Invalid conversion from List* to int - c++

i created a linked list : struct Node and List Class and i used it outside with my main method,
#include "Lists.cpp"
#include <cstdlib>
using namespace std;
int main(){
Lists l = new Lists(1);
l.add(2);
l.add(3);
l.add(4);
l.add(5);
system("pause");
return 0;
}
but it produces an error that says "invalid conversion from List* to int". Is my using of outside class right? Im a little confused how I will solve this.
#include <cstdlib>
#include <iostream>
using namespace std;
struct Node{
int data;
Node *next;
Node(int i){
data = i;
next = NULL;
}
};
class List{
Node *head;
public:
List(int i){
head = new Node(i);
}
void addToHead(int i){
Node *temp = new Node(i);
temp->next = head;
head = temp;
}
void add(int i){
Node *currNode = head;
while(currNode!= NULL){
if(currNode->next == NULL){
currNode->next = new Node(i);
break;
}
else{
currNode = currNode-> next;
}
}
}
void deleteNode(int i){
Node *currNode = head;
Node *prevNode = NULL;
while(currNode!= NULL){
if(currNode->data == i) {
if(prevNode== NULL){
head = head->next;
}
else{
prevNode->next = currNode->next;
}
}
prevNode = currNode;
currNode = currNode -> next;
}
}
void insert(int position, Node *n){
Node *currNode= head;
Node *prevNode = NULL;
for(int counter = 0; counter>= position && currNode!= NULL; counter++){
if(counter==position){
Node *temp = currNode;
n->next = currNode;
prevNode->next= n;
}
prevNode = currNode;
currNode = currNode-> next;
}
}
void traverse(Node *node){
if(node!=NULL){
cout<< node-> data <<endl;
traverse(node->next);
}
}
};

Lists l = new Lists(1);
should be:
Lists *l = new Lists(1);
new provides a pointer.
The reason you get that specific error is that the line would be valid if the conversion chain Lists * -> int -> Lists were valid. The second is valid here because of the constructor but the first is not.

At which line do you get the mentionned error ? At first glance, Lists l = new Lists(1); is already wrong : Lists* l = new Lists(1); would be correct.
But this error does not correspond to the one you mention. Also note that you're defining List and trying to use Lists.
Is this the code you're trying to compile ?

Use List *l = new List(1); or std::shared_ptr<List> l = make_shared<List>( 1 ); if you want a dynamically-allocated List.
Or List l(1); if you want a List with automatic storage duration.
Be careful with the names, in the class definition you use List, and in the main function you use Lists.

Related

New and Delete operator on singly linked list in C++

#include <iostream>
#include <assert.h>
using namespace std;
struct node {
int num;
node *link;
};
int main (void) {
node *head, *tail;
tail = new node;
head = tail;
int i = 1;
while (i < 20) {
tail -> num = i;
tail -> link = new node;
assert(tail->link != NULL);
tail = tail->link;
i++;
}
tail -> num = i;
tail -> link = head;
for (int x = 0;x<100;x++) {
cout<<head->num<<" ";
head = head->link;
}
delete head;
return 0;
}
This source code is running but I feel like the delete operator is wrong? Like out of place? It's not suppose to be head. I expect to delete all the new nodes. But how?
Each new needs a corresponding delete. As you have it, you're only deleting the head of the list. All the other nodes will leak memory. Also, some weirdness with that extra node you allocate at the beginning for tail.
This is closer to what you want:
int main (void) {
node *head, *tail;
head = nullptr;
tail = nullptr;
int i = 1;
// allocate 20 nodes into a list
while (i < 20) {
node* newNode = new node();
newNode->num = i;
newNode->link = nullptr;
if (head == nullptr) {
head = newNode;
tail = newNode;
} else {
tail->link = newNode;
}
i++;
}
// print all the nodes out
node* probe = head;
while (probe) {
cout << probe->num << " ";
probe = probe->next;
}
// delete all the nodes in the list
probe = head;
while (probe) {
node* n = probe;
probe = probe->link;
delete n;
}
// don't leave invalid state
head = nullptr;
tail = nullptr;
return 0;
}

Why the given code(Program to remove duplicates from a linked list using hashing) is not displaying any output?

