.
I would like to avoid earing in 2 weeks: "Ohh, by the way, you just need to add this "-xx" option to the compiler and it works"
main.cpp
auto reset_handler() noexcept ->void;
auto main() -> int;
int global_variable_test=50;
extern "C"
{
#include "stm32f4xx.h"
#include "stm32f4xx_rcc.h"
#include "stm32f4xx_gpio.h"
void assert_failed(uint8_t* file, uint32_t line){}
void hardFaultHandler( unsigned int * hardFaultArgs);
// vector table
#define SRAM_SIZE 128*1024
#define SRAM_END (SRAM_BASE + SRAM_SIZE)
unsigned long *vector_table[] __attribute__((section(".vector_table"))) =
{
(unsigned long *)SRAM_END, // initial stack pointer
(unsigned long *)reset_handler, // main as Reset_Handler
};
}
auto reset_handler() noexcept -> void
{
// Setup execution
// Call the main function
int ret = main();
// never finish
while(true);
}
class A
{
public:
int b;
auto cppFunc()-> void
{
throw (int)4;
}
};
auto main() -> int
{
// Initializing led GPIO
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE);
GPIO_InitTypeDef GPIO_InitDef;
GPIO_InitDef.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14;
GPIO_InitDef.GPIO_OType = GPIO_OType_PP;
GPIO_InitDef.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitDef.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitDef.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_Init(GPIOG, &GPIO_InitDef);
// Testing normal blinking
int loopNum = 500000;
for (int i=0; i<5; ++i)
{
loopNum = 100000;
GPIO_SetBits(GPIOG, GPIO_Pin_13 | GPIO_Pin_14);
for (int i = 0; i < loopNum; i++) continue; //active waiting!
loopNum = 800000;
GPIO_ResetBits(GPIOG, GPIO_Pin_13 | GPIO_Pin_14);
for (int i=0; i<loopNum; i++) continue; //active waiting!
}
// Try exceptions handling
try
{
A a;
a.cppFunc();
}
catch(...){}
return 0;
}
Makefile
CPP_C = arm-none-eabi-g++
C_C = arm-none-eabi-g++
LD = arm-none-eabi-g++
COPY = arm-none-eabi-objcopy
LKR_SCRIPT = -Tstm32_minimal.ld
INCLUDE = -I. -I./stm32f4xx/CMSIS/Device/ST/STM32F4xx/Include -I./stm32f4xx/CMSIS/Include -I./stm32f4xx/STM32F4xx_StdPeriph_Driver/inc -I./stm32f4xx/Utilities/STM32_EVAL/STM3240_41_G_EVAL -I./stm32f4xx/Utilities/STM32_EVAL/Common
C_FLAGS = -c -fexceptions -fno-common -O0 -g -mcpu=cortex-m4 -mthumb -DSTM32F40XX -DUSE_FULL_ASSERT -DUSE_STDPERIPH_DRIVER $(INCLUDE)
CPP_FLAGS = -std=c++11 -c $(C_FLAGS)
LFLAGS = -specs=nosys.specs -nostartfiles -nostdlib $(LKR_SCRIPT)
CPFLAGS = -Obinary
all: main.bin
main.o: main.cpp
$(CPP_C) $(CPP_FLAGS) -o main.o main.cpp
stm32f4xx_gpio.o: stm32f4xx_gpio.c
$(C_C) $(C_FLAGS) -o stm32f4xx_gpio.o stm32f4xx_gpio.c
stm32f4xx_rcc.o: stm32f4xx_rcc.c
$(C_C) $(C_FLAGS) -o stm32f4xx_rcc.o stm32f4xx_rcc.c
main.elf: main.o stm32f4xx_gpio.o stm32f4xx_rcc.o
$(LD) $(LFLAGS) -o main.elf main.o stm32f4xx_gpio.o stm32f4xx_rcc.o
main.bin: main.elf
$(COPY) $(CPFLAGS) main.elf main.bin
clean:
rm -rf *.o *.elf *.bin
write:
./write_bin.sh main.elf
Linker script: stm32_minimal.ld
/* memory layout for an STM32F407 */
MEMORY
{
FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 512K
SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 128K
}
/* output sections */
SECTIONS
{
/* program code into FLASH */
.text :
{
*(.vector_table) /* Vector table */
*(.text) /* Program code */
*(.data)
/**(.eh_frame)*/
} >FLASH
.ARM.exidx : /* Required for unwinding the stack? */
{
__exidx_start = .;
* (.ARM.exidx* .gnu.linkonce.armexidx.*)
__exidx_end = .;
} > FLASH
PROVIDE ( end = . );
}

C program terminating

I am trying to write a program in C (in Linux 64bit with GCC 4.1.2).
int program_instances(char *cmdname)
{
char buf[32], *ret;
char cmdbuf[512];
FILE *cmdpipe;
sprintf(cmdbuf, "/bin/ps -eo comm | /bin/grep -c '%s'",
cmdname);
cmdpipe = popen(cmdbuf, "r");
if (!cmdpipe)
{
return -1;
}
memset(buf, 0, sizeof(buf));
ret = fgets(buf, sizeof(buf), cmdpipe);
pclose(cmdpipe);
if (!ret)
{
return -1;
}
int nr = atoi(buf);
return nr;
}
Tried to debug the issue through gdb but after the line
sprintf(cmdbuf, "/bin/ps -eo comm | /bin/grep -c '%'",cmdname);
The programm is not crossing the above line , throwing the below lines..
Executing new program: /bin/bash
Error in re-setting breakpoint 1: No symbol table is loaded. Use the "file" command.
[New process 2437]
Executing new program: /bin/ps
Please help us to resolve this issue.
Try to compile your code with -g and remove -O [compiler flag]. When optimizing compiler(gcc) changes order of instructions to improve speed. After recompiling attach debugger again.

print call stack in C or C++

Is there any way to dump the call stack in a running process in C or C++ every time a certain function is called? What I have in mind is something like this:
void foo()
{
print_stack_trace();
// foo's body
return
}
Where print_stack_trace works similarly to caller in Perl.
Or something like this:
int main (void)
{
// will print out debug info every time foo() is called
register_stack_trace_function(foo);
// etc...
}
where register_stack_trace_function puts some sort of internal breakpoint that will cause a stack trace to be printed whenever foo is called.
Does anything like this exist in some standard C library?
I am working on Linux, using GCC.
Background
I have a test run that behaves differently based on some commandline switches that shouldn't affect this behavior. My code has a pseudo-random number generator that I assume is being called differently based on these switches. I want to be able to run the test with each set of switches and see if the random number generator is called differently for each one.
Survey of C/C++ backtrace methods
In this answer I will try to run a single benchmark for a bunch of solutions to see which one runs faster, while also considering other points such as features and portability.
Tool
Time / call
Line number
Function name
C++ demangling
Recompile
Signal safe
As string
C
C++23 <stacktrace> GCC 12.1
7 us
y
y
y
y
n
y
n
Boost 1.74 stacktrace()
5 us
y
y
y
y
n
y
n
Boost 1.74 stacktrace::safe_dump_to
y
n
n
glibc backtrace_symbols_fd
25 us
n
-rdynamic
hacks
y
y
n
y
glibc backtrace_symbols
21 us
n
-rdynamic
hacks
y
n
y
y
GDB scripting
600 us
y
y
y
n
y
n
y
GDB code injection
n
n
y
libunwind
y
libdwfl
4 ms
n
y
libbacktrace
y
Empty cells mean "TODO", not "no".
us: microsecond
Line number: shows actual line number, not just function name + a memory address.
It is usually possible to recover the line number from an address manually after the fact with addr2line. But it is a pain.
Recompile: requires recompiling the program to get your traces. Not recompiling is better!
Signal safe: crucial for the important uses case of "getting a stack trace in case of segfault": How to automatically generate a stacktrace when my program crashes
As string: you get the stack trace as a string in the program itself, as opposed to e.g. just printing to stdout. Usually implies not signal safe, as we don't know the size of the stack trace string size in advance, and therefore requires malloc which is not async signal safe.
C: does it work on a plain-C project (yes, there are still poor souls out there), or is C++ required?
