For the code below, could anyone please tell me why the function always returns "0" if the return value for the base case (n==0) is 0? I know in order to correct this function, I'd simply have to replace "return 0" with "return 1", however, I'm trying to understand why does it return 0 for the base case below.
Thanks for your help
int factorial(int n) {
if (n == 0) {
return 0;
} else {
return n * factorial(n-1);
}
}
Edit: Hopefully, the code below has no logical errors ...
#include<iostream>
#include<math.h>
using namespace std;
long double factorial (long double n) {
if (n==0) return 1;
if (n<0) return -fabs((n*factorial(n+1)));
return n*(factorial(n-1));
}
int main () {
long double n;
cout << "Enter a number: ";
cin >> n;
cout << "Factorial of " << n << " is " << factorial(n) <<endl;
return 0;
}
If you take a look at how the factorial is defined you'll find something like:
f(0) = 1
f(1) = 1
f(n) = f(n-1) * n
So your function does indeed return the wrong value for factorial(0). The recursion in this function basically works by decrementing n in every new function call of factorial.
Let's assume you call factorial(3). n would that with 3, the else branch will get executed as n does not equal zero. We follow the third rule of our definition an call factorial(2) (which is n-1) and multiply the result of it by n. Your function will step down until factorial(0) is called and returns 0 which then is a factor of all previous calculations, resulting in 3*2*1*0, and that equals to 0.
This code is simply wrong. No matter which n > 0 it gets as argument, every value is eventually multiplied with 0 and therefore factorial( n ) = 0 for all n > 0.
It returns zero since any number times zero is zero. You start with some number n, say n=5. As you go through the recursion you have:
n * factorial(n-1)
5 * factorial(5-1)
5 * 4 * factorial(4-1)
5 * 4 * 3 * factorial(3-1)
5 * 4 * 3 * 2 * factorial(2-1)
5 * 4 * 3 * 2 * 1 * factorial(1-1)
But factorial(1-1) is factorial(0) which returns 0, so you get :
5 * 4 * 3 * 2 * 1 * 0 = 0
For the code below, could anyone please tell me why the function returns "0" if the return value for the base case (n==0) is 0?
Someone chose to do that. You'd have to ask the author why they did that.
I know in order to correct this function, I'd simply have to replace "return 0" with "return 1", however, I'm trying to understand why does it return 0 for the base case below.
Likely because the person who wrote it thought 0! was equal to 0.
I don't get you question entirely but lets cal the function f(int n): int okey to make it shorter
for n = 0 it will return 0 becaulse thats what you told it to do right: if(n == 0) return 0;
for n + 1 youll get the folowing pattern:
f(n+1) ==> n * f(n) becaulse thats wat you told it to do otherwise right? and f again will evaluate.
so thats why youre function will return 0 in any case and if you alter the base case to 1 youll get:
For whatever n (bigger than or equal to 0), you multiply a lot of numbers down to factorial(0) which returns 0.
The result of
n*(n-1)*(n-2)*...*3*2*1*0
is a big fat 0
P.S. Besides not computing properly, the code has a major flaw. If you give it a negative number, you make it cry.
Related
hello i have this piece of code that i coded based on some other recursion and factorial programs
but my problem is that i am really confused as to how it stored the value and kept it and then returned it at the end
int factorialfinder(int x)
{
if (x == 1)
{
return 1;
}else
{
return x*factorialfinder(x-1);
}
}
int main()
{
cout << factorialfinder(5) << endl;
}
so 5 goes in, and gets multiplied by 4 by calling its function again and again and again, then it gets to one and it returns the factorial answer
why? i have no idea how it got stored, why is return 1 returning the actual answer, what is it really doing?
Source: Image is taken from: IBM Developers website
Just take a look at the picture above, you will understand it better. The number never gets stored, but gets called recursively to calculate the output.
