Trimming off uninitialized list values in prolog - list

I'm writing something in prolog and the way I used append, it ends up returning a list like [a,b,c|_]. Is there any standard predicate (or simple way) to cut off all the uninitialized/arbitrary values?
Edit to add: Length won't work because the list could be of an arbitrary length, I don't know what it's going to be ahead of time, otherwise I would have already used that to trim it.

You should check into why append is giving you a list like that. Because observe this behavior of append that fixes the problem you are seeing:
?- append([a,b,c|_], X, L).
L = [a,b,c|X]
?- append([a,b,c|_], X, L), X=[].
L = [a,b,c]

If you're list isn't terminated with [], you're almost certainly building your list incorrectly.

You can use length/2 to this end!
?- Xs = [1,2,3|_], length(Xs, N).
Xs = [1,2,3], N = 3
; Xs = [1,2,3,_A], N = 4
; Xs = [1,2,3,_A,_B], N = 5
; ... .
However, it is not clear to me what you want to describe here. If you want to stick with the smallest solution use once(length(Xs, N)) instead.

You can close an open list like this:
close_list([]) :- !.
close_list([_ | T]) :-
close_list(T).
i.e. you have to walk through all the elements to reach the variable tail, and then bind it to the empty list.
Usage:
?- List = [a, b, C, d, 2.2 | _], close_list(List).
List = [a, b, C, d, 2.2].
If you hold a variable that is bound to the tail then it becomes much simpler:
?- List = [a, b, C, d, 2.2 | Tail], Tail = [].
List = [a, b, C, d, 2.2],
Tail = [].

Related

Write a predicate called rlen(X,N) to be true when N counts the total number of occurrences of atoms in the list X

I want to get this solution for my question. For example, ?- rlen([a,[a,b],c],X). returns X = 4. I tried the following code but it returns answer 3. Maybe, it's taking [a,b] as one element. I am new to prolog and learning, any help would be really appreciated.
rlen([],0).
rlen([_|T],N) :- rlen(T,N1),N is N1+1.
The code you wrote returns the number of elements in a list and [a,[a,b],c] has exactly 3 elements: a, [a,b] and c. If you want to do a nested count, I would suggest using the build-in predicate flatten/2 to flatten the list.
example (tested with SWISH):
?- rlen([a,[a,b],c],X).
X = 3.
?- flatten([a,[a,b],c],L).
L = [a, a, b, c].
?- flatten([a,[a,b],c],L), rlen(L,N).
L = [a, a, b, c],
N = 4.
However not using inbuild predicates is a bit more challenging, because you have to go through your list like in any normal length predicate, and for every Head element you have to distinguish between the case that the head element is a list or is not a list. If A is a list, count the elements of A, otherwise just add 1. (a -> b ; c ) is an if-then else: if a, then b, else c. Tested with SWISH:
rlen([],0).
rlen([A|T],N) :-
( is_list(A)
-> rlen(A,NA)
; NA is 1
),
rlen(T,NT),
N is NA+NT.
?- rlen([a,[a,b],c],X).
X = 4.

Compare list in prolog

I just started learning prolog and i don't understand why this returning false. I tried find solutions, but i not found. Can someone tell me why this return false?
[[A],B,C]=[[a,b,c],[d,e,f],1].
Short answer: [A] is a singleton list, but the corresponding element [a,b,c] has three elements.
You aim to match [[A], B, C] with [[a,b,c], [d,e,f], 1]. This thus means that you want to match a list with three elements with [[a,b,c], [d,e,f], 1]. Furthermore it means that you want to match [A] = [a,b,c], B = [d,e,f] and C = 1. The [A] can however not match with [a,b,c], since [A] means a singleton list.
You probably want to match this with [A,B,C] instead:
?- [[A],B,C]=[[a,b,c],[d,e,f],1].
false.
?- [A,B,C]=[[a,b,c],[d,e,f],1].
A = [a, b, c],
B = [d, e, f],
C = 1.
If you want to match with a non-empty list, with A the first element, you can match this with [A|_] instead:
?- [[A|_],B,C]=[[a,b,c],[d,e,f],1].
A = a,
B = [d, e, f],
C = 1.
Here is another way to answer why your query fails using library(diadem):
?- [[A],B,C]=[[a,b,c],[d,e,f],1].
false.
?- [[A],B,C]=[[a,b,c],[d,e,f],1].?X.
X = ([[A]|_]=[[_,_|_]|_]) /* 1 */
; X = (dif(A100,B100),[[A|A100]|_]=[[_|B100]|_]) /* 2 */
; X = (dif(A100,B100),[A100|_]=[B100|_]) /* 3 */
; X = (dif(A100,B100),A100=B100) /* 4 */
; ... .
Here the system generates most general generalizations that still fail.
The first generalization removes all irrelevant parts, what remains is this [A] and [_,_|_].
The second generalization insists that the tail of both lists is just different (instead of insisting that they are [] and [_|_] as stated in the first generalization).
The third and fourth are just more general views of it.