I want to write a program that will remove duplicates from a linked list and print the linked list.
I have used a hashing method to achieve this:
#include <iostream>
#include <unordered_map>
using namespace std;
struct Node{
int data;
Node* next;
};
unordered_map<int,int> hashmap;
Node* head = NULL;
void deldups()
{
Node* h = head;
Node* prev = NULL;
Node* curr;
curr = h;
while (curr != NULL)
{
int val = curr->data;
if (hashmap.find(val) != hashmap.end())
{
if (hashmap[val] > 1)
{
prev->next = curr->next->next;
delete(curr);
}
}
else{
++hashmap[val];
prev = curr;
}
curr = prev->next;
}
}
void print()
{
Node* temp = head;
while (temp != NULL)
{
cout << temp->data << " ";
temp = temp->next;
}
}
int main()
{
Node* firstnode = new Node();
head = firstnode;
firstnode->data = 5;
Node* secondnode = new Node();
firstnode->next = secondnode;
secondnode->data = 6;
Node* thirdnode = new Node();
secondnode->next = thirdnode;
thirdnode->data = 7;
Node* forthnode = new Node();
thirdnode->next = forthnode;
forthnode->data = 5;
Node* fifthnode = new Node();
forthnode->next = fifthnode;
fifthnode->data = 9;
fifthnode->next = NULL;
deldups();
print();
return 0;
}
Code Explanation:
Traverse the linked list while ptr is not NULL, check if the given element (h->data) is present in the map (unordered<int,int>).
NOTE I am using the element as a key in the map and not its value, the value will be used to count its duplicates.
if the key is present then we will check its value, and if the value is greater than '1' i.e the element is present more than one time, then remove the node from the linked list.
else, add the element key into the hashmap and increment its value by 1.
After running the code, there is no output. Why?
The reason your code does not output anything is because deldups() is getting stuck in an infinite loop (which you would see if you run your code in a debugger, or at least have deldups() output what it is doing).
When hashmap.find() finds a duplicate, curr is not being advanced to the next node following the duplicate, so subsequent iterations are finding the same duplicate again and again. The reason curr is not being advanced is because the expression hashmap[val] > 1 is never true, as hashmap[val] is not being incremented above 1, so you are not removing the duplicate and advancing curr to the next node.
To fix that, you would need to check for > 0 instead of > 1. In which case, you don't actually need to count the duplicates anymore, you just need to know whether they exist, so using std::unordered_map becomes overkill. Using std::set instead would suffice.
After fixing that, this statement is also wrong:
prev->next = curr->next->next;
You are trashing your list by skipping nodes that don't need to be skipped. Also, if curr is the last node in the list, next will be NULL, so accessing next->next will be undefined behavior.
That statement needs to be this instead:
prev->next = curr->next;
With that said, try this:
#include <iostream>
#include <set>
using namespace std;
struct Node{
int data;
Node* next;
};
set<int> hashmap;
Node* head = NULL;
void deldups()
{
Node* prev = NULL;
Node* curr = head;
while (curr != NULL)
{
int val = curr->data;
if (!hashmap.insert(val).second)
{
prev->next = curr->next;
delete curr;
}
else
{
prev = curr;
}
curr = prev->next;
}
}
void print()
{
Node* temp = head;
while (temp != NULL)
{
cout << temp->data << " ";
temp = temp->next;
}
}
int main()
{
Node* firstnode = new Node();
head = firstnode;
firstnode->data = 5;
Node* secondnode = new Node();
firstnode->next = secondnode;
secondnode->data = 6;
Node* thirdnode = new Node();
secondnode->next = thirdnode;
thirdnode->data = 7;
Node* forthnode = new Node();
thirdnode->next = forthnode;
forthnode->data = 5;
Node* fifthnode = new Node();
forthnode->next = fifthnode;
fifthnode->data = 9;
fifthnode->next = NULL;
deldups();
print();
return 0;
}
Online Demo
That being said, you might consider using the standard std::list or std::forward_list container instead of a manual linked-list implemented. Then, you would be able to use the standard std::unique() or std::remove_if() algorithm to remove duplicates.