Test setup
All benchmarks will run the following
main.cpp
#include <cstdlib> // strtoul
#include <mystacktrace.h>
void my_func_2(void) {
print_stacktrace(); // line 6
}
void my_func_1(double f) {
(void)f;
my_func_2();
}
void my_func_1(int i) {
(void)i;
my_func_2(); // line 16
}
int main(int argc, char **argv) {
long long unsigned int n;
if (argc > 1) {
n = std::strtoul(argv[1], NULL, 0);
} else {
n = 1;
}
for (long long unsigned int i = 0; i < n; ++i) {
my_func_1(1); // line 27
}
}
This input is designed to test C++ name demangling since my_func_1(int) and my_func_1(float) are necessarily mangled as a way to implement C++ function overload.
We differentiate between the benchmarks by using different -I includes to point to different implementations of print_stacktrace().
Each benchmark is done with a command of form:
time ./stacktrace.out 100000 &>/dev/null
The number of iterations is adjusted for each implementation to produce a total runtime of the order of 1s for that benchmark.
-O0 is used on all tests below unless noted. Stack traces may be irreparably mutilated by certain optimizations. Tail call optimization is a notable example of that: What is tail call optimization? There's nothing we can do about it.
C++23 <stacktrace>
This method was previously mentioned at: https://stackoverflow.com/a/69384663/895245 please consider upvoting that answer.
This is the best solution... it's portable, fast, shows line numbers and demangles C++ symbols. This option will displace every other alternative as soon as it becomes more widely available, with the exception perhaps only of GDB for one-offs without the need or recompilation.
cpp20_stacktrace/mystacktrace.h
#include <iostream>
#include <stacktrace>
void print_stacktrace() {
std::cout << std::stacktrace::current();
}
GCC 12.1.0 from Ubuntu 22.04 does not have support compiled in, so for now I built it from source as per: How to edit and re-build the GCC libstdc++ C++ standard library source? and set --enable-libstdcxx-backtrace=yes, and it worked!
Compile with:
g++ -O0 -ggdb3 -Wall -Wextra -pedantic -std=c++23 -o cpp20_stacktrace.out main.cpp -lstdc++_libbacktrace
Sample output:
0# print_stacktrace() at cpp20_stacktrace/mystacktrace.h:5
1# my_func_2() at /home/ciro/main.cpp:6
2# my_func_1(int) at /home/ciro/main.cpp:16
3# at /home/ciro/main.cpp:27
4# at :0
5# at :0
6# at :0
7#
If we try to use GCC 12.1.0 from Ubuntu 22.04:
sudo apt install g++-12
g++-12 -ggdb3 -O2 -std=c++23 -Wall -Wextra -pedantic -o stacktrace.out stacktrace.cpp -lstdc++_libbacktrace
It fails with:
stacktrace.cpp: In function ‘void my_func_2()’:
stacktrace.cpp:6:23: error: ‘std::stacktrace’ has not been declared
6 | std::cout << std::stacktrace::current();
| ^~~~~~~~~~
Checking build options with:
g++-12 -v
does not show:
--enable-libstdcxx-backtrace=yes
so it wasn't compiled in. Bibliography:
How to use <stacktrace> in GCC trunk?
How can I generate a C++23 stacktrace with GCC 12.1?
It does not fail on the include because the header file:
/usr/include/c++/12
has a feature check:
#if __cplusplus > 202002L && _GLIBCXX_HAVE_STACKTRACE
Boost stacktrace
The library has changed quite a lot around Ubuntu 22.04, so make sure your version matches: Boost stack-trace not showing function names and line numbers
The library is pretty much superseded by the more portable C++23 implementation, but remains a very good option for those that are not at that standard version yet, but already have a "Boost clearance".
Documented at: https://www.boost.org/doc/libs/1_66_0/doc/html/stacktrace/getting_started.html#stacktrace.getting_started.how_to_print_current_call_stack
Tested on Ubuntu 22.04, boost 1.74.0, you should do:
boost_stacktrace/mystacktrace.h
#include <iostream>
#define BOOST_STACKTRACE_LINK
#include <boost/stacktrace.hpp>
void print_stacktrace(void) {
std::cout << boost::stacktrace::stacktrace();
}
On Ubuntu 19.10 boost 1.67.0 to get the line numbers we had to instead:
#include <iostream>
#define BOOST_STACKTRACE_USE_ADDR2LINE
#include <boost/stacktrace.hpp>
void print_stacktrace(void) {
std::cout << boost::stacktrace::stacktrace();
}
which would call out to the addr2line executable and be 1000x slower than the newer Boost version.
The package libboost-stacktrace-dev did not exist at all on Ubuntu 16.04.
The rest of this section considers only the Ubuntu 22.04, boost 1.74 behaviour.
Compile:
sudo apt-get install libboost-stacktrace-dev
g++ -O0 -ggdb3 -Wall -Wextra -pedantic -std=c++11 -o boost_stacktrace.out main.cpp -lboost_stacktrace_backtrace
Sample output:
0# print_stacktrace() at boost_stacktrace/mystacktrace.h:7
1# my_func_2() at /home/ciro/main.cpp:7
2# my_func_1(int) at /home/ciro/main.cpp:17
3# main at /home/ciro/main.cpp:26
4# __libc_start_call_main at ../sysdeps/nptl/libc_start_call_main.h:58
5# __libc_start_main at ../csu/libc-start.c:379
6# _start in ./boost_stacktrace.out
Note that the lines are off by one line. It was suggested in the comments that this is because the following instruction address is being considered.
Boost stacktrace header only
What the BOOST_STACKTRACE_LINK does is to require -lboost_stacktrace_backtrace at link time, so we imagine without that it will just work. This would be a good option for devs who don't have the "Boost clearance" to just add as one offs to debug.
TODO unfortunately it didn't so well for me:
#include <iostream>
#include <boost/stacktrace.hpp>
void print_stacktrace(void) {
std::cout << boost::stacktrace::stacktrace();
}
then:
g++ -O0 -ggdb3 -Wall -Wextra -pedantic -std=c++11 -o boost_stacktrace_header_only.out main.cpp
contains the overly short output:
0# 0x000055FF74AFB601 in ./boost_stacktrace_header_only.out
1# 0x000055FF74AFB66C in ./boost_stacktrace_header_only.out
2# 0x000055FF74AFB69C in ./boost_stacktrace_header_only.out
3# 0x000055FF74AFB6F7 in ./boost_stacktrace_header_only.out
4# 0x00007F0176E7BD90 in /lib/x86_64-linux-gnu/libc.so.6
5# __libc_start_main in /lib/x86_64-linux-gnu/libc.so.6
6# 0x000055FF74AFB4E5 in ./boost_stacktrace_header_only.out
which we can't even use with addr2line. Maybe we have to pass some other define from: https://www.boost.org/doc/libs/1_80_0/doc/html/stacktrace/configuration_and_build.html ?
Tested on Ubuntu 22.04. boost 1.74.
Boost boost::stacktrace::safe_dump_to
This is an interesting alternative to boost::stacktrace::stacktrace as it writes the stack trace in a async signal safe manner to a file, which makes it a good option for automatically dumping stack traces on segfaults which is a super common use case: How to automatically generate a stacktrace when my program crashes
Documented at: https://www.boost.org/doc/libs/1_70_0/doc/html/boost/stacktrace/safe_dump_1_3_38_7_6_2_1_6.html
TODO get it to work. All I see each time is a bunch of random bytes. My attempt:
boost_stacktrace_safe/mystacktrace.h
#include <unistd.h>
#define BOOST_STACKTRACE_LINK
#include <boost/stacktrace.hpp>
void print_stacktrace(void) {
boost::stacktrace::safe_dump_to(0, 1024, STDOUT_FILENO);
}
Sample output:
1[FU1[FU"2[FU}2[FUm1#n10[FU
Changes drastically each time, suggesting it is random memory addresses.
