I'm trying to programming in C++ a framework where the user can indicates a set of functions inside its program where he wants to apply a memoization strategy.
So let's suppose that we have 5 functions in our program f1...f5 and we want to avoid the (expensive) re-computation for the functions f1 and f3 if we already called them with the same input. Notice that each function can have different return and argument types.
I found this solution for the problem, but you can use only double and int.
MY SOLUTION
Ok I wrote this solution for my problem, but I don't know if it's efficient, typesafe or can be written in any more elegant way.
template <typename ReturnType, typename... Args>
function<ReturnType(Args...)> memoize(function<ReturnType(Args...)> func)
{
return ([=](Args... args) mutable {
static map<tuple<Args...>, ReturnType> cache;
tuple<Args...> t(args...);
auto result = cache.insert(make_pair(t, ReturnType{}));
if (result.second) {
// insertion succeeded so the value wasn't cached already
result.first->second = func(args...);
}
return result.first->second;
});
}
struct MultiMemoizator
{
map<string, boost::any> multiCache;
template <typename ReturnType, typename... Args>
void addFunction(string name, function < ReturnType(Args...)> func) {
function < ReturnType(Args...)> cachedFunc = memoize(func);
boost::any anyCachedFunc = cachedFunc;
auto result = multiCache.insert(pair<string, boost::any>(name,anyCachedFunc));
if (!result.second)
cout << "ERROR: key " + name + " was already inserted" << endl;
}
template <typename ReturnType, typename... Args>
ReturnType callFunction(string name, Args... args) {
auto it = multiCache.find(name);
if (it == multiCache.end())
throw KeyNotFound(name);
boost::any anyCachedFunc = it->second;
function < ReturnType(Args...)> cachedFunc = boost::any_cast<function<ReturnType(Args...)>> (anyCachedFunc);
return cachedFunc(args...);
}
};
And this is a possible main:
int main()
{
function<int(int)> intFun = [](int i) {return ++i; };
function<string(string)> stringFun = [](string s) {
return "Hello "+s;
};
MultiMemoizator mem;
mem.addFunction("intFun",intFun);
mem.addFunction("stringFun", stringFun);
try
{
cout << mem.callFunction<int, int>("intFun", 1)<<endl;//print 2
cout << mem.callFunction<string, string>("stringFun", " World!") << endl;//print Hello World!
cout << mem.callFunction<string, string>("TrumpIsADickHead", " World!") << endl;//KeyNotFound thrown
}
catch (boost::bad_any_cast e)
{
cout << "Bad function calling: "<<e.what()<<endl;
return 1;
}
catch (KeyNotFound e)
{
cout << e.what()<<endl;
return 1;
}
}
How about something like this:
template <typename result_t, typename... args_t>
class Memoizer
{
public:
typedef result_t (*function_t)(args_t...);
Memoizer(function_t func) : m_func(func) {}
result_t operator() (args_t... args)
{
auto args_tuple = make_tuple(args...);
auto it = m_results.find(args_tuple);
if (it != m_results.end())
return it->second;
result_t result = m_func(args...);
m_results.insert(make_pair(args_tuple, result));
return result;
}
protected:
function_t m_func;
map<tuple<args_t...>, result_t> m_results;
};
Usage is like this:
// could create make_memoizer like make_tuple to eliminate the template arguments
Memoizer<double, double> memo(fabs);
cout << memo(-123.456);
cout << memo(-123.456); // not recomputed
It's pretty hard to guess at how you're planning to use the functions, with or without memoisation, but for the container-of-various-function<>s aspect you just need a common base class:
#include <iostream>
#include <vector>
#include <functional>
struct Any_Function
{
virtual ~Any_Function() {}
};
template <typename Ret, typename... Args>
struct Function : Any_Function, std::function<Ret(Args...)>
{
template <typename T>
Function(T& f)
: std::function<Ret(Args...)>(f)
{ }
};
int main()
{
std::vector<Any_Function*> fun_vect;
auto* p = new Function<int, double, double, int> { [](double i, double j, int z) {
return int(i + j + z);
} };
fun_vect.push_back(p);
}
The problem with this is how to make it type-safe. Look at this code:
MultiMemoizator mm;
std::string name = "identity";
mm.addFunction(name, identity);
auto result = mm.callFunction(name, 1);
Is the last line correct? Does callFunction have the right number of parameters with the right types? And what is the return type?