Linked List insertion isn't working in for/while loop

I am learning DSA, and was trying to implement linked list but the insertion function that i wrote is not
working in a for or while loop, its not the same when i call that function outside the loop, it works that way. I am not able to figure it out, please someone help me.
#include <iostream>
class Node {
public:
int data;
Node *next;
Node(int &num) {
this->data = num;
next = NULL;
}
};
class LinkedList {
Node *head = NULL;
public:
void insert(int num) {
Node *tmp;
if (head == NULL) {
head = new Node(num);
tmp = head;
} else {
tmp->next = new Node(num);
tmp = tmp->next;
}
}
void printList() {
Node *tmp = head;
while (tmp) {
std::cout << tmp->data << " ";
tmp = tmp->next;
}
std::cout << std::endl;
}
void reverseList() {
Node *curr = head, *prev = NULL, *nextNode;
while (curr) {
nextNode = curr->next;
curr->next = prev;
prev = curr;
curr = nextNode;
}
head = prev;
}
};
int main() {
LinkedList list1;
// This is not working
int num;
while (num != -1) {
std::cin >> num;
list1.insert(num);
}
// This is working
// list1.insert(1);
// list1.insert(2);
// list1.insert(3);
// list1.insert(4);
// list1.insert(5);
list1.printList();
list1.reverseList();
list1.printList();
return 0;
}
I expect this after insertion
Edit:
although #Roberto Montalti solved this for me, but before that I tried passing incrementing value using a for loop which worked but as soon as I pull that cin out it crashes. can someone tell me what's happening under the hood?
for (int i = 1; i <= 10; i++)
{
list1.insert(i);
}
When inserting the nth item (1st excluded) tmp is a null pointer, i don't understand what you are doing there, you are assigning to next of some memory then you make that pointer point to another location, losing the pointer next you assigned before, you must keep track of the last item if you want optimal insertion. This way you are only assigning to some *tmp then going out of scope loses all your data... The best way is to just keep a pointer to the last inserted item, no need to use *tmp.
class LinkedList
{
Node *head = NULL;
Node *tail = NULL;
public:
void insert(int num)
{
if (head == NULL)
{
head = new Node(num);
tail = head;
}
else
{
tail->next = new Node(num);
tail = tail->next;
}
}
...
}
You need to loop until you reach the end of the list and then add the new node after that. Like this.
void insert(int num) {
Node *tmp = head;
if (head == NULL) {
head = new Node(num);
}
else {
while (tmp->next != NULL) {
tmp = tmp->next;
}
tmp->next = new Node(num);
}
}
first of all you need to define a node for each of the tail and head of the list as follows
Node *h;
Node *t;
you may also separate the Node from the LinkedList class so you can modify easily
class Node{
public:
int data;
Node *next;
Node(int data, Node* next);
~Node();
};
Node::Node(int data, Node* next)
{
this->data= data;
this->next= next;
}
Node::~Node(){}
}
after that you can try to add these functions to your LinkedList class
so it can deal with other special cases such empty list or full, etc..
void addToHead(int data){
Node *x = new Node(data,h);
h=x;
if(t==NULL){
t=x;
}
void addToTail(int data){
Node *x = new Node(data,NULL);
if(isEmpty()){
h=t=x;
}
else
{
t->next=x;
t=x;
}
}
now for the insert function try this after you implemented the Node class and the other functions,
void insert(int v){
if(h==nullptr){addToHead(v); return;}
if(h->data>=v) {addToHead(v);return;}
if(t->data<=v) {addToTail(v); return;}
// In this case there is at least two nodes
Node *k=h->next;
Node *p=h;
while(k != nullptr){
if(k->data >v){
Node *z =new Node(v,k);
p->next=z;
return;
}
p=k;
k=k->next;
}
}
the idea of making all of this is not lose the pointer when it goes through elements in the Linked List so you don't end up with a run time error.
I hope this can be useful to you.
There was an issue with your insert function.
Read about segmentation fault here https://www.geeksforgeeks.org/core-dump-segmentation-fault-c-cpp/#:~:text=Core%20Dump%2FSegmentation%20fault%20is,is%20known%20as%20core%20dump.
for a quick workaround you can use this
using namespace std;
#include <iostream>
class Node
{
public:
int data;
Node *next;
Node(int num)
{
this->data = num;
next = NULL;
}
};
class LinkedList
{
Node *head = NULL;
public:
void insert(int num)
{
Node *tmp= new Node(num);
tmp->next=head;
head=tmp;
}
void printList()
{
Node *tmp = head;
while (tmp)
{
std::cout << tmp->data << " ";
tmp = tmp->next;
}
std::cout << std::endl;
}
void reverseList()
{
Node *curr = head, *prev = NULL, *nextNode;
while (curr)
{
nextNode = curr->next;
curr->next = prev;
prev = curr;
curr = nextNode;
}
head = prev;
}
};
int main()
{
LinkedList list1;
// This is not working
int num,i=0,n;
cout<<"Type the value of n";
cin>>n;
while (i<n)
{
cin >> num;
cout<<num<<" "<<&num<<endl;
list1.insert(num);
i++;
}
list1.printList();
list1.reverseList();
list1.printList();
return 0;
}