Copy certain characters from a list to another on prolog

So i have this code which copies everything from a list to another one.
How should I modify it in order to copy, lets say the first two character.
$copy(L,R) :-
copy2(L,R).
copy2([X],[X]).
copy2([H|T1],[H|T2]) :-
copy2(T1,T2).
example of what i want it to be: ?- copy([a,b,c,d,e,f],X,2). --> X = [a,b]
You can copy lists just with unification:
?- [a,b,c,d,e] = List.
List = [a, b, c, d, e].
?- [a,b,c,d,e] = [V,W,X,Y,Z].
V = a,
W = b,
X = c,
Y = d,
Z = e.
?- [a,b,c,d,e] = [V,W|Rest].
V = a,
W = b,
Rest = [c, d, e].
A predicate like the one you describe, copying the first N elements of a list, can be defined thus:
first_n(List, N, Xs) :-
length(Xs, N),
append(Xs _, List).
Which works like so:
?- first_n([a,b,c,d,e], 2, X).
X = [a, b].
There are a bunch of different ways to write a similar predicate. The way I have defined first_n/3, it will fail if N is larger than the length of List (this was pointed to out by #false in the comments). One could instead write an analog of the common function take, which will return List in its entirety in the event that N is greater than List's length:
take_n(N, List, Taken) :-
( length(List, M),
N > M
->
Taken = List
;
length(Taken, N),
append(Taken, _, List)
).
This answer was corrected (several times) under the guidance of #false's helpful criticism.

Prolog: How "length(+,-)" delete unassigned tail of the list keeping the list?

Again a Prolog beginner :-}
I build up a list element by element using
(1)
member(NewElement,ListToBeFilled).
in a repeating call,
(2)
ListToBeFilled = [NewElement|TmpListToBeFilled].
in a recursive call like
something(...,TmpListToBeFilled).
A concrete example of (2)
catch_all_nth1(List, AllNth, Counter, Result) :-
[H|T] = List,
NewCounter is Counter + 1,
(
0 is Counter mod AllNth
->
Result = [H|Result1]
;
Result = Result1
),
catch_all_nth1(T,AllNth,NewCounter,Result1),
!.
catch_all_nth1([], _, _, _).
As result I get a list which looks like
[E1, E2, E3, ..., Elast | _G12321].
Of course, the Tail is a Variable. [btw: are there better method to fill up the
list, directly avoiding the "unassigned tail"?]
I was now looking for a simple method to eliminate the "unassigned tail".
I found:
Delete an unassigned member in list
there it is proposed to use:
exclude(var, ListWithVar, ListWithoutVar),!,
[Found this too, but did not help as I do not want a dummy element at the end
Prolog list has uninstantiated tail, need to get rid of it ]
What I noticed is that using length\2 eliminate the "unassigned tail", too, and in addtion
the same List remains.
My Question is: How does it work? I would like to use the mechanism to eliminate the unassigned tail without using a new variable... [in SWI Prolog 'till now I did not get the debugger
entering length() ?!]
The example:
Z=['a','b','c' | Y],
X = Z,
write(' X '),write(X),nl,
length(X,Tmp),
write(' X '),write(X),nl.
13 ?- test(X).
X [a,b,c|_G3453]
X [a,b,c]
X = [a, b, c] .
I thought X, once initialized can not be changed anymore and you need
a new variable like in exclude(var, ListWithVar, ListWithoutVar).
Would be happy if someone explain the trick to me...
Thanks :-)
You're right about the strange behaviour: it's due to the ability of length/2 when called with unbound arguments
The predicate is non-deterministic, producing lists of increasing length if List is a partial list and Int is unbound.
example:
?- length([a,b,c|X],N).
X = [],
N = 3 ;
X = [_G16],
N = 4 ;
X = [_G16, _G19],
N = 5 ;
...
For your 'applicative' code, this tiny correction should be sufficient. Change the base recursion clause to
catch_all_nth1([], _, _, []).
here are the results before
4 ?- catch_all_nth1([a,b,c,d],2,1,R).
R = [b, d|_G75].
and after the correction:
5 ?- catch_all_nth1([a,b,c,d],2,1,R).
R = [b, d].
But I would suggest instead to use some of better know methods that Prolog provide us: like findall/3:
?- findall(E, (nth1(I,[a,b,c,d],E), I mod 2 =:= 0), L).
L = [b, d].
I think this should do it:
% case 1: end of list reached, replace final var with empty list
close_open_list(Uninstantiated_Var) :-
var(Uninstantiated_Var), !,
Uninstantiated_Var = '[]'.
% case 2: not the end, recurse
close_open_list([_|Tail]) :-
close_open_list(Tail).
?- X=[1,2,3|_], close_open_list(X).
X = [1, 2, 3].
Note that only variable X is used.. it simply recurses through the list until it hits the var at the end, replaces it with an empty list, which closes it. X is then available as a regular 'closed' list.
Edit: once a list element has been assigned to something specific, it cannot be changed. But the list itself can be appended to, when constructed as an open list ie. with |_ at the end. Open lists are a great way to build up list elements without needing new variables. eg.
X=[1,2,3|_], memberchk(4, X), memberchk(5,X).
X = [1, 2, 3, 4, 5|_G378304]
In the example above, memberchk tries tries to make '4', then '5' members of the list, which it succeeds in doing by inserting them into the free variable at the end in each case.
Then when you're done, just close it.

