How to detect the Sun from the space sky in OpenCv? - c++

I need to detect the Sun from the space sky.
These are examples of the input images:
I've got such results after Morphologic filtering ( open operation for twice )
Here's the algorithm code of this processing:
// Color to Gray
cvCvtColor(image, gray, CV_RGB2GRAY);
// color threshold
cvThreshold(gray,gray,150,255,CV_THRESH_BINARY);
// Morphologic open for 2 times
cvMorphologyEx( gray, dst, NULL, CV_SHAPE_RECT, CV_MOP_OPEN, 2);
Isn't it too heavy processing for such a simple task? And how to find the center of the Sun? If I find white points, than I'll find white points of big Earth ( left top corner on first example image )
Please advise me please my further action to detect the Sun.
UPDATE 1:
Trying algorithm of getting centroid by formula : {x,y} = {M10/M00, M01/M00}
CvMoments moments;
cvMoments(dst, &moments, 1);
double m00, m10, m01;
m00 = cvGetSpatialMoment(&moments, 0,0);
m10 = cvGetSpatialMoment(&moments, 1,0);
m01 = cvGetSpatialMoment(&moments, 0,1);
// calculating centroid
float centroid_x = m10/m00;
float centroid_y = m01/m00;
cvCircle( image,
cvPoint(cvRound(centroid_x), cvRound(centroid_y)),
50, CV_RGB(125,125,0), 4, 8,0);
And where Earth is in the photo, I got such a result:
So, centroid is on the Earth. :(
UPDATE 2:
Trying cvHoughCircles:
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* circles = cvHoughCircles(dst, storage, CV_HOUGH_GRADIENT, 12,
dst->width/2, 255, 100, 0, 35);
if ( circles->total > 0 ) {
// getting first found circle
float* circle = (float*)cvGetSeqElem( circles, 0 );
// Drawing:
// green center dot
cvCircle( image, cvPoint(cvRound(circle[0]),cvRound(circle[1])),
3, CV_RGB(0,255,0), -1, 8, 0 );
// wrapping red circle
cvCircle( image, cvPoint(cvRound(circle[0]),cvRound(circle[1])),
cvRound(circle[2]), CV_RGB(255,0,0), 3, 8, 0 );
}
First example: bingo, but the second - no ;(
I've tried different configuration of cvHoughCircles() - couldn't find configuration to fit every my example photo.
UPDATE3:
matchTemplate approach worked for me ( response of mevatron ). It worked with big number of tests.

How about trying a simple matchTemplate approach. I used this template image:
And, it detected the 3 out of 3 of the sun images I tried:
This should work due to the fact that circles (in your case the sun) are rotationally invariant, and since you are so far away from the sun it should be roughly scale invariant as well. So, template matching will work quite nicely here.
Finally, here is the code that I used to do this:
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main(int argc, char* argv[])
{
/// Load image and template
string inputName = "sun2.png";
string outputName = "sun2_detect.png";
Mat img = imread( inputName, 1 );
Mat templ = imread( "sun_templ.png", 1 );
/// Create the result matrix
int result_cols = img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1;
Mat result( result_cols, result_rows, CV_32FC1 );
/// Do the Matching and Normalize
matchTemplate(img, templ, result, CV_TM_CCOEFF);
normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat());
Point maxLoc;
minMaxLoc(result, NULL, NULL, NULL, &maxLoc);
rectangle(img, maxLoc, Point( maxLoc.x + templ.cols , maxLoc.y + templ.rows ), Scalar(0, 255, 0), 2);
rectangle(result, maxLoc, Point( maxLoc.x + templ.cols , maxLoc.y + templ.rows ), Scalar(0, 255, 0), 2);
imshow("img", img);
imshow("result", result);
imwrite(outputName, img);
waitKey(0);
return 0;
}
Hope you find that helpful!

Color Segmentation Approach
Do a color segmentation on the images to identify objects on the black background. You may identify the sun according to its area (given this uniquely identifies it, resp. don't varies largely accross images).
A more sophisticated approach could compute image moments, e.g. hu moments of the objects. See this page for these features.
Use a classification algorithm of your choice to do the actual classification of the objects found. The most simple approach is to manually specify thresholds, resp. value ranges that turn out to work for all(most) of your object/image combinations.
You may compute the actual position from the raw moments, as for the circular sun the position is equal to the center of mass
Centroid: {x, y } = { M10/M00, M01/M00 }
Edge Map Approach
Another option would be a circle hough transformation of the edge map, this will hopefully return some candidate circles (by position and radius). You may select the sun-circle according to the radius you expect (if you are lucky there is at most one).

A simple addition to your code is to filter out objects based on their size. If you always expect the earth to be much bigger than the sun, or the sun to have almost the same area in each picture, you can filter it by area.
Try Blob detector for this task.
And note that it may be good to apply a morphological opening/closing instead of simple erode or dilate, so your sun will have almost the same area before and after processing.