error : exception : Unhandled exception thrown: read access violation. temp was 0xDDDDDDDD

I am a beginner and am working on Linked list. I am trying to make a program which adds elements to the list, updates the list, dislays it and deletes it.I am getting an exception : read access violation. temp was 0xDDDDDDDD.
I think there is some problem with display() function. The debugger also does shows the same.
#include "stdafx.h"
#include "Node.h"
#include<iostream>
using namespace std;
Node::Node() //constructor
{
head = NULL;
}
Node::~Node() //destructor
{
}
void Node::addFirstNode(int n) //adding the first element in the list
{
node *temp = new node;
temp->data = n;
temp->next = NULL;
head = temp;
}
void Node :: addLast(int n) //Adding elements at the end of the list
{
node *last = new node;
last->data = n;
last->next = NULL;
node *temp = new node;
temp = head;
while (temp->next != NULL) {
temp = temp->next;
}
temp->next = last;
}
void Node::display() //Displaying the list
{
node *temp = head;
while (temp != NULL)
{
cout<<temp->data;
temp = temp->next;
}
}
//the main function:
#include "stdafx.h"
#include "Node.h"
#include<iostream>
using namespace std;
int main()
{
Node a;
a.addFirstNode(101); //Calling function : addFirstNode
a.addLast(102); //Calling function : addLast
a.addLast(103); //Calling function : addLast
a.addLast(104); //Calling function : addLast
a.display(); //Calling function : display
return 0;
}
The Node.h file is as below:
struct node
{
int data;
node *next;
};
class Node
{
private :
node *head;
public:
Node();
~Node();
void addFirstNode(int n);
void addLast(int n);
void display();
};
You should rename Node to better describe what it is, e.g. List.
In Node::addFirst(), replace temp->next = NULL; with temp->next = head; You don't want to throw away your list every time you add a Node to the beginning of it.
In Node::addLast(), replace node *temp = new node; with node *temp = head; You don't want to leak memory every time you add a Node to the end of it.