Tested on Ubuntu 22.04, boost 1.74.0.
glibc backtrace
This method is quite portable as it comes with glibc itself. Documented at: https://www.gnu.org/software/libc/manual/html_node/Backtraces.html
Tested on Ubuntu 22.04, glibc 2.35.
glibc_backtrace_symbols_fd/mystacktrace.h
#include <execinfo.h> /* backtrace, backtrace_symbols_fd */
#include <unistd.h> /* STDOUT_FILENO */
void print_stacktrace(void) {
size_t size;
enum Constexpr { MAX_SIZE = 1024 };
void *array[MAX_SIZE];
size = backtrace(array, MAX_SIZE);
backtrace_symbols_fd(array, size, STDOUT_FILENO);
}
Compile with:
g++ -O0 -ggdb3 -Wall -Wextra -pedantic -rdynamic -std=c++11 -o glibc_backtrace_symbols_fd.out main.cpp
Sample output with -rdynamic:
./glibc_backtrace_symbols.out(_Z16print_stacktracev+0x47) [0x556e6a131230]
./glibc_backtrace_symbols.out(_Z9my_func_2v+0xd) [0x556e6a1312d6]
./glibc_backtrace_symbols.out(_Z9my_func_1i+0x14) [0x556e6a131306]
./glibc_backtrace_symbols.out(main+0x58) [0x556e6a131361]
/lib/x86_64-linux-gnu/libc.so.6(+0x29d90) [0x7f175e7bdd90]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80) [0x7f175e7bde40]
./glibc_backtrace_symbols.out(_start+0x25) [0x556e6a131125]
Sample output without -rdynamic:
./glibc_backtrace_symbols_fd_no_rdynamic.out(+0x11f0)[0x556bd40461f0]
./glibc_backtrace_symbols_fd_no_rdynamic.out(+0x123c)[0x556bd404623c]
./glibc_backtrace_symbols_fd_no_rdynamic.out(+0x126c)[0x556bd404626c]
./glibc_backtrace_symbols_fd_no_rdynamic.out(+0x12c7)[0x556bd40462c7]
/lib/x86_64-linux-gnu/libc.so.6(+0x29d90)[0x7f0da2b70d90]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80)[0x7f0da2b70e40]
./glibc_backtrace_symbols_fd_no_rdynamic.out(+0x10e5)[0x556bd40460e5]
To get the line numbers without -rdynamic we can use addr2line:
addr2line -C -e glibc_backtrace_symbols_fd_no_rdynamic.out 0x11f0 0x123c 0x126c 0x12c7
addr2line cannot unfortunately handle the function name + offset in function format of when we are not using -rdynamic, e.g. _Z9my_func_2v+0xd.
GDB can however:
gdb -nh -batch -ex 'info line *(_Z9my_func_2v+0xd)' -ex 'info line *(_Z9my_func_1i+0x14)' glibc_backtrace_symbols.out
Line 7 of "main.cpp" starts at address 0x12d6 <_Z9my_func_2v+13> and ends at 0x12d9 <_Z9my_func_1d>.
Line 17 of "main.cpp" starts at address 0x1306 <_Z9my_func_1i+20> and ends at 0x1309 <main(int, char**)>.
A helper to make it more bearable:
addr2lines() (
perl -ne '$m = s/(.*).*\(([^)]*)\).*/gdb -nh -q -batch -ex "info line *\2" \1/;print $_ if $m' | bash
)
Usage:
xsel -b | addr2lines
glibc backtrace_symbols
A version of backtrace_symbols_fd that returns a string rather than printing to a file handle.
glibc_backtrace_symbols/mystacktrace.h
#include <execinfo.h> /* backtrace, backtrace_symbols */
#include <stdio.h> /* printf */
void print_stacktrace(void) {
char **strings;
size_t i, size;
enum Constexpr { MAX_SIZE = 1024 };
void *array[MAX_SIZE];
size = backtrace(array, MAX_SIZE);
strings = backtrace_symbols(array, size);
for (i = 0; i < size; i++)
printf("%s\n", strings[i]);
free(strings);
}
glibc backtrace with C++ demangling hack 1: -export-dynamic + dladdr
I couldn't find a simple way to automatically demangle C++ symbols with glibc backtrace.
https://panthema.net/2008/0901-stacktrace-demangled/
https://gist.github.com/fmela/591333/c64f4eb86037bb237862a8283df70cdfc25f01d3
Adapted from: https://gist.github.com/fmela/591333/c64f4eb86037bb237862a8283df70cdfc25f01d3
This is a "hack" because it requires changing the ELF with -export-dynamic.
glibc_ldl.cpp
#include <dlfcn.h> // for dladdr
#include <cxxabi.h> // for __cxa_demangle
#include <cstdio>
#include <string>
#include <sstream>
#include <iostream>
// This function produces a stack backtrace with demangled function & method names.
std::string backtrace(int skip = 1)
{
void *callstack[128];
const int nMaxFrames = sizeof(callstack) / sizeof(callstack[0]);
char buf[1024];
int nFrames = backtrace(callstack, nMaxFrames);
char **symbols = backtrace_symbols(callstack, nFrames);
std::ostringstream trace_buf;
for (int i = skip; i < nFrames; i++) {
Dl_info info;
if (dladdr(callstack[i], &info)) {
char *demangled = NULL;
int status;
demangled = abi::__cxa_demangle(info.dli_sname, NULL, 0, &status);
std::snprintf(
buf,
sizeof(buf),
"%-3d %*p %s + %zd\n",
i,
(int)(2 + sizeof(void*) * 2),
callstack[i],
status == 0 ? demangled : info.dli_sname,
(char *)callstack[i] - (char *)info.dli_saddr
);
free(demangled);
} else {
std::snprintf(buf, sizeof(buf), "%-3d %*p\n",
i, (int)(2 + sizeof(void*) * 2), callstack[i]);
}
trace_buf << buf;
std::snprintf(buf, sizeof(buf), "%s\n", symbols[i]);
trace_buf << buf;
}
free(symbols);
if (nFrames == nMaxFrames)
trace_buf << "[truncated]\n";
return trace_buf.str();
}
void my_func_2(void) {
std::cout << backtrace() << std::endl;
}
void my_func_1(double f) {
(void)f;
my_func_2();
}
void my_func_1(int i) {
(void)i;
my_func_2();
}
int main() {
my_func_1(1);
my_func_1(2.0);
}
Compile and run:
g++ -fno-pie -ggdb3 -O0 -no-pie -o glibc_ldl.out -std=c++11 -Wall -Wextra \
-pedantic-errors -fpic glibc_ldl.cpp -export-dynamic -ldl
./glibc_ldl.out
output:
1 0x40130a my_func_2() + 41
./glibc_ldl.out(_Z9my_func_2v+0x29) [0x40130a]
2 0x40139e my_func_1(int) + 16
./glibc_ldl.out(_Z9my_func_1i+0x10) [0x40139e]
3 0x4013b3 main + 18
./glibc_ldl.out(main+0x12) [0x4013b3]
4 0x7f7594552b97 __libc_start_main + 231
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xe7) [0x7f7594552b97]
5 0x400f3a _start + 42
./glibc_ldl.out(_start+0x2a) [0x400f3a]
1 0x40130a my_func_2() + 41
./glibc_ldl.out(_Z9my_func_2v+0x29) [0x40130a]
2 0x40138b my_func_1(double) + 18
./glibc_ldl.out(_Z9my_func_1d+0x12) [0x40138b]
3 0x4013c8 main + 39
./glibc_ldl.out(main+0x27) [0x4013c8]
4 0x7f7594552b97 __libc_start_main + 231
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xe7) [0x7f7594552b97]
5 0x400f3a _start + 42
./glibc_ldl.out(_start+0x2a) [0x400f3a]
Tested on Ubuntu 18.04.
glibc backtrace with C++ demangling hack 2: parse backtrace output
Shown at: https://panthema.net/2008/0901-stacktrace-demangled/
This is a hack because it requires parsing.
TODO get it to compile and show it here.
GDB scripting
We can also do this with GDB without recompiling by using: How to do an specific action when a certain breakpoint is hit in GDB?
We setup an empty backtrace function for our testing:
gdb/mystacktrace.h
void print_stacktrace(void) {}
and then with:
main.gdb
start
break print_stacktrace
commands
silent
backtrace
printf "\n"
continue
end
continue
we can run:
gdb -nh -batch -x main.gdb --args gdb.out
Sample output:
Temporary breakpoint 1 at 0x11a7: file main.cpp, line 21.
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Temporary breakpoint 1, main (argc=1, argv=0x7fffffffc3e8) at main.cpp:21
warning: Source file is more recent than executable.
21 if (argc > 1) {
Breakpoint 2 at 0x555555555151: file gdb/mystacktrace.h, line 1.