Add two more occurrences using prolog

I have a list [a, b, a, a, a, c, c]
and I need to add two more occurrences of each element.
The end result should look like this:
[a, a, a, b, b, b, a, a, a, a, a, c, c, c, c]
If I have an item on the list that is the same as the next item, then it keeps going until there is a new item, when it finds the new item, it adds two occurrences of the previous item then moves on.
This is my code so far, but I can't figure out how to add two...
dbl([], []).
dbl([X], [X,X]).
dbl([H|T], [H,H|T], [H,H|R]) :- dbl(T, R).
Your code looks a bit strange because the last rule takes three parameters. You only call the binary version, so no recursion will ever try to derive it.
You already had a good idea to look at the parts of the list, where elements change. So there are 4 cases:
1) Your list is empty.
2) You have exactly one element.
3) Your list starts with two equal elements.
4) Your list starts with two different elements.
Case 1 is not specified, so you might need to find a sensible choice for that. Case 2 is somehow similar to case 4, since the end of the list can be seen as a change in elements, where you need to append two copies, but then you are done. Case 3 is quite simple, we can just keep the element and recurse on the rest. Case 4 is where you need to insert the two copies again.
This means your code will look something like this:
% Case 1
dbl([],[]).
% Case 2
dbl([X],[X,X,X]).
% Case 3
dbl([X,X|Xs], [X|Ys]) :-
% [...] recursion skipping the leading X
% Case 4
dbl([X,Y|Xs], [X,X,X|Ys]) :-
dif(X,Y),
% [...] we inserted the copies, so recursion on [Y|Xs] and Ys
Case 3 should be easy to finish, we just drop the first X from both lists and recurse on dbl([X|Xs],Ys). Note that we implicitly made the first two elements equal (i.e. we unified them) by writing the same variable twice.
If you look at the head of case 4, you can directly imitate the pattern you described: supposed the list starts with X, then Y and they are different (dif(X,Y)), the X is repeated 3 times instead of just copied and we then continue with the recursion on the rest starting with Y: dbl([Y|Xs],Ys).
So let's try out the predicate:
?- dbl([a,b,a,a,a,c,c],[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]).
true ;
false.
Our test case is accepted (true) and we don't find more than one solution (false).
Let's see if we find a wrong solution:
?- dif(Xs,[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]), dbl([a,b,a,a,a,c,c],Xs).
false.
No, that's also good. What happens, if we have variables in our list?
?- dbl([a,X,a],Ys).
X = a,
Ys = [a, a, a, a, a] ;
Ys = [a, a, a, X, X, X, a, a, a],
dif(X, a),
dif(X, a) ;
false.
Either X = a, then Ys is single run of 5 as; or X is not equal to a, then we need to append the copies in all three runs. Looks also fine. (*)
Now lets see, what happens if we only specify the solution:
?- dbl(X,[a,a,a,b,b]).
false.
Right, a list with a run of only two bs can not be a result of our specification. So lets try to add one:
?- dbl(X,[a,a,a,b,b,b]).
X = [a, b] ;
false.
Hooray, it worked! So lets as a last test look what happens, if we just call our predicate with two variables:
?- dbl(Xs,Ys).
Xs = Ys, Ys = [] ;
Xs = [_G15],
Ys = [_G15, _G15, _G15] ;
Xs = [_G15, _G15],
Ys = [_G15, _G15, _G15, _G15] ;
Xs = [_G15, _G15, _G15],
Ys = [_G15, _G15, _G15, _G15, _G15] ;
Xs = [_G15, _G15, _G15, _G15],