Simple linked list in C++

I am about to create a linked that can insert and display until now:
struct Node {
int x;
Node *next;
};
This is my initialisation function which only will be called for the first Node:
void initNode(struct Node *head, int n){
head->x = n;
head->next = NULL;
}
To add the Node, and I think the reason why my linked list isn't working correct is in this function:
void addNode(struct Node *head, int n){
struct Node *NewNode = new Node;
NewNode-> x = n;
NewNode -> next = head;
head = NewNode;
}
My main function:
int _tmain(int argc, _TCHAR* argv[])
{
struct Node *head = new Node;
initNode(head, 5);
addNode(head, 10);
addNode(head, 20);
return 0;
}
Let me run the program as I think it works. First I initialise the head Node as a Node like this:
head = [ 5 | NULL ]
Then I add a new node with n = 10 and pass head as my argument.
NewNode = [ x | next ] where next points at head. And then I change the place where head is pointing to NewNode, since NewNode is the first Node in LinkedList now.
Why isn't this working? I would appreciate any hints that could make me move in the right direction. I think LinkedList is a bit hard to understand.
When I'm printing this, it only returns 5:
This is the most simple example I can think of in this case and is not tested. Please consider that this uses some bad practices and does not go the way you normally would go with C++ (initialize lists, separation of declaration and definition, and so on). But that are topics I can't cover here.
#include <iostream>
using namespace std;
class LinkedList{
// Struct inside the class LinkedList
// This is one node which is not needed by the caller. It is just
// for internal work.
struct Node {
int x;
Node *next;
};
// public member
public:
// constructor
LinkedList(){
head = NULL; // set head to NULL
}
// destructor
~LinkedList(){
Node *next = head;
while(next) { // iterate over all elements
Node *deleteMe = next;
next = next->next; // save pointer to the next element
delete deleteMe; // delete the current entry
}
}
// This prepends a new value at the beginning of the list
void addValue(int val){
Node *n = new Node(); // create new Node
n->x = val; // set value
n->next = head; // make the node point to the next node.
// If the list is empty, this is NULL, so the end of the list --> OK
head = n; // last but not least, make the head point at the new node.
}
// returns the first element in the list and deletes the Node.
// caution, no error-checking here!
int popValue(){
Node *n = head;
int ret = n->x;
head = head->next;
delete n;
return ret;
}
// private member
private:
Node *head; // this is the private member variable. It is just a pointer to the first Node
};
int main() {
LinkedList list;
list.addValue(5);
list.addValue(10);
list.addValue(20);
cout << list.popValue() << endl;
cout << list.popValue() << endl;
cout << list.popValue() << endl;
// because there is no error checking in popValue(), the following
// is undefined behavior. Probably the program will crash, because
// there are no more values in the list.
// cout << list.popValue() << endl;
return 0;
}
I would strongly suggest you to read a little bit about C++ and Object oriented programming. A good starting point could be this: http://www.galileocomputing.de/1278?GPP=opoo
EDIT: added a pop function and some output. As you can see the program pushes 3 values 5, 10, 20 and afterwards pops them. The order is reversed afterwards because this list works in stack mode (LIFO, Last in First out)
You should take reference of a head pointer. Otherwise the pointer modification is not visible outside of the function.
void addNode(struct Node *&head, int n){
struct Node *NewNode = new Node;
NewNode-> x = n;
NewNode -> next = head;
head = NewNode;
}
I'll join the fray. It's been too long since I've written C. Besides, there's no complete examples here anyway. The OP's code is basically C, so I went ahead and made it work with GCC.
The problems were covered before; the next pointer wasn't being advanced. That was the crux of the issue.
I also took the opportunity to make a suggested edit; instead of having two funcitons to malloc, I put it in initNode() and then used initNode() to malloc both (malloc is "the C new" if you will). I changed initNode() to return a pointer.