#0 print_stacktrace () at gdb/mystacktrace.h:1
#1 0x0000555555555161 in my_func_2 () at main.cpp:6
#2 0x0000555555555191 in my_func_1 (i=1) at main.cpp:16
#3 0x00005555555551ec in main (argc=1, argv=0x7fffffffc3e8) at main.cpp:27
[Inferior 1 (process 165453) exited normally]
The above can be made more usable with the following Bash function:
gdbbt() (
tmpfile=$(mktemp /tmp/gdbbt.XXXXXX)
fn="$1"
shift
printf '%s' "
start
break $fn
commands
silent
backtrace
printf \"\n\"
continue
end
continue
" > "$tmpfile"
gdb -nh -batch -x "$tmpfile" -args "$#"
rm -f "$tmpfile"
)
Usage:
gdbbt print_stacktrace gdb.out 2
I don't know how to make commands with -ex without the temporary file: Problems adding a breakpoint with commands from command line with ex command
Tested in Ubuntu 22.04, GDB 12.0.90.
GDB code injection
TODO this is the dream! It might allow for both compiled-liked speeds, but without the need to recompile! Either:
with compile code + one of the other options, ideally C++23 <stacktrace>: How to call assembly in gdb? Might already be possible. But compile code is mega-quirky so I'm lazy to even try
a built-in dbt command analogous to dprintf dynamic printf: How to do an specific action when a certain breakpoint is hit in GDB?
libunwind
TODO does this have any advantage over glibc backtrace? Very similar output, also requires modifying the build command, but not part of glibc so requires an extra package installation.
Code adapted from: https://eli.thegreenplace.net/2015/programmatic-access-to-the-call-stack-in-c/
main.c
/* This must be on top. */
#define _XOPEN_SOURCE 700
#include <stdio.h>
#include <stdlib.h>
/* Paste this on the file you want to debug. */
#define UNW_LOCAL_ONLY
#include <libunwind.h>
#include <stdio.h>
void print_trace() {
char sym[256];
unw_context_t context;
unw_cursor_t cursor;
unw_getcontext(&context);
unw_init_local(&cursor, &context);
while (unw_step(&cursor) > 0) {
unw_word_t offset, pc;
unw_get_reg(&cursor, UNW_REG_IP, &pc);
if (pc == 0) {
break;
}
printf("0x%lx:", pc);
if (unw_get_proc_name(&cursor, sym, sizeof(sym), &offset) == 0) {
printf(" (%s+0x%lx)\n", sym, offset);
} else {
printf(" -- error: unable to obtain symbol name for this frame\n");
}
}
puts("");
}
void my_func_3(void) {
print_trace();
}
void my_func_2(void) {
my_func_3();
}
void my_func_1(void) {
my_func_3();
}
int main(void) {
my_func_1(); /* line 46 */
my_func_2(); /* line 47 */
return 0;
}
Compile and run:
sudo apt-get install libunwind-dev
gcc -fno-pie -ggdb3 -O3 -no-pie -o main.out -std=c99 \
-Wall -Wextra -pedantic-errors main.c -lunwind
Either #define _XOPEN_SOURCE 700 must be on top, or we must use -std=gnu99:
Is the type `stack_t` no longer defined on linux?
Glibc - error in ucontext.h, but only with -std=c11
Run:
./main.out
Output:
0x4007db: (main+0xb)
0x7f4ff50aa830: (__libc_start_main+0xf0)
0x400819: (_start+0x29)
0x4007e2: (main+0x12)
0x7f4ff50aa830: (__libc_start_main+0xf0)
0x400819: (_start+0x29)
and:
addr2line -e main.out 0x4007db 0x4007e2
gives:
/home/ciro/main.c:34
/home/ciro/main.c:49
With -O0:
0x4009cf: (my_func_3+0xe)
0x4009e7: (my_func_1+0x9)
0x4009f3: (main+0x9)
0x7f7b84ad7830: (__libc_start_main+0xf0)
0x4007d9: (_start+0x29)
0x4009cf: (my_func_3+0xe)
0x4009db: (my_func_2+0x9)
0x4009f8: (main+0xe)
0x7f7b84ad7830: (__libc_start_main+0xf0)
0x4007d9: (_start+0x29)
and:
addr2line -e main.out 0x4009f3 0x4009f8
gives:
/home/ciro/main.c:47
/home/ciro/main.c:48
Tested on Ubuntu 16.04, GCC 6.4.0, libunwind 1.1.
libunwind with C++ name demangling
Code adapted from: https://eli.thegreenplace.net/2015/programmatic-access-to-the-call-stack-in-c/
unwind.cpp
#define UNW_LOCAL_ONLY
#include <cxxabi.h>
#include <libunwind.h>
#include <cstdio>
#include <cstdlib>
#include <iostream>
void backtrace() {
unw_cursor_t cursor;
unw_context_t context;
// Initialize cursor to current frame for local unwinding.
unw_getcontext(&context);
unw_init_local(&cursor, &context);
// Unwind frames one by one, going up the frame stack.
while (unw_step(&cursor) > 0) {
unw_word_t offset, pc;
unw_get_reg(&cursor, UNW_REG_IP, &pc);
if (pc == 0) {
break;
}
std::printf("0x%lx:", pc);
char sym[256];
if (unw_get_proc_name(&cursor, sym, sizeof(sym), &offset) == 0) {
char* nameptr = sym;
int status;
char* demangled = abi::__cxa_demangle(sym, nullptr, nullptr, &status);
if (status == 0) {
nameptr = demangled;
}
std::printf(" (%s+0x%lx)\n", nameptr, offset);
std::free(demangled);
} else {
std::printf(" -- error: unable to obtain symbol name for this frame\n");
}
}
}
void my_func_2(void) {
backtrace();
std::cout << std::endl; // line 43
}
void my_func_1(double f) {
(void)f;
my_func_2();
}
void my_func_1(int i) {
(void)i;
my_func_2();
} // line 54
int main() {
my_func_1(1);
my_func_1(2.0);
}
Compile and run:
sudo apt-get install libunwind-dev
g++ -fno-pie -ggdb3 -O0 -no-pie -o unwind.out -std=c++11 \
-Wall -Wextra -pedantic-errors unwind.cpp -lunwind -pthread
./unwind.out
Output:
0x400c80: (my_func_2()+0x9)
0x400cb7: (my_func_1(int)+0x10)
0x400ccc: (main+0x12)
0x7f4c68926b97: (__libc_start_main+0xe7)
0x400a3a: (_start+0x2a)
0x400c80: (my_func_2()+0x9)
0x400ca4: (my_func_1(double)+0x12)
0x400ce1: (main+0x27)
0x7f4c68926b97: (__libc_start_main+0xe7)
0x400a3a: (_start+0x2a)
and then we can find the lines of my_func_2 and my_func_1(int) with:
addr2line -e unwind.out 0x400c80 0x400cb7
which gives:
/home/ciro/test/unwind.cpp:43
/home/ciro/test/unwind.cpp:54
TODO: why are the lines off by one?
Tested on Ubuntu 18.04, GCC 7.4.0, libunwind 1.2.1.
Linux kernel
How to print the current thread stack trace inside the Linux kernel?
libdwfl
This was originally mentioned at: https://stackoverflow.com/a/60713161/895245 and it might be the best method, but I have to benchmark a bit more, but please go upvote that answer.
TODO: I tried to minimize the code in that answer, which was working, to a single function, but it is segfaulting, let me know if anyone can find why.
dwfl.cpp: answer reached 30k chars and this was the easiest cut: https://gist.github.com/cirosantilli/f1dd3ee5d324b9d24e40f855723544ac
Compile and run:
sudo apt install libdw-dev libunwind-dev
g++ -fno-pie -ggdb3 -O0 -no-pie -o dwfl.out -std=c++11 -Wall -Wextra -pedantic-errors dwfl.cpp -ldw -lunwind
./dwfl.out
We also need libunwind as that makes results more correct. If you do without it, it runs, but you will see that some of the lines are a bit wrong.