Related

Opencv hough circle not detecting circles

I am trying to detect the circle inside traffic light, and I am able to detect only 1 out of the 2 circle, and the size of the circle which i am getting seems to be too big
Input Image: https://i.imgur.com/VkNDt2B.png
Output image: https://i.imgur.com/BBq5tE0.png
int main()
{
Mat src, gray;
src = imread("C:\/test_image2.png", 1);
resize(src, src, Size(640, 480));
cvtColor(src, gray, CV_BGR2GRAY);
// Reduce the noise so we avoid false circle detection
GaussianBlur(gray, gray, Size(9, 9), 2, 2);
vector<Vec3f> circles;
// Apply the Hough Transform to find the circles
HoughCircles(gray, circles, CV_HOUGH_GRADIENT, 1, 60, 200, 20, 0, 35);
// Draw the circles detected
for (size_t i = 0; i < circles.size(); i++)
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
circle(src, center, 3, Scalar(0, 255, 0), -1, 8, 0);// circle center
circle(src, center, radius, Scalar(0, 0, 255), 3, 8, 0);// circle outline
cout << "center : " << center << "\nradius : " << radius << endl;
}
// Show your results
namedWindow("Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE);
imshow("Hough Circle Transform Demo", src);
waitKey(0);
return 0;
}
HoughCircles works best if you know in advance the approx size of the circles you're looking for. I suggest you give a better value for min_radius and max_radius parameters.
In any case, you need to play with param1 and param2 parameters. If circles are not perfect circles you can try to lower the image resolution using the dp parameter (f.ex. with dp = 2 the image is downscaled to half its resolution).
Basically: play with param1 and param2 until your circles are detected, no matter if other circles are detected. Use this result to find out what radius your circles are, then fix the min and max radius to remove most circles you don't want and finally play again with param1 and param2 until only your circles are left.
this is a pretty huge image
try cropping to the traffic light part first ( to get something to begin with ) and then by trying different combinations of min_distance and param_1,param_2 parameter try getting most circles ( even the wrong ones ) detected. find out what values get the most circles and what combination gets least ( or no ) circles and then fine tune the parameters to get lesser circles detected and finally find the perfect combination