#include <stdlib.h>
#include <stdio.h>
// required to be declared before self-referential definition
struct Node;
struct Node {
int x;
struct Node *next;
};
struct Node* initNode( int n){
struct Node *head = malloc(sizeof(struct Node));
head->x = n;
head->next = NULL;
return head;
}
void addNode(struct Node **head, int n){
struct Node *NewNode = initNode( n );
NewNode -> next = *head;
*head = NewNode;
}
int main(int argc, char* argv[])
{
struct Node* head = initNode(5);
addNode(&head,10);
addNode(&head,20);
struct Node* cur = head;
do {
printf("Node # %p : %i\n",(void*)cur, cur->x );
} while ( ( cur = cur->next ) != NULL );
}
compilation: gcc -o ll ll.c
output:
Node # 0x9e0050 : 20
Node # 0x9e0030 : 10
Node # 0x9e0010 : 5
Below is a sample linkedlist
#include <string>
#include <iostream>
using namespace std;
template<class T>
class Node
{
public:
Node();
Node(const T& item, Node<T>* ptrnext = NULL);
T value;
Node<T> * next;
};
template<class T>
Node<T>::Node()
{
value = NULL;
next = NULL;
}
template<class T>
Node<T>::Node(const T& item, Node<T>* ptrnext = NULL)
{
this->value = item;
this->next = ptrnext;
}
template<class T>
class LinkedListClass
{
private:
Node<T> * Front;
Node<T> * Rear;
int Count;
public:
LinkedListClass();
~LinkedListClass();
void InsertFront(const T Item);
void InsertRear(const T Item);
void PrintList();
};
template<class T>
LinkedListClass<T>::LinkedListClass()
{
Front = NULL;
Rear = NULL;
}
template<class T>
void LinkedListClass<T>::InsertFront(const T Item)
{
if (Front == NULL)
{
Front = new Node<T>();
Front->value = Item;
Front->next = NULL;
Rear = new Node<T>();
Rear = Front;
}
else
{
Node<T> * newNode = new Node<T>();
newNode->value = Item;
newNode->next = Front;
Front = newNode;
}
}
template<class T>
void LinkedListClass<T>::InsertRear(const T Item)
{
if (Rear == NULL)
{
Rear = new Node<T>();
Rear->value = Item;
Rear->next = NULL;
Front = new Node<T>();
Front = Rear;
}
else
{
Node<T> * newNode = new Node<T>();
newNode->value = Item;
Rear->next = newNode;
Rear = newNode;
}
}
template<class T>
void LinkedListClass<T>::PrintList()
{
Node<T> * temp = Front;
while (temp->next != NULL)
{
cout << " " << temp->value << "";
if (temp != NULL)
{
temp = (temp->next);
}
else
{
break;
}
}
}
int main()
{
LinkedListClass<int> * LList = new LinkedListClass<int>();
LList->InsertFront(40);
LList->InsertFront(30);
LList->InsertFront(20);
LList->InsertFront(10);
LList->InsertRear(50);
LList->InsertRear(60);
LList->InsertRear(70);
LList->PrintList();
}
Both functions are wrong. First of all function initNode has a confusing name. It should be named as for example initList and should not do the task of addNode. That is, it should not add a value to the list.
In fact, there is not any sense in function initNode, because the initialization of the list can be done when the head is defined:
Node *head = nullptr;
or
Node *head = NULL;
So you can exclude function initNode from your design of the list.
Also in your code there is no need to specify the elaborated type name for the structure Node that is to specify keyword struct before name Node.
Function addNode shall change the original value of head. In your function realization you change only the copy of head passed as argument to the function.
The function could look as:
void addNode(Node **head, int n)
{
Node *NewNode = new Node {n, *head};
*head = NewNode;
}
Or if your compiler does not support the new syntax of initialization then you could write
void addNode(Node **head, int n)
{
Node *NewNode = new Node;
NewNode->x = n;
NewNode->next = *head;
*head = NewNode;
}
Or instead of using a pointer to pointer you could use a reference to pointer to Node. For example,
void addNode(Node * &head, int n)
{
Node *NewNode = new Node {n, head};
head = NewNode;
}
Or you could return an updated head from the function:
Node * addNode(Node *head, int n)
{
Node *NewNode = new Node {n, head};
head = NewNode;
return head;
}
And in main write:
head = addNode(head, 5);
The addNode function needs to be able to change head. As it's written now simply changes the local variable head (a parameter).