Output:
0: 0x402b72 stacktrace[abi:cxx11]() at /home/ciro/test/dwfl.cpp:65
1: 0x402cda my_func_2() at /home/ciro/test/dwfl.cpp:100
2: 0x402d76 my_func_1(int) at /home/ciro/test/dwfl.cpp:111
3: 0x402dd1 main at /home/ciro/test/dwfl.cpp:122
4: 0x7ff227ea0d8f __libc_start_call_main at ../sysdeps/nptl/libc_start_call_main.h:58
5: 0x7ff227ea0e3f __libc_start_main##GLIBC_2.34 at ../csu/libc-start.c:392
6: 0x402534 _start at ../csu/libc-start.c:-1
0: 0x402b72 stacktrace[abi:cxx11]() at /home/ciro/test/dwfl.cpp:65
1: 0x402cda my_func_2() at /home/ciro/test/dwfl.cpp:100
2: 0x402d5f my_func_1(double) at /home/ciro/test/dwfl.cpp:106
3: 0x402de2 main at /home/ciro/test/dwfl.cpp:123
4: 0x7ff227ea0d8f __libc_start_call_main at ../sysdeps/nptl/libc_start_call_main.h:58
5: 0x7ff227ea0e3f __libc_start_main##GLIBC_2.34 at ../csu/libc-start.c:392
6: 0x402534 _start at ../csu/libc-start.c:-1
Benchmark run:
g++ -fno-pie -ggdb3 -O3 -no-pie -o dwfl.out -std=c++11 -Wall -Wextra -pedantic-errors dwfl.cpp -ldw
time ./dwfl.out 1000 >/dev/null
Output:
real 0m3.751s
user 0m2.822s
sys 0m0.928s
So we see that this method is 10x faster than Boost's stacktrace, and might therefore be applicable to more use cases.
Tested in Ubuntu 22.04 amd64, libdw-dev 0.186, libunwind 1.3.2.
libbacktrace
https://github.com/ianlancetaylor/libbacktrace
Considering the harcore library author, it is worth trying this out, maybe it is The One. TODO check it out.
A C library that may be linked into a C/C++ program to produce symbolic backtraces
As of October 2020, libbacktrace supports ELF, PE/COFF, Mach-O, and XCOFF executables with DWARF debugging information. In other words, it supports GNU/Linux, *BSD, macOS, Windows, and AIX. The library is written to make it straightforward to add support for other object file and debugging formats.
The library relies on the C++ unwind API defined at https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html This API is provided by GCC and clang.
See also
How can one grab a stack trace in C?
How to make backtrace()/backtrace_symbols() print the function names?
Is there a portable/standard-compliant way to get filenames and linenumbers in a stack trace?
Best way to invoke gdb from inside program to print its stacktrace?
automatic stack trace on failure:
on C++ exception: C++ display stack trace on exception
generic: How to automatically generate a stacktrace when my program crashes
For a linux-only solution you can use backtrace(3) that simply returns an array of void * (in fact each of these point to the return address from the corresponding stack frame). To translate these to something of use, there's backtrace_symbols(3).
Pay attention to the notes section in backtrace(3):
The symbol names may be unavailable
without the use of special linker
options.
For systems using the GNU linker, it is necessary to use the
-rdynamic linker
option. Note that names of "static" functions are not exposed,
and won't be
available in the backtrace.
In C++23, there will be <stacktrace>, and then you can do:
#include <stacktrace>
/* ... */
std::cout << std::stacktrace::current();
Further details:
  • https://en.cppreference.com/w/cpp/header/stacktrace
  • https://en.cppreference.com/w/cpp/utility/basic_stacktrace/operator_ltlt
Is there any way to dump the call stack in a running process in C or C++ every time a certain function is called?
You can use a macro function instead of return statement in the specific function.
For example, instead of using return,
int foo(...)
{
if (error happened)
return -1;
... do something ...
return 0
}
You can use a macro function.
#include "c-callstack.h"
int foo(...)
{
if (error happened)
NL_RETURN(-1);
... do something ...
NL_RETURN(0);
}
Whenever an error happens in a function, you will see Java-style call stack as shown below.
Error(code:-1) at : so_topless_ranking_server (sample.c:23)
Error(code:-1) at : nanolat_database (sample.c:31)
Error(code:-1) at : nanolat_message_queue (sample.c:39)
Error(code:-1) at : main (sample.c:47)
Full source code is available here.
c-callstack at https://github.com/Nanolat
Linux specific, TLDR:
backtrace in glibc produces accurate stacktraces only when -lunwind is linked (undocumented platform-specific feature).
To output function name, source file and line number use #include <elfutils/libdwfl.h> (this library is documented only in its header file). backtrace_symbols and backtrace_symbolsd_fd are least informative.
On modern Linux your can get the stacktrace addresses using function backtrace. The undocumented way to make backtrace produce more accurate addresses on popular platforms is to link with -lunwind (libunwind-dev on Ubuntu 18.04) (see the example output below). backtrace uses function _Unwind_Backtrace and by default the latter comes from libgcc_s.so.1 and that implementation is most portable. When -lunwind is linked it provides a more accurate version of _Unwind_Backtrace but this library is less portable (see supported architectures in libunwind/src).
Unfortunately, the companion backtrace_symbolsd and backtrace_symbols_fd functions have not been able to resolve the stacktrace addresses to function names with source file name and line number for probably a decade now (see the example output below).
However, there is another method to resolve addresses to symbols and it produces the most useful traces with function name, source file and line number. The method is to #include <elfutils/libdwfl.h>and link with -ldw (libdw-dev on Ubuntu 18.04).
Working C++ example (test.cc):
#include <stdexcept>
#include <iostream>
#include <cassert>
#include <cstdlib>
#include <string>
#include <boost/core/demangle.hpp>
#include <execinfo.h>
#include <elfutils/libdwfl.h>
struct DebugInfoSession {
Dwfl_Callbacks callbacks = {};
char* debuginfo_path = nullptr;
Dwfl* dwfl = nullptr;
DebugInfoSession() {
callbacks.find_elf = dwfl_linux_proc_find_elf;
callbacks.find_debuginfo = dwfl_standard_find_debuginfo;
callbacks.debuginfo_path = &debuginfo_path;
dwfl = dwfl_begin(&callbacks);
assert(dwfl);
int r;
r = dwfl_linux_proc_report(dwfl, getpid());
assert(!r);
r = dwfl_report_end(dwfl, nullptr, nullptr);
assert(!r);
static_cast<void>(r);
}
~DebugInfoSession() {
dwfl_end(dwfl);
}
DebugInfoSession(DebugInfoSession const&) = delete;
DebugInfoSession& operator=(DebugInfoSession const&) = delete;
};
struct DebugInfo {
void* ip;
std::string function;
char const* file;
int line;
DebugInfo(DebugInfoSession const& dis, void* ip)
: ip(ip)
, file()
, line(-1)
{
// Get function name.
uintptr_t ip2 = reinterpret_cast<uintptr_t>(ip);
Dwfl_Module* module = dwfl_addrmodule(dis.dwfl, ip2);
char const* name = dwfl_module_addrname(module, ip2);
function = name ? boost::core::demangle(name) : "<unknown>";
// Get source filename and line number.
if(Dwfl_Line* dwfl_line = dwfl_module_getsrc(module, ip2)) {
Dwarf_Addr addr;
file = dwfl_lineinfo(dwfl_line, &addr, &line, nullptr, nullptr, nullptr);
}
}
};
std::ostream& operator<<(std::ostream& s, DebugInfo const& di) {
s << di.ip << ' ' << di.function;
if(di.file)
s << " at " << di.file << ':' << di.line;
return s;
}
void terminate_with_stacktrace() {
void* stack[512];
int stack_size = ::backtrace(stack, sizeof stack / sizeof *stack);
// Print the exception info, if any.
if(auto ex = std::current_exception()) {
try {
std::rethrow_exception(ex);
}
catch(std::exception& e) {
std::cerr << "Fatal exception " << boost::core::demangle(typeid(e).name()) << ": " << e.what() << ".\n";
}
catch(...) {
std::cerr << "Fatal unknown exception.\n";
}
}
DebugInfoSession dis;
std::cerr << "Stacktrace of " << stack_size << " frames:\n";
for(int i = 0; i < stack_size; ++i) {
std::cerr << i << ": " << DebugInfo(dis, stack[i]) << '\n';
}
std::cerr.flush();
std::_Exit(EXIT_FAILURE);
}
int main() {
std::set_terminate(terminate_with_stacktrace);
throw std::runtime_error("test exception");
}
Compiled on Ubuntu 18.04.4 LTS with gcc-8.3:
g++ -o test.o -c -m{arch,tune}=native -std=gnu++17 -W{all,extra,error} -g -Og -fstack-protector-all test.cc
g++ -o test -g test.o -ldw -lunwind
Outputs:
Fatal exception std::runtime_error: test exception.