So when you call the fact(4) the current stack is used to store every parameter as the recursive calls occur down to factorialfinder(1). So the calculation goes like this: 5*4*3*2*1.
int factorialfinder(int x)
{
if (x == 1) // HERE 5 is not equal to 1 so goes to else
{
return 1;
}else
{
return x*factorialfinder(x-1); // returns 5*4*3*2*1 when x==1 it returns 1
}
}
Hope this helps.
Return 1 is not returning the actual answer. It's just returning the answer to calling
factorialfinder(1);
which happens in your code.
In any program, a call stack is a space in memory that is used to keep track of function calls. Space from this memory is used to store the arguments to a function, as well as the return value of that function. Whenever some function A calls another function B, A gets the return value of B from that space.
A recursive function is nothing special, it's just an ordinary function calling another function (that happens to be itself). So really, when a recursive function F calls itself, it's calling another function: F calls F', which calls F'', which calls F''', etc. It's just that F, F'', F''' etc. execute the same code, just with different inputs.
The expression if (x == 1) is there to check when this process should be stopped.
The return value of F''' is used by F''. The return value of F'' is used by F'. The return value of F' is used by F.
In Factorial of some number, the operation is (n) * (n-1) * (n-2) * .... * (1).
I've highlighted the 1; this is the condition that's being checked.
A recursive function breaks a big problem down into smaller cases.
Going over your program:
call factorialfinder with 5, result is stored as 5 * factorialfinder(4)
call factorialfinder with 4, result is stored as 5 * 4 * factorialfinder(3)
call factorialfinder with 3, result is stored as 5 * 4 * 3 * factorialfinder(2)
call factorialfinder with 2, result is stored as 5 * 4 * 3 * 2 * factorialfinder(1)
call factorialfinder with 1, result is stored as 5 * 4 * 3 * 2 * 1
in essence it combines the result of a stack of calls to factorialfinder until you hit your base case, in this case x = 1.
Well, the factorial function can be written using recursion or not, but the main consideration in the recursion is that this one uses the system stack, so, each call to the function is a item in the system stack, like this (read from the bottom to the top):
Other consideration in the recursion function is that this one has two main code piece:
The base case
The recursion case
In the base case, the recursive function returns the element that bounds the algorithm, and that stop the recursion. In the factorial this element is 1, because mathematically the factorial of number one is 1 by definition. For other numbers you don't know the factorial, because of that, you have to compute by using the formula, and one implementation of it is using recursion, so the recursive case.
Example:
The factorial of 5, the procedure is: 5*4*3*2*1 = 120, note you have to multiply each number from the top value until number 1, in other words, until the base case takes place which is the case that you already knew.
#include<iostream>
using namespace std;
int factorial(int n);
int main()
{
int n;
cout << "Enter a positive integer: ";
cin >> n;
cout << "Factorial of " << n << " = " << factorial(n);
return 0;
}
int factorial(int n)
{
if(n > 1)
return n * factorial(n - 1);
else
return 1;
}
Let's say that I need to format the output of an array to display a fixed number of elements per line. How do I go about doing that using modulus operation?
Using C++, the code below works for displaying 6 elements per line but I have no idea how and why it works?
for ( count = 0 ; count < size ; count++)
{
cout << somearray[count];
if( count % 6 == 5) cout << endl;
}
What if I want to display 5 elements per line? How do i find the exact expression needed?
in C++ expression a % b returns remainder of division of a by b (if they are positive. For negative numbers sign of result is implementation defined). For example:
5 % 2 = 1
13 % 5 = 3
With this knowledge we can try to understand your code. Condition count % 6 == 5 means that newline will be written when remainder of division count by 6 is five. How often does that happen? Exactly 6 lines apart (excercise : write numbers 1..30 and underline the ones that satisfy this condition), starting at 6-th line (count = 5).
To get desired behaviour from your code, you should change condition to count % 5 == 4, what will give you newline every 5 lines, starting at 5-th line (count = 4).