The compiler has no way to know that: it has no way of understanding that name is "identity" and even if it did, no way to associate that with the type of the function. And this is not specific to C++, any statically-typed language is going to have the same problem.
One solution (which is basically the one given in Tony D's answer) is to tell the compiler the function signature when you call the function. And if you say it wrong, a runtime error occurs. That could look something like this (you only need to explicitly specify the return type, since the number and type of parameters is inferred):
auto result = mm.callFunction<int>(name, 1);
But this is inelegant and error-prone.
Depending on your exact requirements, what might work better is to use "smart" keys, instead of strings: the key has the function signature embedded in its type, so you don't have to worry about specifying it correctly. That could look something like:
Key<int(int)> identityKey;
mm.addFunction(identityKey, identity);
auto result = mm.callFunction(identityKey, 1);
This way, the types are checked at compile time (both for addFunction and callFunction), which should give you exactly what you want.
I haven't actually implemented this in C++, but I don't see any reason why it should be hard or impossible. Especially since doing something very similar in C# is simple.
you can use vector of functions with signature like void someFunction(void *r, ...) where r is a pointer to result and ... is variadic argument list. Warning: unpacking argument list is really inconvenient and looks more like a hack.
At first glance, how about defining a type that has template arguments that differ for each function, i.e.:
template <class RetType, class ArgType>
class AbstractFunction {
//etc.
}
have the AbstractFunction take a function pointer to the functions f1-f5 with template specializations different for each function. You can then have a generic run_memoized() function, either as a member function of AbstractFunction or a templated function that takes an AbstractFunction as an argument and maintains a memo as it runs it.
The hardest part will be if the functions f1-f5 have more than one argument, in which case you'll need to do some funky things with arglists as template parameters but I think C++14 has some features that might make this possible. An alternative is to rewrite f1-f5 so that they all take a single struct as an argument rather than multiple arguments.
EDIT: Having seen your problem 1, the problem you're running into is that you want to have a data structure whose values are memoized functions, each of which could have different arguments.
I, personally, would solve this just by making the data structure use void* to represent the individual memoized functions, and then in the callFunction() method use an unsafe type cast from void* to the templated MemoizedFunction type you need (you may need to allocate MemoizedFunctions with the "new" operator so that you can convert them to and from void*s.)
If the lack of type safety here irks you, good for you, in that case it may be a reasonable option just to make hand-written helper methods for each of f1-f5 and have callFunction() dispatch one of those functions based on the input string. This will let you use compile-time type checking.
EDIT #2: If you are going to use this approach, you need to change the API for callFunction() slightly so that callFunction has template args matching the return and argument types of the function, for example:
int result = callFunction<int, arglist(double, float)>("double_and_float_to_int", 3.5, 4);
and if the user of this API ever types the argument type or return types incorrectly when using callFunction... pray for their soul because things will explode in very ugly ways.
EDIT #3: You can to some extent do the type checking you need at runtime using std::type_info and storing the typeid() of the argument type and return type in your MemoizedFunction so that you can check whether the template arguments in callFunction() are correct before calling - so you can prevent the explosion above. But this will add a bit of overhead every time you call the function (you could wrap this in a IF_DEBUG_MODE macro to only add this overhead during testing and not in production.)
I have the following question, I really can't compile from all the questions and articles researched:
In C++, is it possible to have a method with variadic template arguments that specify types of arguments (as a meta-description type for parameters of in, out, in/out of a certain type, to be passed by value, by address etc.), to loop through these variadic arguments in order to instantiate variables of specified types, and be passed these variables to functions specified by a pointer in a template parameter, but these functions not having variadic parameters?