Stacktrace of 7 frames:
0: 0x55f3837c1a8c terminate_with_stacktrace() at /home/max/src/test/test.cc:76
1: 0x7fbc1c845ae5 <unknown>
2: 0x7fbc1c845b20 std::terminate()
3: 0x7fbc1c845d53 __cxa_throw
4: 0x55f3837c1a43 main at /home/max/src/test/test.cc:103
5: 0x7fbc1c3e3b96 __libc_start_main at ../csu/libc-start.c:310
6: 0x55f3837c17e9 _start
When no -lunwind is linked, it produces a less accurate stacktrace:
0: 0x5591dd9d1a4d terminate_with_stacktrace() at /home/max/src/test/test.cc:76
1: 0x7f3c18ad6ae6 <unknown>
2: 0x7f3c18ad6b21 <unknown>
3: 0x7f3c18ad6d54 <unknown>
4: 0x5591dd9d1a04 main at /home/max/src/test/test.cc:103
5: 0x7f3c1845cb97 __libc_start_main at ../csu/libc-start.c:344
6: 0x5591dd9d17aa _start
For comparison, backtrace_symbols_fd output for the same stacktrace is least informative:
/home/max/src/test/debug/gcc/test(+0x192f)[0x5601c5a2092f]
/usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0x92ae5)[0x7f95184f5ae5]
/usr/lib/x86_64-linux-gnu/libstdc++.so.6(_ZSt9terminatev+0x10)[0x7f95184f5b20]
/usr/lib/x86_64-linux-gnu/libstdc++.so.6(__cxa_throw+0x43)[0x7f95184f5d53]
/home/max/src/test/debug/gcc/test(+0x1ae7)[0x5601c5a20ae7]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xe6)[0x7f9518093b96]
/home/max/src/test/debug/gcc/test(+0x1849)[0x5601c5a20849]
In a production version (as well as C language version) you may like to make this code extra robust by replacing boost::core::demangle, std::string and std::cout with their underlying calls.
You can also override __cxa_throw to capture the stacktrace when an exception is thrown and print it when the exception is caught. By the time it enters catch block the stack has been unwound, so it is too late to call backtrace, and this is why the stack must be captured on throw which is implemented by function __cxa_throw. Note that in a multi-threaded program __cxa_throw can be called simultaneously by multiple threads, so that if it captures the stacktrace into a global array that must be thread_local.
You can also make the stack trace printing function async-signal safe, so that you can invoke it directly from your SIGSEGV, SIGBUS signal handlers (which should use their own stacks for robustness). Obtaining function name, source file and line number using libdwfl from a signal handler may fail because it is not async-signal safe or if the address space of the process has been substantially corrupted, but in practice it succeeds 99% of the time (I haven't seen it fail).
To summarize, a complete production-ready library for automatic stacktrace output should:
Capture the stacktrace on throw into thread-specific storage.
Automatically print the stacktrace on unhandled exceptions.
Print the stacktrace in async-signal-safe manner.
Provide a robust signal handler function which uses its own stack that prints the stacktrace in a async-signal-safe manner. The user can install this function as a signal handler for SIGSEGV, SIGBUS, SIGFPE, etc..
The signal handler may as well print the values of all CPU registers at the point of the fault from ucontext_t signal function argument (may be excluding vector registers), a-la Linux kernel oops log messages.
Another answer to an old thread.
When I need to do this, I usually just use system() and pstack
So something like this:
#include <sys/types.h>
#include <unistd.h>
#include <string>
#include <sstream>
#include <cstdlib>
void f()
{
pid_t myPid = getpid();
std::string pstackCommand = "pstack ";
std::stringstream ss;
ss << myPid;
pstackCommand += ss.str();
system(pstackCommand.c_str());
}
void g()
{
f();
}
void h()
{
g();
}
int main()
{
h();
}
This outputs
#0 0x00002aaaab62d61e in waitpid () from /lib64/libc.so.6
#1 0x00002aaaab5bf609 in do_system () from /lib64/libc.so.6
#2 0x0000000000400c3c in f() ()
#3 0x0000000000400cc5 in g() ()
#4 0x0000000000400cd1 in h() ()
#5 0x0000000000400cdd in main ()
This should work on Linux, FreeBSD and Solaris. I don't think that macOS has pstack or a simple equivalent, but this thread seems to have an alternative.
If you are using C, then you will need to use C string functions.
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
void f()
{
pid_t myPid = getpid();
/*
length of command 7 for 'pstack ', 7 for the PID, 1 for nul
*/
char pstackCommand[7+7+1];
sprintf(pstackCommand, "pstack %d", (int)myPid);
system(pstackCommand);
}
I've used 7 for the max number of digits in the PID, based on this post.
There is no standardized way to do that. For windows the functionality is provided in the DbgHelp library
You can use the Boost libraries to print the current callstack.
#include <boost/stacktrace.hpp>
// ... somewhere inside the `bar(int)` function that is called recursively:
std::cout << boost::stacktrace::stacktrace();
Man here: https://www.boost.org/doc/libs/1_65_1/doc/html/stacktrace.html
I know this thread is old, but I think it can be useful for other people. If you are using gcc, you can use its instrument features (-finstrument-functions option) to log any function call (entry and exit). Have a look at this for more information: http://hacktalks.blogspot.fr/2013/08/gcc-instrument-functions.html
You can thus for instance push and pop every calls into a stack, and when you want to print it, you just look at what you have in your stack.
I've tested it, it works perfectly and is very handy
UPDATE: you can also find information about the -finstrument-functions compile option in the GCC doc concerning the Instrumentation options: https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
You can implement the functionality yourself:
Use a global (string)stack and at start of each function push the function name and such other values (eg parameters) onto this stack; at exit of function pop it again.
Write a function that will printout the stack content when it is called, and use this in the function where you want to see the callstack.
This may sound like a lot of work but is quite useful.
Of course the next question is: will this be enough ?
The main disadvantage of stack-traces is that why you have the precise function being called you do not have anything else, like the value of its arguments, which is very useful for debugging.
If you have access to gcc and gdb, I would suggest using assert to check for a specific condition, and produce a memory dump if it is not met. Of course this means the process will stop, but you'll have a full fledged report instead of a mere stack-trace.
If you wish for a less obtrusive way, you can always use logging. There are very efficient logging facilities out there, like Pantheios for example. Which once again could give you a much more accurate image of what is going on.
You can use Poppy for this. It is normally used to gather the stack trace during a crash but it can also output it for a running program as well.
Now here's the good part: it can output the actual parameter values for each function on the stack, and even local variables, loop counters, etc.
You can use the GNU profiler. It shows the call-graph as well! the command is gprof and you need to compile your code with some option.
Is there any way to dump the call stack in a running process in C or C++ every time a certain function is called?
No there is not, although platform-dependent solutions might exist.

Need Help Tracking Down EXC_BAD_ACCESS on Function Entry on MacOS

I have a program that gets a KERN_PROTECTION_FAILURE with EXC_BAD_ACCESS in a very strange place when running multithreaded and I haven't the faintest idea how to troubleshoot it further. This is on MacOS 10.6 using GCC.
The very strange place that it gets this is when entering a function. Not on the first line of the function, but the actual jump to the function GetMachineFactors():
Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0xb00009ec
[Switching to process 28242]
0x00012592 in GetMachineFactors () at ../sysinfo/OSX.cpp:168
168 MachineFactors* GetMachineFactors()
(gdb) bt
#0 0x00012592 in GetMachineFactors () at ../sysinfo/OSX.cpp:168
#1 0x000156d0 in CollectMachineFactorsThreadProc (parameter=0x200280) at Threads.cpp:341
#2 0x952f681d in _pthread_start ()
#3 0x952f66a2 in thread_start ()
(gdb)
If I run this non-threaded, it runs great, no issues:
#include "MachineFactors.h"
int main( int argc, char** argv )
{
MachineFactors* factors = GetMachineFactors();
std::string str = CreateJSONObject(factors);
cout << str;
delete factors;
return 0;
}
If I run this in a pthread, I get the EXC_BAD_ACCESS above.