Changing the code to
void addNode(struct Node *& head, int n){
...
}
would solve this problem because now the head parameter is passed by reference and the called function can mutate it.
head is defined inside the main as follows.
struct Node *head = new Node;
But you are changing the head in addNode() and initNode() functions only. The changes are not reflected back on the main.
Make the declaration of the head as global and do not pass it to functions.
The functions should be as follows.
void initNode(int n){
head->x = n;
head->next = NULL;
}
void addNode(int n){
struct Node *NewNode = new Node;
NewNode-> x = n;
NewNode->next = head;
head = NewNode;
}
I think that, to make sure the indeep linkage of each node in the list, the addNode method must be like this:
void addNode(struct node *head, int n) {
if (head->Next == NULL) {
struct node *NewNode = new node;
NewNode->value = n;
NewNode->Next = NULL;
head->Next = NewNode;
}
else
addNode(head->Next, n);
}
Use:
#include<iostream>
using namespace std;
struct Node
{
int num;
Node *next;
};
Node *head = NULL;
Node *tail = NULL;
void AddnodeAtbeggining(){
Node *temp = new Node;
cout << "Enter the item";
cin >> temp->num;
temp->next = NULL;
if (head == NULL)
{
head = temp;
tail = temp;
}
else
{
temp->next = head;
head = temp;
}
}
void addnodeAtend()
{
Node *temp = new Node;
cout << "Enter the item";
cin >> temp->num;
temp->next = NULL;
if (head == NULL){
head = temp;
tail = temp;
}
else{
tail->next = temp;
tail = temp;
}
}
void displayNode()
{
cout << "\nDisplay Function\n";
Node *temp = head;
for(Node *temp = head; temp != NULL; temp = temp->next)
cout << temp->num << ",";
}
void deleteNode ()
{
for (Node *temp = head; temp != NULL; temp = temp->next)
delete head;
}
int main ()
{
AddnodeAtbeggining();
addnodeAtend();
displayNode();
deleteNode();
displayNode();
}
In a code there is a mistake:
void deleteNode ()
{
for (Node * temp = head; temp! = NULL; temp = temp-> next)
delete head;
}
It is necessary so:
for (; head != NULL; )
{
Node *temp = head;
head = temp->next;
delete temp;
}
Here is my implementation.
#include <iostream>
using namespace std;
template< class T>
struct node{
T m_data;
node* m_next_node;
node(T t_data, node* t_node) :
m_data(t_data), m_next_node(t_node){}
~node(){
std::cout << "Address :" << this << " Destroyed" << std::endl;
}
};
template<class T>
class linked_list {
public:
node<T>* m_list;
linked_list(): m_list(nullptr){}
void add_node(T t_data) {
node<T>* _new_node = new node<T>(t_data, nullptr);
_new_node->m_next_node = m_list;
m_list = _new_node;
}
void populate_nodes(node<T>* t_node) {
if (t_node != nullptr) {
std::cout << "Data =" << t_node->m_data
<< ", Address =" << t_node->m_next_node
<< std::endl;
populate_nodes(t_node->m_next_node);
}
}
void delete_nodes(node<T>* t_node) {
if (t_node != nullptr) {
delete_nodes(t_node->m_next_node);
}
delete(t_node);
}
};
int main()
{
linked_list<float>* _ll = new linked_list<float>();
_ll->add_node(1.3);
_ll->add_node(5.5);
_ll->add_node(10.1);
_ll->add_node(123);
_ll->add_node(4.5);
_ll->add_node(23.6);
_ll->add_node(2);
_ll->populate_nodes(_ll->m_list);
_ll->delete_nodes(_ll->m_list);
delete(_ll);
return 0;
}
link list by using node class and linked list class
this is just an example not the complete functionality of linklist, append function and printing a linklist is explained in the code
code :
#include<iostream>
using namespace std;
Node class
class Node{
public:
int data;
Node* next=NULL;
Node(int data)
{
this->data=data;
}
};
link list class named as ll
class ll{
public:
Node* head;
ll(Node* node)
{
this->head=node;
}
void append(int data)
{
Node* temp=this->head;
while(temp->next!=NULL)
{
temp=temp->next;
}
Node* newnode= new Node(data);
// newnode->data=data;
temp->next=newnode;
}
void print_list()
{ cout<<endl<<"printing entire link list"<<endl;
Node* temp= this->head;
while(temp->next!=NULL)
{
cout<<temp->data<<endl;
temp=temp->next;
}
cout<<temp->data<<endl;;
}
};
main function
int main()
{
cout<<"hello this is an example of link list in cpp using classes"<<endl;
ll list1(new Node(1));
list1.append(2);
list1.append(3);
list1.print_list();
}
thanks ❤❤❤
screenshot https://i.stack.imgur.com/C2D9y.jpg