OpenCV and C++ - Shape and road signs detection

I have to write a program that detect 3 types of road signs (speed limit, no parking and warnings). I know how to detect a circle using HoughCircles but I have several images and the parameters for HoughCircles are different for each image. There's a general way to detect circles without changing parameters for each image?
Moreover I need to detect triangle (warning signs) so I'm searching for a general shape detector. Have you any suggestions/code that can help me in this task?
Finally for detect the number on speed limit signs I thought to use SIFT and compare the image with some templates in order to identify the number on the sign. Could it be a good approach?
Thank you for the answer!
I know this is a pretty old question but I had been through the same problem and now I show you how I solved it.
The following images show some of the most accurate results that are displayed by the opencv program.
In the following images the street signs detected are circled with three different colors that distinguish the three kinds of street signs (warning, no parking, speed limit).
Red for warning signs
Blue for no parking signs
Fuchsia for speed limit signs
The speed limit value is written in green above the speed limit signs
[![example][1]][1]
[![example][2]][2]
[![example][3]][3]
[![example][4]][4]
As you can see the program performs quite well, it is able to detect and distinguish the three kinds of sign and to recognize the speed limit value in case of speed limit signs. Everything is done without computing too many false positives when, for instance, in the image there are some signs that do not belong to one of the three categories.
In order to achieve this result the software computes the detection in three main steps.
The first step involves a color based approach where the red objects in the image are detected and their region are extract to be analyzed. This step is particularly useful in order to prevent the detection of false positives, because only a small part of the image is processed.
The second step works with a machine learning algorithm: in particular we use a Cascade Classifier to compute the detection. This operation firstly requires to train the classifiers and on a later stage to use them to detect the signs.
In the last step the speed limit values inside the speed limit signs are read, also in this case through a machine learning algorithm but using the k-nearest neighbor algorithm.
Now we are going to see in detail each step.
COLOR BASED STEP
Since the street signs are always circled by a red frame, we can afford to take out and analyze only the regions where the red objects are detected.
In order to select the red objects, we consider all the ranges of the red color: even if this may produce some false positives, they will be easily discarded in the next steps.
inRange(image, Scalar(0, 70, 50), Scalar(10, 255, 255), mask1);
inRange(image, Scalar(170, 70, 50), Scalar(180, 255, 255), mask2);
In the image below we can see an example of the red objects detected with this method.
After having found the red pixels we can gather them to find the regions using a clustering algorithm, I use the method
partition(<#_ForwardIterator __first#>, _ForwardIterator __last, <#_Predicate __pred#>)
After the execution of this method we can save all the points in the same cluster in a vector (one for each cluster) and extract the bounding boxes which represent the
regions to be analyzed in the next step.
HAAR CASCADE CLASSIFIERS FOR SIGNS DETECTION
This is the real detection step where the street signs are detected. In order to perform a cascade classifier the first step consist in building a dataset of positives and negatives images. Now I explain how I have built my own datasets of images.
The first thing to note is that we need to train three different Haar cascades in order to distinguish between the three kind of signs that we have to detect, hence we must repeat the following steps for each of the three kinds of sign.
We need two datasets: one for the positive samples (which must be a set of images that contains the road signs that we are going to detect) and another one for the negative samples which can be any kind of image without street signs.
After collecting a set of 100 images for the positive samples and a set of 200 images for the negatives in two different folders, we need to write two text files:
Signs.info which contains a list of file names like the one below,
one for each positive sample in the positive folder.
pos/image_name.png 1 0 0 50 45
Here, the numbers after the name represent respectively the number
of street signs in the image, the coordinate of the upper left
corner of the street sign, his height and his width.
Bg.txt which contains a list of file names like the one below, one
for each sign in the negative folder.
neg/street15.png
With the command line below we generate the .vect file which contains all the information that the software retrieves from the positive samples.
opencv_createsamples -info sign.info -num 100 -w 50 -h 50 -vec signs.vec
Afterwards we train the cascade classifier with the following command:
opencv_traincascade -data data -vec signs.vec -bg bg.txt -numPos 60 -numNeg 200 -numStages 15 -w 50 -h 50 -featureType LBP
where the number of stages indicates the number of classifiers that will be generated in order to build the cascade.
At the end of this process we gain a file cascade.xml which will be used from the CascadeClassifier program in order to detect the objects in the image.