Basically modulus Operator gives you remainder
simple Example in maths what's left over/remainder of 11 divided by 3? answer is 2
for same thing C++ has modulus operator ('%')
Basic code for explanation
#include <iostream>
using namespace std;
int main()
{
int num = 11;
cout << "remainder is " << (num % 3) << endl;
return 0;
}
Which will display
remainder is 2
It gives you the remainder of a division.
int c=11, d=5;
cout << (c/d) * d + c % d; // gives you the value of c
This JSFiddle project could help you to understand how modulus work:
http://jsfiddle.net/elazar170/7hhnagrj
The modulus function works something like this:
function modulus(x,y){
var m = Math.floor(x / y);
var r = m * y;
return x - r;
}
You can think of the modulus operator as giving you a remainder. count % 6 divides 6 out of count as many times as it can and gives you a remainder from 0 to 5 (These are all the possible remainders because you already divided out 6 as many times as you can). The elements of the array are all printed in the for loop, but every time the remainder is 5 (every 6th element), it outputs a newline character. This gives you 6 elements per line. For 5 elements per line, use
if (count % 5 == 4)
First, yes it's HW - really tried but not sure of something so ill be happy if you will help me:)
I have this code:
void func(int A[], int start, int n)
{
int p = n/2;
if ( 1 < n )
{
func(A, start, p);
func(A, start + p, n-p);
for (i=0; i<n; i++)
cout << A[start+i];
}
}
func(A, 0, n);
I need to give this code a recusive formula.
What I did was - first recursion call is T(n/2).
Second - this is the problem! really confuse with adding the 'p'...is that
T(n/2) too??
Three - for is running on theta(n)
and the outside recursion call is T(n)...
Can you help me get to the final formula??
Thanks
If I read it right, you want the recurrence for the run time complexity.
For n > 1, you recur with parameter floor(n/2) and with parameter n-floor(n/2), and after that you output n items. Thus you have
T(n) = T(cost of first recursive call) + T(second rec. call) + extra work
which you should now bring into a form suitable to apply the master theorem.
This is either a trick question or you misread the question. What you have is a recursive formula. Do you need to switch this formula from C++ to more traditional math notation? Do need to find a non-recursive algorithm? In your answer to the question, what is T? The term formula does not really apply here because nothing gets computed. This is a void function that never modifies the given array. All that happens is some things elements from the array get put on the screen in some order.
I would start by tracing an example to understand what is going on.
Lets say A = {1,2,3,4} Then 'func(A, 0,4)' is:
tracing func(A,0,4) :
p = 2
func(A,0,2)
func(A,2,2)
cout << 1 2 3 4
tracing func(A,0,2) :
p = 1 //start=0; n=2
func(A,0,1)
func(A,1,1)
cout << 1 2
tracing func(A,2,2) :
p = 1 //start=2; n=2
func(A,2,1)
func(A,3,1)
cout << 3 4
tracing func(A,2,1) :
p = 0 //start=0; n=1
func(A,0,0)
func(A,0,1)
cout << 1
tracing func(A,3,1) :
p = 0 //start=3; n=1
func(A,3,0)
func(A,3,1)
cout << 3
tracing func(A,2,1) :
p = 0 //start=0; n=1
func(A,0,0)
func(A,0,1)
cout << 1
At this point I'm going to stop because this is your homework problem. You can finish it from here.
gooday programers. I have to design a C++ program that reads a sequence of positive integer values that ends with zero and find the length of the longest increasing subsequence in the given sequence. For example, for the following
sequence of integer numbers:
1 2 3 4 5 2 3 4 1 2 5 6 8 9 1 2 3 0
the program should return 6
i have written my code which seems correct but for some reason is always returning zero, could someone please help me with this problem.