THREAD_FUNCTION CollectMachineFactorsThreadProc( LPVOID parameter )
{
Main* client = (Main*) parameter;
if ( parameter == NULL )
{
ERRORLOG( "No data passed to machine identification thread. Aborting." );
return 0;
}
MachineFactors* mfactors = GetMachineFactors(); // This is where it dies.
// If I don't call GetMachineFactors and do something like mfactors =
// new MachineFactors(); everything is good and the threads communicate and exit
// normally.
if (mfactors == NULL)
{
ERRORLOG("Failed to collect machine identification: GetMachineFactors returned NULL." << endl)
return 0;
}
client->machineFactors = CreateJSONObject(mfactors);
delete mfactors;
EVENT_RAISE(client->machineFactorsEvent);
return 0;
}
Here is an excerpt from the GetMachineFactors() code:
MachineFactors* GetMachineFactors() // Dies on this line in multi-threaded.
{
// printf( "Getting machine factors.\n"); // Tried with and without this, never prints.
factors = new MachineFactors();
factors->OSName = "MacOS";
factors->Manufacturer = "Apple";
///…
// gather various machine metrics here.
//…
return factors;
}
For reference, I am using a socketpair to wait on the thread to complete:
// From the header file I use for cross-platform defines (this runs on OSX, Windows, and Linux.
struct _waitt
{
int fds[2];
};
#define THREAD_FUNCTION void*
#define THREAD_REFERENCE pthread_t
#define MUTEX_REFERENCE pthread_mutex_t*
#define MUTEX_LOCK(m) pthread_mutex_lock(m)
#define MUTEX_UNLOCK pthread_mutex_unlock
#define EVENT_REFERENCE struct _waitt
#define EVENT_WAIT(m) do { char lc; if (read(m.fds[0], &lc, 1)) {} } while (0)
#define EVENT_RAISE(m) do { char lc = 'j'; if (write(m.fds[1], &lc, 1)) {} } while (0)
#define EVENT_NULL(m) do { m.fds[0] = -1; m.fds[1] = -1; } while (0)
Here is the code where I launch the thread.
void Main::CollectMachineFactors()
{
#ifdef WIN32
machineFactorsThread = CreateThread(NULL, 0, CollectMachineFactorsThreadProc, this, 0, 0);
if ( machineFactorsThread == NULL )
{
ERRORLOG( "Could not create thread for machine id: " << ERROR_NO << endl )
}
#else
int retval = pthread_create(&machineFactorsThread, NULL, CollectMachineFactorsThreadProc, this);
if (retval)
{
ERRORLOG( "Return code from machine id pthread_create() is " << retval << endl )
}
#endif
}
Here's the simple failure case of running this multithreaded. It always fails for this code with the stack trace above:
CollectMachineFactors();
EVENT_WAIT(machineFactorsEvent);
cout << machineFactors;
return 0;
At first I suspected a library problem. Here's my makefile:
# Main executable file
PROGRAM = sysinfo
# Object files
OBJECTS = Version.h Main.o Protocol.o Socket.o SSLConnection.o Stats.o TimeElapsed.o Formatter.o OSX.o Threads.o
# Include directories
INCLUDE = -Itaocrypt/include -IyaSSL/taocrypt/mySTL -IyaSSL/include -isysroot /Developer/SDKs/MacOSX10.5.sdk -mmacosx-version-min=10.5
# Library settings
STATICLIBS = libtaocrypt.a libyassl.a -Wl,-rpath,. -ldl -lpthread -lz -lexpat
# Compile settings
RELCXX = g++ -g -ggdb -DDEBUG -Wall $(INCLUDE)
.SUFFIXES: .o .cpp
.cpp.o :
$(RELCXX) -c -Wall $(INCLUDE) -o $# $<
all: $(PROGRAM)
$(PROGRAM): $(OBJECTS)
$(RELCXX) -o $(PROGRAM) $(OBJECTS) $(STATICLIBS)
clean:
rm -f *.o $(PROGRAM)
I can't for the life of me see anything particularly odd or dangerous and I'm not sure where to look. The same threaded process works fine on any Linux machine I have tried. Any suggestions? Any tools I should try?
I can add more info if it would be helpful.
I can see a problem with your Windows code, but not the OSX code that's crashing on you.
It seems that you're not posting the actual code for GetMachineFactors, since the variable factors is not declared. But regarding debugging, you should not take the non-appearance of printf output as conclusive that that statement hasn't been executed. Use debugger facilities such as setting a breakpoint, using special debugger trace output, so on (not sure what gdb handles, it's a very primitive debugger, but perhaps Apple has better tools?).
For Windows, you should use the run time library's thread creation instead of Windows API CreateThread. That's because with CreateThread the runtime lib isn't informed. E.g, a new expression or other call that uses the runtime lib might fail.
Sorry I can't help more.
I think it could perhaps have something to do with the GetMachineFactors code that you haven't shown?
It turns out, and I can't explain why, that a fork() call combined with a socketpair() as the IPC mechanism was the workaround to get things going as intended.
I wish I knew why it was failing in the first place (headscratch) but that approach seems to have been a good workaround.
It almost seemed like the kind of "build out of whack" problem that could be caused by failing to run a 'make clean' after changing header files, but that wasn't the case here.

Run C or C++ file as a script

So this is probably a long shot, but is there any way to run a C or C++ file as a script? I tried:
#!/usr/bin/gcc main.c -o main; ./main
int main(){ return 0; }
But it says:
./main.c:1:2: error: invalid preprocessing directive #!
Short answer:
//usr/bin/clang "$0" && exec ./a.out "$#"
int main(){
return 0;
}
The trick is that your text file must be both valid C/C++ code and shell script. Remember to exit from the shell script before the interpreter reaches the C/C++ code, or invoke exec magic.
Run with chmod +x main.c; ./main.c.
A shebang like #!/usr/bin/tcc -run isn't needed because unix-like systems will already execute the text file within the shell.
(adapted from this comment)
I used it in my C++ script:
//usr/bin/clang++ -O3 -std=c++11 "$0" && ./a.out; exit
#include <iostream>
int main() {
for (auto i: {1, 2, 3})
std::cout << i << std::endl;
return 0;
}
If your compilation line grows too much you can use the preprocessor (adapted from this answer) as this plain old C code shows:
#if 0
clang "$0" && ./a.out
rm -f ./a.out
exit
#endif
int main() {
return 0;
}
Of course you can cache the executable:
#if 0
EXEC=${0%.*}
test -x "$EXEC" || clang "$0" -o "$EXEC"
exec "$EXEC"
#endif
int main() {
return 0;
}
Now, for the truly eccentric Java developer:
/*/../bin/true
CLASS_NAME=$(basename "${0%.*}")
CLASS_PATH="$(dirname "$0")"
javac "$0" && java -cp "${CLASS_PATH}" ${CLASS_NAME}
rm -f "${CLASS_PATH}/${CLASS_NAME}.class"
exit
*/
class Main {
public static void main(String[] args) {
return;
}
}
D programmers simply put a shebang at the beginning of text file without breaking the syntax:
#!/usr/bin/rdmd
void main(){}
See:
https://unix.stackexchange.com/a/373229/23567
https://stackoverflow.com/a/12296348/199332
For C, you may have a look at tcc, the Tiny C Compiler. Running C code as a script is one of its possible uses.
$ cat /usr/local/bin/runc
#!/bin/bash
sed -n '2,$p' "$#" | gcc -o /tmp/a.out -x c++ - && /tmp/a.out
rm -f /tmp/a.out
$ cat main.c
#!/bin/bash /usr/local/bin/runc
#include <stdio.h>
int main() {
printf("hello world!\n");
return 0;
}
$ ./main.c
hello world!
The sed command takes the .c file and strips off the hash-bang line. 2,$p means print lines 2 to end of file; "$#" expands to the command-line arguments to the runc script, i.e. "main.c".
sed's output is piped to gcc. Passing - to gcc tells it to read from stdin, and when you do that you also have to specify the source language with -x since it has no file name to guess from.
Since the shebang line will be passed to the compiler, and # indicates a preprocessor directive, it will choke on a #!.