Now we have trained our algorithm and we can declare a CascadeClassifier for each kind of street sign, than we detect the signs in the image through
detectMultiScale(<#InputArray image#>, <#std::vector<Rect> &objects#>)
this method creates a Rect around each object that has been detected.
It is important to note that exactly as every machine learning algorithm, in order to perform well, we need a large number of samples in the dataset. The dataset that I have built, is not extremely large, thus in some situations it is not able to detect all the signs. This mostly happens when a small part of the street sign is not visible in the image like in the warning sign below:
I have expanded my dataset up to the point where I have obtained a fairly accurate result without
too many errors.
SPEED LIMIT VALUE DETECTION
Like for the street signs detection also here I used a machine learning algorithm but with a different approach. After some work, I realized that an OCR (tesseract) solution does not perform well, so I decided to build my own ocr software.
For the machine learning algorithm I took the image below as training data which contains some speed limit values:
The amount of training data is small. But, since in speed limit signs all letters have the same font, it is not a huge problem.
To prepare the data for training, I made a small code in OpenCV. It does the following things:
It loads the image on the left;
It selects the digits (obviously by contour finding and applying constraints on area and height of letters to avoid false detections).
It draws the bounding rectangle around one letter and it waits for the key to be manually pressed. This time the user presses the digit key corresponding to the letter in box by himself.
Once the corresponding digit key is pressed, it saves 100 pixel values in an array and the correspondent manually entered digit in another array.
Eventually it saves both the arrays in separate txt files.
Following the manual digit classification all the digits in the train data( train.png) are manually labeled, and the image will look like the one below.
Now we enter into training and testing part.
For training we do as follows:
Load the txt files we already saved earlier
Create an instance of classifier that we are going to use ( KNearest)
Then we use KNearest.train function to train the data
Now the detection:
We load the image with the speed limit sign detected
Process the image as before and extract each digit using contour methods
Draw bounding box for it, then resize to 10x10, and store its pixel values in an array as done earlier.
Then we use KNearest.find_nearest() function to find the nearest item to the one we gave.
And it recognizes the correct digit.
I tested this little OCR on many images, and just with this small dataset I have obtained an accuracy of about 90%.
CODE
Below I post all my openCv c++ code in a single class, following my instruction you should be able to achive my result.
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <cmath>
#include <stdlib.h>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui.hpp"
#include <string.h>
#include <opencv2/ml/ml.hpp>
using namespace std;
using namespace cv;
std::vector<cv::Rect> getRedObjects(cv::Mat image);
vector<Mat> detectAndDisplaySpeedLimit( Mat frame );
vector<Mat> detectAndDisplayNoParking( Mat frame );
vector<Mat> detectAndDisplayWarning( Mat frame );
void trainDigitClassifier();
string getDigits(Mat image);
vector<Mat> loadAllImage();
int getSpeedLimit(string speed);
//path of the haar cascade files
String no_parking_signs_cascade = "/Users/giuliopettenuzzo/Desktop/cascade_classifiers/no_parking_cascade.xml";
String speed_signs_cascade = "/Users/giuliopettenuzzo/Desktop/cascade_classifiers/speed_limit_cascade.xml";
String warning_signs_cascade = "/Users/giuliopettenuzzo/Desktop/cascade_classifiers/warning_cascade.xml";
CascadeClassifier speed_limit_cascade;
CascadeClassifier no_parking_cascade;
CascadeClassifier warning_cascade;
int main(int argc, char** argv)
{
//train the classifier for digit recognition, this require a manually train, read the report for more details
trainDigitClassifier();
cv::Mat sceneImage;
vector<Mat> allImages = loadAllImage();
for(int i = 0;i<=allImages.size();i++){
sceneImage = allImages[i];
//load the haar cascade files
if( !speed_limit_cascade.load( speed_signs_cascade ) ){ printf("--(!)Error loading\n"); return -1; };
if( !no_parking_cascade.load( no_parking_signs_cascade ) ){ printf("--(!)Error loading\n"); return -1; };
if( !warning_cascade.load( warning_signs_cascade ) ){ printf("--(!)Error loading\n"); return -1; };
Mat scene = sceneImage.clone();
//detect the red objects
std::vector<cv::Rect> allObj = getRedObjects(scene);
//use the three cascade classifier for each object detected by the getRedObjects() method
for(int j = 0;j<allObj.size();j++){
Mat img = sceneImage(Rect(allObj[j]));
vector<Mat> warningVec = detectAndDisplayWarning(img);
if(warningVec.size()>0){
Rect box = allObj[j];
}
vector<Mat> noParkVec = detectAndDisplayNoParking(img);
if(noParkVec.size()>0){
Rect box = allObj[j];
}
vector<Mat> speedLitmitVec = detectAndDisplaySpeedLimit(img);
if(speedLitmitVec.size()>0){
Rect box = allObj[j];
for(int i = 0; i<speedLitmitVec.size();i++){
//get speed limit and skatch it in the image
int digit = getSpeedLimit(getDigits(speedLitmitVec[i]));
if(digit > 0){
Point point = box.tl();
point.y = point.y + 30;
cv::putText(sceneImage,
"SPEED LIMIT " + to_string(digit),
point,
cv::FONT_HERSHEY_COMPLEX_SMALL,
0.7,
cv::Scalar(0,255,0),
1,
cv::CV__CAP_PROP_LATEST);
}
}
}
}
imshow("currentobj",sceneImage);
waitKey(0);
}
}
/*