Ys = [_G15, _G15, _G15, _G15, _G15, _G15] ;
[...]
It seems we get the correct answers, but we see only cases for a single run. This is a result of prolog's search strategy(which i will not explain in here). But if we look at shorter lists before we generate longer ones, we can see all the solutions:
?- length(Xs,_), dbl(Xs,Ys).
Xs = Ys, Ys = [] ;
Xs = [_G16],
Ys = [_G16, _G16, _G16] ;
Xs = [_G16, _G16],
Ys = [_G16, _G16, _G16, _G16] ;
Xs = [_G86, _G89],
Ys = [_G86, _G86, _G86, _G89, _G89, _G89],
dif(_G86, _G89) ;
Xs = [_G16, _G16, _G16],
Ys = [_G16, _G16, _G16, _G16, _G16] ;
Xs = [_G188, _G188, _G194],
Ys = [_G188, _G188, _G188, _G188, _G194, _G194, _G194],
dif(_G188, _G194) ;
[...]
So it seems we have a working predicate (**), supposed you filled in the missing goals from the text :)
(*) A remark here: this case only works because we are using dif. The first predicates with equality, one usually encounters are =, == and their respective negations \= and \==. The = stands for unifyability (substituting variables in the arguments s.t. they become equal) and the == stands for syntactic equality (terms being exactly equal). E.g.:
?- f(X) = f(a).
X = a.
?- f(X) \= f(a).
false.
?- f(X) == f(a).
false.
?- f(X) \== f(a).
true.
This means, we can make f(X) equal to f(a), if we substitute X by a. This means if we ask if they can not be made equal (\=), we get the answer false. On the other hand, the two terms are not equal, so == returns false, and its negation \== answers true.
What this also means is that X \== Y is always true, so we can not use \== in our code. In contrast to that, dif waits until it can decide wether its arguments are equal or not. If this is still undecided after finding an answer, the "dif(X,a)" statements are printed.
(**) One last remark here: There is also a solution with the if-then-else construct (test -> goals_if_true; goals_if_false, which merges cases 3 and 4. Since i prefer this solution, you might need to look into the other version yourself.
TL;DR:
From a declarative point of view, the code sketched by #lambda.xy.x is perfect.
Its determinacy can be improved without sacrificing logical-purity.
Code variant #0: #lambda.xy.x's code
Here's the code we want to improve:
dbl0([], []).
dbl0([X], [X,X,X]).
dbl0([X,X|Xs], [X|Ys]) :-
dbl0([X|Xs], Ys).
dbl0([X,Y|Xs], [X,X,X|Ys]) :-
dif(X, Y),
dbl0([Y|Xs], Ys).
Consider the following query and the answer SWI-Prolog gives us:
?- dbl0([a],Xs).
Xs = [a,a,a] ;
false.
With ; false the SWI prolog-toplevel
indicates a choicepoint was left when proving the goal.
For the first answer, Prolog did not search the entire proof tree.
Instead, it replied "here's an answer, there may be more".
Then, when asked for more solutions, Prolog traversed the remaining branches of the proof tree but finds no more answers.
In other words: Prolog needs to think twice to prove something we knew all along!
So, how can we give determinacy hints to Prolog?
By utilizing:
control constructs !/0 and / or (->)/2 (potentially impure)
first argument indexing on the principal functor (never impure)
The code presented in the earlier answer by #CapelliC—which is based on !/0, (->)/2, and the meta-logical predicate (\=)/2—runs well if all arguments are sufficiently instantiated. If not, erratic answers may result—as #lambda.xy.x's comment shows.
Code variant #1: indexing