What you can do is embed the makefile in the .c file (as discussed in this xkcd thread)
#if 0
make $# -f - <<EOF
all: foo
foo.o:
cc -c -o foo.o -DFOO_C $0
bar.o:
cc -c -o bar.o -DBAR_C $0
foo: foo.o bar.o
cc -o foo foo.o bar.o
EOF
exit;
#endif
#ifdef FOO_C
#include <stdlib.h>
extern void bar();
int main(int argc, char* argv[]) {
bar();
return EXIT_SUCCESS;
}
#endif
#ifdef BAR_C
void bar() {
puts("bar!");
}
#endif
The #if 0 #endif pair surrounding the makefile ensure the preprocessor ignores that section of text, and the EOF marker marks where the make command should stop parsing input.
CINT:
CINT is an interpreter for C and C++
code. It is useful e.g. for situations
where rapid development is more
important than execution time. Using
an interpreter the compile and link
cycle is dramatically reduced
facilitating rapid development. CINT
makes C/C++ programming enjoyable even
for part-time programmers.
You might want to checkout ryanmjacobs/c which was designed for this in mind. It acts as a wrapper around your favorite compiler.
#!/usr/bin/c
#include <stdio.h>
int main(void) {
printf("Hello World!\n");
return 0;
}
The nice thing about using c is that you can choose what compiler you want to use, e.g.
$ export CC=clang
$ export CC=gcc
So you get all of your favorite optimizations too! Beat that tcc -run!
You can also add compiler flags to the shebang, as long as they are terminated with the -- characters:
#!/usr/bin/c -Wall -g -lncurses --
#include <ncurses.h>
int main(void) {
initscr();
/* ... */
return 0;
}
c also uses $CFLAGS and $CPPFLAGS if they are set as well.
#!/usr/bin/env sh
tail -n +$(( $LINENO + 1 )) "$0" | cc -xc - && { ./a.out "$#"; e="$?"; rm ./a.out; exit "$e"; }
#include <stdio.h>
int main(int argc, char const* argv[]) {
printf("Hello world!\n");
return 0;
}
This properly forwards the arguments and the exit code too.
Quite a short proposal would exploit:
The current shell script being the default interpreter for unknown types (without a shebang or a recognizable binary header).
The "#" being a comment in shell and "#if 0" disabling code.
#if 0
F="$(dirname $0)/.$(basename $0).bin"
[ ! -f $F -o $F -ot $0 ] && { c++ "$0" -o "$F" || exit 1 ; }
exec "$F" "$#"
#endif
// Here starts my C++ program :)
#include <iostream>
#include <unistd.h>
using namespace std;
int main(int argc, char **argv) {
if (argv[1])
clog << "Hello " << argv[1] << endl;
else
clog << "hello world" << endl;
}
Then you can chmod +x your .cpp files and then ./run.cpp.
You could easily give flags for the compiler.
The binary is cached in the current directory along with the source, and updated when necessary.
The original arguments are passed to the binary: ./run.cpp Hi
It doesn't reuse the a.out, so that you can have multiple binaries in the same folder.
Uses whatever c++ compiler you have in your system.
The binary starts with "." so that it is hidden from the directory listing.
Problems:
What happens on concurrent executions?
Variatn of John Kugelman can be written in this way:
#!/bin/bash
t=`mktemp`
sed '1,/^\/\/code/d' "$0" | g++ -o "$t" -x c++ - && "$t" "$#"
r=$?
rm -f "$t"
exit $r
//code
#include <stdio.h>
int main() {
printf("Hi\n");
return 0;
}
Here's yet another alternative:
#if 0
TMP=$(mktemp -d)
cc -o ${TMP}/a.out ${0} && ${TMP}/a.out ${#:1} ; RV=${?}
rm -rf ${TMP}
exit ${RV}
#endif
#include <stdio.h>
int main(int argc, char *argv[])
{
printf("Hello world\n");
return 0;
}
I know this question is not a recent one, but I decided to throw my answer into the mix anyways.
With Clang and LLVM, there is not any need to write out an intermediate file or call an external helper program/script. (apart from clang/clang++/lli)
You can just pipe the output of clang/clang++ to lli.
#if 0
CXX=clang++
CXXFLAGS="-O2 -Wall -Werror -std=c++17"
CXXARGS="-xc++ -emit-llvm -c -o -"
CXXCMD="$CXX $CXXFLAGS $CXXARGS $0"
LLICMD="lli -force-interpreter -fake-argv0=$0 -"
$CXXCMD | $LLICMD "$#" ; exit $?
#endif
#include <cstdio>
int main (int argc, char **argv) {
printf ("Hello llvm: %d\n", argc);
for (auto i = 0; i < argc; i++) {
printf("%d: %s\n", i, argv[i]);
}
return 3==argc;
}
The above however does not let you use stdin in your c/c++ script.
If bash is your shell, then you can do the following to use stdin:
#if 0
CXX=clang++
CXXFLAGS="-O2 -Wall -Werror -std=c++17"
CXXARGS="-xc++ -emit-llvm -c -o -"
CXXCMD="$CXX $CXXFLAGS $CXXARGS $0"
LLICMD="lli -force-interpreter -fake-argv0=$0"
exec $LLICMD <($CXXCMD) "$#"
#endif
#include <cstdio>
int main (int argc, char **argv) {
printf ("Hello llvm: %d\n", argc);
for (auto i = 0; i < argc; i++) {
printf("%d: %s\n", i, argv[i]);
}
for (int c; EOF != (c=getchar()); putchar(c));
return 3==argc;
}
There are several places that suggest the shebang (#!) should remain but its illegal for the gcc compiler. So several solutions cut it out. In addition it is possible to insert a preprocessor directive that fixes the compiler messages for the case the c code is wrong.
#!/bin/bash
#ifdef 0
xxx=$(mktemp -d)
awk 'BEGIN
{ print "#line 2 \"$0\""; first=1; }
{ if (first) first=0; else print $0 }' $0 |\
g++ -x c++ -o ${xxx} - && ./${xxx} "$#"
rv=$?
\rm ./${xxx}
exit $rv
#endif
#include <iostream>
int main(int argc,char *argv[]) {
std::cout<<"Hello world"<<std::endl;
}
As stated in a previous answer, if you use tcc as your compiler, you can put a shebang #!/usr/bin/tcc -run as the first line of your source file.
However, there is a small problem with that: if you want to compile that same file, gcc will throw an error: invalid preprocessing directive #! (tcc will ignore the shebang and compile just fine).
If you still need to compile with gcc one workaround is to use the tail command to cut off the shebang line from the source file before piping it into gcc:
tail -n+2 helloworld.c | gcc -xc -
Keep in mind that all warnings and/or errors will be off by one line.
You can automate that by creating a bash script that checks whether a file begins with a shebang, something like
if [[ $(head -c2 $1) == '#!' ]]
then
tail -n+2 $1 | gcc -xc -
else
gcc $1
fi
and use that to compile your source instead of directly invoking gcc.
Just wanted to share, thanks to Pedro's explanation on solutions using the #if 0 trick, I have updated my fork on TCC (Sugar C) so that all examples can be called with shebang, finally, with no errors when looking source on the IDE.
Now, code displays beautifully using clangd in VS Code for project sources. Samples first lines look like:
#if 0
/usr/local/bin/sugar `basename $0` $# && exit;
// above is a shebang hack, so you can run: ./args.c <arg 1> <arg 2> <arg N>
#endif
The original intention of this project always has been to use C as if a scripting language using TCC base under the hood, but with a client that prioritizes ram output over file output (without the of -run directive).
You can check out the project at: https://github.com/antonioprates/sugar
I like to use this as the first line at the top of my programs:
For C (technically: gnu C as I've specified it below):
///usr/bin/env ccache gcc -Wall -Wextra -Werror -O3 -std=gnu17 "$0" -o /tmp/a -lm && /tmp/a "$#"; exit
For C++ (technically: gnu++ as I've specified it below):
///usr/bin/env ccache g++ -Wall -Wextra -Werror -O3 -std=gnu++17 "$0" -o /tmp/a -lm && /tmp/a "$#"; exit
ccache helps ensure your compiling is a little more efficient. Install it in Ubuntu with sudo apt update && sudo apt install ccache.
For Go (golang) and some explanations of the lines above, see my other answer here: What's the appropriate Go shebang line?