* detect the red object in the image given in the param,
* return a vector containing all the Rect of the red objects
*/
std::vector<cv::Rect> getRedObjects(cv::Mat image)
{
Mat3b res = image.clone();
std::vector<cv::Rect> result;
cvtColor(image, image, COLOR_BGR2HSV);
Mat1b mask1, mask2;
//ranges of red color
inRange(image, Scalar(0, 70, 50), Scalar(10, 255, 255), mask1);
inRange(image, Scalar(170, 70, 50), Scalar(180, 255, 255), mask2);
Mat1b mask = mask1 | mask2;
Mat nonZeroCoordinates;
vector<Point> pts;
findNonZero(mask, pts);
for (int i = 0; i < nonZeroCoordinates.total(); i++ ) {
cout << "Zero#" << i << ": " << nonZeroCoordinates.at<Point>(i).x << ", " << nonZeroCoordinates.at<Point>(i).y << endl;
}
int th_distance = 2; // radius tolerance
// Apply partition
// All pixels within the radius tolerance distance will belong to the same class (same label)
vector<int> labels;
// With lambda function (require C++11)
int th2 = th_distance * th_distance;
int n_labels = partition(pts, labels, [th2](const Point& lhs, const Point& rhs) {
return ((lhs.x - rhs.x)*(lhs.x - rhs.x) + (lhs.y - rhs.y)*(lhs.y - rhs.y)) < th2;
});
// You can save all points in the same class in a vector (one for each class), just like findContours
vector<vector<Point>> contours(n_labels);
for (int i = 0; i < pts.size(); ++i){
contours[labels[i]].push_back(pts[i]);
}
// Get bounding boxes
vector<Rect> boxes;
for (int i = 0; i < contours.size(); ++i)
{
Rect box = boundingRect(contours[i]);
if(contours[i].size()>500){//prima era 1000
boxes.push_back(box);
Rect enlarged_box = box + Size(100,100);
enlarged_box -= Point(30,30);
if(enlarged_box.x<0){
enlarged_box.x = 0;
}
if(enlarged_box.y<0){
enlarged_box.y = 0;
}
if(enlarged_box.height + enlarged_box.y > res.rows){
enlarged_box.height = res.rows - enlarged_box.y;
}
if(enlarged_box.width + enlarged_box.x > res.cols){
enlarged_box.width = res.cols - enlarged_box.x;
}
Mat img = res(Rect(enlarged_box));
result.push_back(enlarged_box);
}
}
Rect largest_box = *max_element(boxes.begin(), boxes.end(), [](const Rect& lhs, const Rect& rhs) {
return lhs.area() < rhs.area();
});
//draw the rects in case you want to see them
for(int j=0;j<=boxes.size();j++){
if(boxes[j].area() > largest_box.area()/3){
rectangle(res, boxes[j], Scalar(0, 0, 255));
Rect enlarged_box = boxes[j] + Size(20,20);
enlarged_box -= Point(10,10);
rectangle(res, enlarged_box, Scalar(0, 255, 0));
}
}
rectangle(res, largest_box, Scalar(0, 0, 255));
Rect enlarged_box = largest_box + Size(20,20);
enlarged_box -= Point(10,10);
rectangle(res, enlarged_box, Scalar(0, 255, 0));
return result;
}
/*
* code for detect the speed limit sign , it draws a circle around the speed limit signs
*/
vector<Mat> detectAndDisplaySpeedLimit( Mat frame )
{
std::vector<Rect> signs;
vector<Mat> result;
Mat frame_gray;
cvtColor( frame, frame_gray, CV_BGR2GRAY );
//normalizes the brightness and increases the contrast of the image
equalizeHist( frame_gray, frame_gray );
//-- Detect signs
speed_limit_cascade.detectMultiScale( frame_gray, signs, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
cout << speed_limit_cascade.getFeatureType();
for( size_t i = 0; i < signs.size(); i++ )
{
Point center( signs[i].x + signs[i].width*0.5, signs[i].y + signs[i].height*0.5 );
ellipse( frame, center, Size( signs[i].width*0.5, signs[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );
Mat resultImage = frame(Rect(center.x - signs[i].width*0.5,center.y - signs[i].height*0.5,signs[i].width,signs[i].height));
result.push_back(resultImage);
}
return result;
}
/*
* code for detect the warning sign , it draws a circle around the warning signs
*/
vector<Mat> detectAndDisplayWarning( Mat frame )
{
std::vector<Rect> signs;
vector<Mat> result;
Mat frame_gray;
cvtColor( frame, frame_gray, CV_BGR2GRAY );
equalizeHist( frame_gray, frame_gray );
//-- Detect signs
warning_cascade.detectMultiScale( frame_gray, signs, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
cout << warning_cascade.getFeatureType();
Rect previus;
for( size_t i = 0; i < signs.size(); i++ )
{
Point center( signs[i].x + signs[i].width*0.5, signs[i].y + signs[i].height*0.5 );
Rect newRect = Rect(center.x - signs[i].width*0.5,center.y - signs[i].height*0.5,signs[i].width,signs[i].height);
if((previus & newRect).area()>0){
previus = newRect;
}else{
ellipse( frame, center, Size( signs[i].width*0.5, signs[i].height*0.5), 0, 0, 360, Scalar( 0, 0, 255 ), 4, 8, 0 );
Mat resultImage = frame(newRect);
result.push_back(resultImage);
previus = newRect;
}
}
return result;
}
/*
* code for detect the no parking sign , it draws a circle around the no parking signs
*/
vector<Mat> detectAndDisplayNoParking( Mat frame )
{
std::vector<Rect> signs;
vector<Mat> result;
Mat frame_gray;
cvtColor( frame, frame_gray, CV_BGR2GRAY );
equalizeHist( frame_gray, frame_gray );
//-- Detect signs
no_parking_cascade.detectMultiScale( frame_gray, signs, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
cout << no_parking_cascade.getFeatureType();
Rect previus;
for( size_t i = 0; i < signs.size(); i++ )
{
Point center( signs[i].x + signs[i].width*0.5, signs[i].y + signs[i].height*0.5 );
Rect newRect = Rect(center.x - signs[i].width*0.5,center.y - signs[i].height*0.5,signs[i].width,signs[i].height);
if((previus & newRect).area()>0){
previus = newRect;
}else{
ellipse( frame, center, Size( signs[i].width*0.5, signs[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 0 ), 4, 8, 0 );
Mat resultImage = frame(newRect);
result.push_back(resultImage);
previus = newRect;
}
}
return result;
}
/*
* train the classifier for digit recognition, this could be done only one time, this method save the result in a file and