Indexing can improve determinacy without ever rendering the code non-monotonic. While different Prolog processors have distinct advanced indexing capabilities, the "first-argument principal-functor" indexing variant is widely available.
Principal? This is why executing the goal dbl0([a],Xs) leaves a choicepoint behind: Yes, the goal only matches one clause—dbl0([X],[X,X,X]).—but looking no deeper than the principal functor Prolog assumes that any of the last three clauses could eventually get used. Of course, we know better...
To tell Prolog we utilize principal-functor first-argument indexing:
dbl1([], []).
dbl1([E|Es], Xs) :-
dbl1_(Es, Xs, E).
dbl1_([], [E,E,E], E).
dbl1_([E|Es], [E|Xs], E) :-
dbl1_(Es, Xs, E).
dbl1_([E|Es], [E0,E0,E0|Xs], E0) :-
dif(E0, E),
dbl1_(Es, Xs, E).
Better? Somewhat, but determinacy could be better still...
Code variant #2: indexing on reified term equality
To make Prolog see that the two recursive clauses of dbl1_/3 are mutually exclusive (in certain cases), we reify the truth value of
term equality and then index on that value:
This is where reified term equality (=)/3 comes into play:
dbl2([], []).
dbl2([E|Es], Xs) :-
dbl2_(Es, Xs, E).
dbl2_([], [E,E,E], E).
dbl2_([E|Es], Xs, E0) :-
=(E0, E, T),
t_dbl2_(T, Xs, E0, E, Es).
t_dbl2_(true, [E|Xs], _, E, Es) :-
dbl2_(Es, Xs, E).
t_dbl2_(false, [E0,E0,E0|Xs], E0, E, Es) :-
dbl2_(Es, Xs, E).
Sample queries using SWI-Prolog:
?- dbl0([a],Xs).
Xs = [a, a, a] ;
false.
?- dbl1([a],Xs).
Xs = [a, a, a].
?- dbl2([a],Xs).
Xs = [a, a, a].
?- dbl0([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b] ;
false.
?- dbl1([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b] ;
false.
?- dbl2([a,b,b],Xs).
Xs = [a, a, a, b, b, b, b].
To make above code more compact, use control construct if_/3 .
I was just about to throw this version with if_/3 and (=)/3 in the hat when I saw #repeat already suggested it. So this is essentially the more compact version as outlined by #repeat:
list_dbl([],[]).
list_dbl([X],[X,X,X]).
list_dbl([A,B|Xs],DBL) :-
if_(A=B,DBL=[A,B|Ys],DBL=[A,A,A,B|Ys]),
list_dbl([B|Xs],[B|Ys]).
It yields the same results as dbl2/2 by #repeat:
?- list_dbl([a],DBL).
DBL = [a,a,a]
?- list_dbl([a,b,b],DBL).
DBL = [a,a,a,b,b,b,b]
The example query by the OP works as expected:
?- list_dbl([a,b,a,a,a,c,c],DBL).
DBL = [a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]
Plus here are some of the example queries provided by #lambda.xy.x. They yield the same results as #repeat's dbl/2 and #lambda.xy.x's dbl/2:
?- dif(Xs,[a,a,a,b,b,b,a,a,a,a,a,c,c,c,c]), list_dbl([a,b,a,a,a,c,c],Xs).
no
?- list_dbl(X,[a,a,a,b,b]).
no
?- list_dbl(L,[a,a,a,b,b,b]).
L = [a,b] ? ;
no
?- list_dbl(L,DBL).
DBL = L = [] ? ;
DBL = [_A,_A,_A],
L = [_A] ? ;
DBL = [_A,_A,_A,_A],
L = [_A,_A] ? ;
DBL = [_A,_A,_A,_A,_A],
L = [_A,_A,_A] ? ;
...
?- list_dbl([a,X,a],DBL).
DBL = [a,a,a,a,a],
X = a ? ;
DBL = [a,a,a,X,X,X,a,a,a],
dif(X,a),
dif(a,X)
?- length(L,_), list_dbl(L,DBL).
DBL = L = [] ? ;
DBL = [_A,_A,_A],
L = [_A] ? ;
DBL = [_A,_A,_A,_A],
L = [_A,_A] ? ;
DBL = [_A,_A,_A,_B,_B,_B],
L = [_A,_B],
dif(_A,_B) ? ;
DBL = [_A,_A,_A,_A,_A],
L = [_A,_A,_A] ?
dbl([X,Y|T], [X,X,X|R]) :- X \= Y, !, dbl([Y|T], R).
dbl([H|T], R) :-
T = []
-> R = [H,H,H]
; R = [H|Q], dbl(T, Q).
The first clause handles the basic requirement, adding two elements on sequence change.
The second one handles list termination as a sequence change, otherwise, does a plain copy.