Here is my code:
#include <iostream>
using namespace std;
int main()
{
int x = 1; // note x is initialised as one so it can enter the while loop
int y = 0;
int n = 0;
while (x != 0) // users can enter a zero at end of input to say they have entered all their numbers
{
cout << "Enter sequence of numbers(0 to end): ";
cin >> x;
if (x == (y + 1)) // <<<<< i think for some reason this if statement if never happening
{
n = n + 1;
y = x;
}
else
{
n = 0;
}
}
cout << "longest sequence is: " << n << endl;
return 0;
}
In your program, you have made some assumptions, you need to validate them first.
That the subsequence always starts at 1
That the subsequence always increments by 1
If those are correct assumptions, then here are some tweaks
Move the cout outside of the loop
The canonical way in C++ of testing whether an input operation from a stream has worked, is simply test the stream in operation, i.e. if (cin >> x) {...}
Given the above, you can re-write your while loop to read in x and test that x != 0
If both above conditions hold, enter the loop
Now given the above assumptions, your first check is correct, however in the event the check fails, remember that the new subsequence starts at the current input number (value x), so there is no sense is setting n to 0.
Either way, y must always be current value of x.
If you make the above logic changes to your code, it should work.
In the last loop, your n=0 is execute before x != 0 is check, so it'll always return n = 0. This should work.
if(x == 0) {
break;
} else if (x > y ) {
...
} else {
...
}
You also need to reset your y variable when you come to the end of a sequence.
If you just want a list of increasing numbers, then your "if" condition is only testing that x is equal to one more than y. Change the condition to:
if (x > y) {
and you should have more luck.
You always return 0, because the last number that you read and process is 0 and, of course, never make x == (y + 1) comes true, so the last statement that its always executed before exiting the loop its n=0
Hope helps!
this is wrong logically:
if (x == (y + 1)) // <<<<< i think for some reason this if statement if never happening
{
Should be
if(x >= (y+1))
{
I think that there are more than one problem, the first and most important that you might have not understood the problem correctly. By the common definition of longest increasing subsequence, the result to that input would not be 6 but rather 8.
The problem is much more complex than the simple loop you are trying to implement and it is usually tackled with Dynamic Programming techniques.
On your particular code, you are trying to count in the if the length of the sequence for which each element is exactly the successor of the last read element. But if the next element is not in the sequence you reset the length to 0 (else { n = 0; }), which is what is giving your result. You should be keeping a max value that never gets reset back to 0, something like adding in the if block: max = std::max( max, n ); (or in pure C: max = (n > max? n : max );. Then the result will be that max value.
I was calculating the Fibonacci sequence, and stumbled across this code, which I saw a lot:
int Fibonacci (int x)
{
if (x<=1) {
return 1;
}
return Fibonacci (x-1)+Fibonacci (x-2);
}
What I don't understand is how it works, especially the return part at the end: Does it call the Fibonacci function again? Could someone step me through this function?
Yes, the function calls itself. For example,
Fibonacci(4)
= Fibonacci(3) + Fibonacci(2)
= (Fibonacci(2) + Fibonacci(1)) + (Fibonacci(1) + Fibonacci(0))
= ((Fibonacci(1) + Fibonacci(0)) + 1) + (1 + 1)
= ((1 + 1) + 1) + 2
= (2 + 1) + 2
= 3 + 2
= 5
Note that the Fibonacci function is called 9 times here. In general, the naïve recursive fibonacci function has exponential running time, which is usually a Bad Thing.
This is a classical example of a recursive function, a function that calls itself.
If you read it carefully, you'll see that it will call itself, or, recurse, over and over again, until it reaches the so called base case, when x <= 1 at which point it will start to "back track" and sum up the computed values.