* it can be used in the next executions
* in order to train user must enter manually the corrisponding digit that the program shows, press space if the red box is just a point (false positive)
*/
void trainDigitClassifier(){
Mat thr,gray,con;
Mat src=imread("/Users/giuliopettenuzzo/Desktop/all_numbers.png",1);
cvtColor(src,gray,CV_BGR2GRAY);
threshold(gray,thr,125,255,THRESH_BINARY_INV); //Threshold to find contour
imshow("ci",thr);
waitKey(0);
thr.copyTo(con);
// Create sample and label data
vector< vector <Point> > contours; // Vector for storing contour
vector< Vec4i > hierarchy;
Mat sample;
Mat response_array;
findContours( con, contours, hierarchy,CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE ); //Find contour
for( int i = 0; i< contours.size(); i=hierarchy[i][0] ) // iterate through first hierarchy level contours
{
Rect r= boundingRect(contours[i]); //Find bounding rect for each contour
rectangle(src,Point(r.x,r.y), Point(r.x+r.width,r.y+r.height), Scalar(0,0,255),2,8,0);
Mat ROI = thr(r); //Crop the image
Mat tmp1, tmp2;
resize(ROI,tmp1, Size(10,10), 0,0,INTER_LINEAR ); //resize to 10X10
tmp1.convertTo(tmp2,CV_32FC1); //convert to float
imshow("src",src);
int c=waitKey(0); // Read corresponding label for contour from keyoard
c-=0x30; // Convert ascii to intiger value
response_array.push_back(c); // Store label to a mat
rectangle(src,Point(r.x,r.y), Point(r.x+r.width,r.y+r.height), Scalar(0,255,0),2,8,0);
sample.push_back(tmp2.reshape(1,1)); // Store sample data
}
// Store the data to file
Mat response,tmp;
tmp=response_array.reshape(1,1); //make continuous
tmp.convertTo(response,CV_32FC1); // Convert to float
FileStorage Data("TrainingData.yml",FileStorage::WRITE); // Store the sample data in a file
Data << "data" << sample;
Data.release();
FileStorage Label("LabelData.yml",FileStorage::WRITE); // Store the label data in a file
Label << "label" << response;
Label.release();
cout<<"Training and Label data created successfully....!! "<<endl;
imshow("src",src);
waitKey(0);
}
/*
* get digit from the image given in param, using the classifier trained before
*/
string getDigits(Mat image)
{
Mat thr1,gray1,con1;
Mat src1 = image.clone();
cvtColor(src1,gray1,CV_BGR2GRAY);
threshold(gray1,thr1,125,255,THRESH_BINARY_INV); // Threshold to create input
thr1.copyTo(con1);
// Read stored sample and label for training
Mat sample1;
Mat response1,tmp1;
FileStorage Data1("TrainingData.yml",FileStorage::READ); // Read traing data to a Mat
Data1["data"] >> sample1;
Data1.release();
FileStorage Label1("LabelData.yml",FileStorage::READ); // Read label data to a Mat
Label1["label"] >> response1;
Label1.release();
Ptr<ml::KNearest> knn(ml::KNearest::create());
knn->train(sample1, ml::ROW_SAMPLE,response1); // Train with sample and responses
cout<<"Training compleated.....!!"<<endl;
vector< vector <Point> > contours1; // Vector for storing contour
vector< Vec4i > hierarchy1;
//Create input sample by contour finding and cropping
findContours( con1, contours1, hierarchy1,CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
Mat dst1(src1.rows,src1.cols,CV_8UC3,Scalar::all(0));
string result;
for( int i = 0; i< contours1.size(); i=hierarchy1[i][0] ) // iterate through each contour for first hierarchy level .
{
Rect r= boundingRect(contours1[i]);
Mat ROI = thr1(r);
Mat tmp1, tmp2;
resize(ROI,tmp1, Size(10,10), 0,0,INTER_LINEAR );
tmp1.convertTo(tmp2,CV_32FC1);
Mat bestLabels;
float p=knn -> findNearest(tmp2.reshape(1,1),4, bestLabels);
char name[4];
sprintf(name,"%d",(int)p);
cout << "num = " << (int)p;
result = result + to_string((int)p);
putText( dst1,name,Point(r.x,r.y+r.height) ,0,1, Scalar(0, 255, 0), 2, 8 );
}
imwrite("dest.jpg",dst1);
return result ;
}
/*
* from the digits detected, it returns a speed limit if it is detected correctly, -1 otherwise
*/
int getSpeedLimit(string numbers){
if ((numbers.find("30") != std::string::npos) || (numbers.find("03") != std::string::npos)) {
return 30;
}
if ((numbers.find("50") != std::string::npos) || (numbers.find("05") != std::string::npos)) {
return 50;
}
if ((numbers.find("80") != std::string::npos) || (numbers.find("08") != std::string::npos)) {
return 80;
}
if ((numbers.find("70") != std::string::npos) || (numbers.find("07") != std::string::npos)) {
return 70;
}
if ((numbers.find("90") != std::string::npos) || (numbers.find("09") != std::string::npos)) {
return 90;
}
if ((numbers.find("100") != std::string::npos) || (numbers.find("001") != std::string::npos)) {
return 100;
}
if ((numbers.find("130") != std::string::npos) || (numbers.find("031") != std::string::npos)) {
return 130;
}
return -1;
}
/*
* load all the image in the file with the path hard coded below
*/
vector<Mat> loadAllImage(){
vector<cv::String> fn;
glob("/Users/giuliopettenuzzo/Desktop/T1/dataset/*.jpg", fn, false);
vector<Mat> images;
size_t count = fn.size(); //number of png files in images folder
for (size_t i=0; i<count; i++)
images.push_back(imread(fn[i]));
return images;
}
maybe you should try implementing the ransac algorithm, if you are using color images, migt be a good idea (if you are in europe) to get the red channel only since the speed limits are surrounded by a red cricle (or a thin white i think also).
For that you need to filter the image to get the edges, (canny filter).
Here are some useful links:
OpenCV detect partial circle with noise
https://hal.archives-ouvertes.fr/hal-00982526/document
Finally for the numbers detection i think its ok. Other approach is to use something like Viola-Jones algorithm to detect the signals, with pretrained existing models... It's up to you!

circle-detection issue

1.Some Information: I would like to develop a kind of circle recognition with the help of openCV. I successfully set up a connection between Swift, objc-c++, but strangely I have some problems with the circle recognition algorithm: Not all of the circles in my image gets detected!
2.Have a look at my code:
+(UIImage *)ConvertImage:(UIImage *)image {
cv::Mat matImage;
UIImageToMat(image, matImage);
cv::Mat modImage;
cv::medianBlur(matImage, matImage, 5);
cv::cvtColor(matImage, modImage, CV_RGB2GRAY);
cv::GaussianBlur(modImage, modImage, cv::Size(9, 9), 2, 2);
vector<Vec3f> circles;
cv::HoughCircles(modImage, circles, CV_HOUGH_GRADIENT, 1, 1, 100, 50, 0, 0);
for (auto i = circles.begin(); i != circles.end(); ++i)
std::cout << *i << ' ';
for( size_t i = 0; i < circles.size(); i++ )
{
cv::Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
circle( matImage, center, 3, Scalar(0,255,0), -1, 8, 0 );
circle( matImage, center, radius, Scalar(0,0,255), 3, 8, 0 );
}
UIImage *binImg = MatToUIImage(matImage);
return binImg;
}
As you can see in the image [click] there appears this issue :
Only 3 of 7 circles gets detected!
So in the docs I found the parameters explanation for this line:
cv::HoughCircles(modImage, circles, CV_HOUGH_GRADIENT, 1, 1, 100, 50, 0, 0);
dp = 1: The inverse ratio of resolution.
min_dist = modImage.rows/8: Minimum distance between detected centers.
param_1 = 200: Upper threshold for the internal Canny edge detector.
param_2 = 100*: Threshold for center detection.
min_radius = 0: Minimum radio to be detected. If unknown, put zero as default.
max_radius = 0: Maximum radius to be detected. If unknown, put zero as default.
3.My question
How to get rid of the issue mentioned above?
Any help would be very appreciated :)
For issue number 2 : The outline should be colored, not white!
What color should it be? At any rate you draw that circle in your code with this line.
circle( matImage, center, radius, Scalar(0,0,255), 3, 8, 0 );
If you want to change the color you can change the values you have declared in Scalar(0,0,255).
If you dont want the circle there at all you can remove that line of code.
Your images seems to be noise free. If the image is to contain circle always, You can extract the contours and fit circles using Least Squares
You can get the circle fit equations here. It is a straightforward implementation. Create a structure for the circle parameters (center and radius), fit circle and store the parameters in the structure and use it to draw circle using OpenCV.
You can also generate points on the circle using "ellipse2poly" function.

Watershed boundaries closely surround one area

I am trying to make an average of two blobs in OpenCV. To achieve that I was planning to use watershed algorithm on the image preprocessed in the following way:
cv::Mat common, diff, processed, result;
cv::bitwise_and(blob1, blob2, common); //calc common area of the two blobs
cv::absdiff(blob1, blob2, diff); //calc area where they differ
cv::distanceTransform(diff, processed, CV_DIST_L2, 3); //idea here is that the highest intensity
//will be in the middle of the differing area
cv::normalize(processed, processed, 0, 255, cv::NORM_MINMAX, CV_8U); //convert floats to bytes
cv::Mat watershedMarkers, watershedOutline;
common.convertTo(watershedMarkers, CV_32S, 1. / 255, 1); //change background to label 1, common area to label 2
watershedMarkers.setTo(0, processed); //set 0 (unknown) for area where blobs differ
cv::cvtColor(processed, processed, CV_GRAY2RGB); //watershed wants 3 channels
cv::watershed(processed, watershedMarkers);
cv::rectangle(watershedMarkers, cv::Rect(0, 0, watershedMarkers.cols, watershedMarkers.rows), 1); //remove the outline
//draw the boundary in red (for debugging)
watershedMarkers.convertTo(watershedOutline, CV_16S);
cv::threshold(watershedOutline, watershedOutline, 0, 255, CV_THRESH_BINARY_INV);
watershedOutline.convertTo(watershedOutline, CV_8U);
processed.setTo(cv::Scalar(CV_RGB(255, 0, 0)), watershedOutline);
//convert computed labels back to mask (blob), less relevant but shows my ultimate goal
watershedMarkers.convertTo(watershedMarkers, CV_8U);
cv::threshold(watershedMarkers, watershedMarkers, 1, 0, CV_THRESH_TOZERO_INV);
cv::bitwise_not(watershedMarkers * 255, result);
My problem with the results is that the calculated boundary is (almost) always adjacent to the area common to both blobs. Here are the pictures:
Input markers (black = 0, gray = 1, white = 2)
Watershed input image (distance transform result) with resulting outline drawn in red:
I would expect the boundary to go along the maximum intensity region of the input (that is, along the middle of the differing area). Instead (as you can see) it mostly goes around the area marked as 2, with a bit shifted to touch the background (marked as 1). Do I do something wrong here, or did I misunderstand how watershed works?
Starting from this image:
You can get the correct result simply passing an all-zero image to watershed algorithm. The "basin" is then equally filled of "water" starting from each "side" (then just remember to remove the outer border which is set by default to -1 by watershed algorithm):
Code:
#include <opencv2\opencv.hpp>
using namespace cv;
using namespace std;
int main()
{
Mat1b img = imread("path_to_image", IMREAD_GRAYSCALE);
Mat1i markers(img.rows, img.cols, int(0));
markers.setTo(1, img == 128);
markers.setTo(2, img == 255);
Mat3b image(markers.rows, markers.cols, Vec3b(0,0,0));
markers.convertTo(markers, CV_32S);
watershed(image, markers);
Mat3b result;
cvtColor(img, result, COLOR_GRAY2BGR);
result.setTo(Scalar(0, 0, 255), markers == -1);
imshow("Result", result);
waitKey();
return(0);
}

Image differencing: How to find minor differences between images?