The following code clearly prints out the trace of the algorithm:
public class Test {
static String indent = "";
public static int fibonacci(int x) {
indent += " ";
System.out.println(indent + "invoked with " + x);
if (x <= 1) {
System.out.println(indent + "x = " + x + ", base case reached.");
indent = indent.substring(4);
return 1;
}
System.out.println(indent + "Recursing on " + (x-1) + " and " + (x-2));
int retVal = fibonacci(x-1) + fibonacci(x-2);
System.out.println(indent + "returning " + retVal);
indent = indent.substring(4);
return retVal;
}
public static void main(String... args) {
System.out.println("Fibonacci of 3: " + fibonacci(3));
}
}
The output is the following:
invoked with 3
Recursing on 2 and 1
invoked with 2
Recursing on 1 and 0
invoked with 1
x = 1, base case reached.
invoked with 0
x = 0, base case reached.
returning 2
invoked with 1
x = 1, base case reached.
returning 3
Fibonacci of 3: 3
A tree depiction of the trace would look something like
fib 4
fib 3 + fib 2
fib 2 + fib 1 fib 1 + fib 0
fib 1 + fib 0 1 1 1
1 1
The important parts to think about when writing recursive functions are:
1. Take care of the base case
What would have happened if we had forgotten if (x<=1) return 1; in the example above?
2. Make sure the recursive calls somehow decrease towards the base case
What would have happened if we accidentally modified the algorithm to return fibonacci(x)+fibonacci(x-1);
return Fibonacci (x-1)+Fibonacci (x-2);
This is terribly inefficient. I suggest the following linear alternative:
unsigned fibonacci(unsigned n, unsigned a, unsigned b, unsigned c)
{
return (n == 2) ? c : fibonacci(n - 1, b, c, b + c);
}
unsigned fibonacci(unsigned n)
{
return (n < 2) ? n : fibonacci(n, 0, 1, 1);
}
The fibonacci sequence can be expressed more succinctly in functional languages.
fibonacci = 0 : 1 : zipWith (+) fibonacci (tail fibonacci)
> take 12 fibonacci
[0,1,1,2,3,5,8,13,21,34,55,89]
This is classic function recursion. http://en.wikipedia.org/wiki/Recursive_function should get you started. Essentially if x less than or equal to 1 it returns 1. Otherwise it it decreases x running Fibonacci at each step.
As your question is marked C++, I feel compelled to point out that this function can also be achieved at compile-time as a template, should you have a compile-time variable to use it with.
template<int N> struct Fibonacci {
const static int value = Fibonacci<N - 1>::value + Fibonacci<N - 2>::value;
};
template<> struct Fibonacci<1> {
const static int value = 1;
}
template<> struct Fibonacci<0> {
const static int value = 1;
}
Been a while since I wrote such, so it could be a little out, but that should be it.
Yes, the Fibonacci function is called again, this is called recursion.
Just like you can call another function, you can call the same function again. Since function context is stacked, you can call the same function without disturbing the currently executed function.
Note that recursion is hard since you might call the same function again infinitely and fill the call stack. This errors is called a "Stack Overflow" (here it is !)
In C and most other languages, a function is allowed to call itself just like any other function. This is called recursion.
If it looks strange because it's different from the loop that you would write, you're right. This is not a very good application of recursion, because finding the n th Fibonacci number requires twice the time as finding the n-1th, leading to running time exponential in n.
Iterating over the Fibonacci sequence, remembering the previous Fibonacci number before moving on to the next improves the runtime to linear in n, the way it should be.
Recursion itself isn't terrible. In fact, the loop I just described (and any loop) can be implemented as a recursive function:
int Fibonacci (int x, int a = 1, int p = 0) {
if ( x == 0 ) return a;
return Fibonacci( x-1, a+p, a );
} // recursive, but with ideal computational properties
Or if you want to be more quick but use more memory use this.
int *fib,n;
void fibonaci(int n) //find firs n number fibonaci
{
fib= new int[n+1];
fib[1] = fib[2] = 1;
for(int i = 3;i<=n-2;i++)
fib[i] = fib[i-1] + fib[i-2];
}
and for n = 10 for exemple you will have :
fib[1] fib[2] fib[3] fib[4] fib[5] fib[6] fib[7] fib[8] fib[9] fib[10]
1 1 2 3 5 8 13 21 34 55``