i want to find hwo to get diff b/w 2 similar grayscale images for implementation in system for security purposes. I want to check whether any difference has occurred between them. For object tracking, i have implementd canny detection in the program below. I get outline of structured objects easily.. which cn later be subtracted to give only the outline of the difference in the delta image....but what if there's a non structural difference such as smoke or fire in the second image? i have increased the contrast for clearer edge detection as well have modified threshold vals in the canny fn parameters..yet got no suitable results.
also canny edge detects shadows edges too. if my two similar image were taken at different times during the day, the shadows will vary, so the edges will vary and will give undesirable false alarm
how should i work around this? Can anyone help? thanks!
Using c language api in enter code hereopencv 2.4 in visual studio 2010
#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
#include "cxcore.h"
#include <math.h>
#include <iostream>
#include <stdio.h>
using namespace cv;
using namespace std;
int main()
{
IplImage* img1 = NULL;
if ((img1 = cvLoadImage("libertyH1.jpg"))== 0)
{
printf("cvLoadImage failed\n");
}
IplImage* gray1 = cvCreateImage(cvGetSize(img1), IPL_DEPTH_8U, 1); //contains greyscale //image
CvMemStorage* storage1 = cvCreateMemStorage(0); //struct for storage
cvCvtColor(img1, gray1, CV_BGR2GRAY); //convert to greyscale
cvSmooth(gray1, gray1, CV_GAUSSIAN, 7, 7); // This is done so as to //prevent a lot of false circles from being detected
IplImage* canny1 = cvCreateImage(cvGetSize(gray1),IPL_DEPTH_8U,1);
IplImage* rgbcanny1 = cvCreateImage(cvGetSize(gray1),IPL_DEPTH_8U,3);
cvCanny(gray1, canny1, 50, 100, 3); //cvCanny( const //CvArr* image, CvArr* edges(output edge map), double threshold1, double threshold2, int //aperture_size CV_DEFAULT(3) );
cvNamedWindow("Canny before hough");
cvShowImage("Canny before hough", canny1);
CvSeq* circles1 = cvHoughCircles(gray1, storage1, CV_HOUGH_GRADIENT, 1, gray1->height/3, 250, 100);
cvCvtColor(canny1, rgbcanny1, CV_GRAY2BGR);
cvNamedWindow("Canny after hough");
cvShowImage("Canny after hough", rgbcanny1);
for (size_t i = 0; i < circles1->total; i++)
{
// round the floats to an int
float* p = (float*)cvGetSeqElem(circles1, i);
cv::Point center(cvRound(p[0]), cvRound(p[1]));
int radius = cvRound(p[2]);
// draw the circle center
cvCircle(rgbcanny1, center, 3, CV_RGB(0,255,0), -1, 8, 0 );
// draw the circle outline
cvCircle(rgbcanny1, center, radius+1, CV_RGB(0,0,255), 2, 8, 0 );
printf("x: %d y: %d r: %d\n",center.x,center.y, radius);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
IplImage* img2 = NULL;
if ((img2 = cvLoadImage("liberty_wth_obj.jpg"))== 0)
{
printf("cvLoadImage failed\n");
}
IplImage* gray2 = cvCreateImage(cvGetSize(img2), IPL_DEPTH_8U, 1);
CvMemStorage* storage = cvCreateMemStorage(0);
cvCvtColor(img2, gray2, CV_BGR2GRAY);
// This is done so as to prevent a lot of false circles from being detected
cvSmooth(gray2, gray2, CV_GAUSSIAN, 7, 7);
IplImage* canny2 = cvCreateImage(cvGetSize(img2),IPL_DEPTH_8U,1);
IplImage* rgbcanny2 = cvCreateImage(cvGetSize(img2),IPL_DEPTH_8U,3);
cvCanny(gray2, canny2, 50, 100, 3);
CvSeq* circles2 = cvHoughCircles(gray2, storage, CV_HOUGH_GRADIENT, 1, gray2->height/3, 250, 100);
cvCvtColor(canny2, rgbcanny2, CV_GRAY2BGR);
for (size_t i = 0; i < circles2->total; i++)
{
// round the floats to an int
float* p = (float*)cvGetSeqElem(circles2, i);
cv::Point center(cvRound(p[0]), cvRound(p[1]));
int radius = cvRound(p[2]);
// draw the circle center
cvCircle(rgbcanny2, center, 3, CV_RGB(0,255,0), -1, 8, 0 );
// draw the circle outline
cvCircle(rgbcanny2, center, radius+1, CV_RGB(0,0,255), 2, 8, 0 );
printf("x: %d y: %d r: %d\n",center.x,center.y, radius);
}
You want code help here? This is not an easy task. There are few algorithms available in internet or you can try to invent new one. A lot of research is going on this. I have some idea about a process. You can find the edges by Y from YCbCr color system. Deduct this Y value from blurred image's Y value. Then you will get the edge. Now make an array representation. You have to divide the image in blocks. Now check the block with blocks. It may slide, rotated, twisted etc. Compare with array matching. Object tracking is difficult due to background. Take care/omit unnecessary objects carefully.
I think the way to go could be Background subtraction. It lets you cope with lighting conditions changes.
See wikipedia entry for an intro. The basic idea is you have to build a model for the scene background, then all differences are computed relative to the background.
I have done some analysis on Image Differencing but the code was written for java. Kindly look into the below link that may come to help
How to find rectangle of difference between two images
Cheers !