EDIT 1
I try here to detail, as pseudocode:
template <decltype(*Type::*Method), typename... Parameters>
static bool ExecuteMethod(JSContext *cx, unsigned argc, JS::Value *vp)
{
JS::CallArgs args = CallArgsFromVp(argc, vp);
loop through Parameters
{
Parameters[i]::Type p[i] <-- args[i];
}
ReturnType r = Method(p[0], p[1], p[2] .. p[n]); // the method does not have variadic parameters
...
}
where Method might be like:
int(*GetColor) ( int16 *color);
int(*GetFile) ( FilePath &file );
int(*WriteDocument) ( const FilePath &file, const char *fileFormatName, bool askForParms);
etc.
This comes out of wrapping needs.
The challenge is something missing in C++, reflection as in .net.
It is possible to instance an array of heterogeneous objects by looping through the variadic arguments somehow? Probably.
But how pass them to methods having no variadic arguments? I think it is not possible to assign that array of objects to functions like these three above without explicit wrappers, isn't it?
EDIT 2
I've got a lot of feed-back, but it is clear I was not specific enough.
I did not detailed too much because I've got complains in the past for being too specific. Indeed, I do not have easy implementations and I am a generic guy, not lazy, but I try to make a latter development faster.
Here is the source of the problem: I need to wrap Adobe Illustrator API, which exposes hundreds if not thousands of pointers to functions grouped in structs, called suites.
I try to have a javascript engine using SpiderMonkey.
I use Visual Studio 2015 compiler.
My approach is as follows:
I have several classes to wrap the API in order to add to SpiderMonkey's engine objects for all the suites. Each SpiderMonkey class, could be called as jsData, wraps a data type of Adobe SDK, or a suite, jsSuite.
So far, I have used templates because SpiderMonkey forces me to add each function to its custom objects with a specific signature, like this:
bool jsAIDocumentSuite::WriteDocument(JSContext *cx, unsigned argc, JS::Value *vp)
{
...
}
and adding it to the custom object would be done like this:
const JSFunctionSpec jsAIDocumentSuite::fFunctions[] = {
...
JS_FN("WriteDocument", jsAIDocumentSuite::WriteDocument, 3, 0),
...
}
JS_FN is a SpiderMonkeyMacro.
Actually, this is, so far, less than 10% of the Adobe SDK.
The most are getters and setters with one parameter, passed by value or address or pointer, so I have replaced them by a generic function, like this:
template <typename jsType, typename jsReturnType, typename ReturnPrivateType = jsReturnType::PrivateType, typename jsParamType, typename ParamPrivateType = jsParamType::PrivateType, ReturnPrivateType(*Type::*Method)(ParamPrivateType&)>
static bool GetByRefMethod(JSContext *cx, unsigned argc, JS::Value *vp)
{
JS::CallArgs args = CallArgsFromVp(argc, vp);
try
{
ReturnPrivateType result;
ParamPrivateType ppt;
if (jsType::Suite() && (jsType::Suite()->*Method))
result = (jsType::Suite()->*Method)(ppt);
else
return false; // TODO throw a meaningful error
if ((jsReturnType::IsNoError(result)) && (argc > 0) && (args[0].isObject()))
{
JSObject *obj = &args[0].toObject();
JSObject *value = NULL;
if (!jsParamType::FromAIObject<jsParamType>(cx, &ppt, value))
return false;
if (!value)
return false;
jsProperty::SetProperty(cx, &obj, "value", value, true);
}
JSObject *obj = JS_NewObject(cx, &jsDataClass<jsReturnType>::fClass);
JS_SetPrivate(obj, new ReturnPrivateType(result));
args.rval().setObject(*obj);
}
EXCEPTION_CATCH_CONVERT();
return true;
}
A bit complicated, isn't it?
What is relevant, above, is:
The args variable holds the SpiderMonkey parameters passed in by its engine
Only one argument is passed here, ppt
The return type is one value, so it is easy to be handled
I use macros to inject the method in its variants (several short forms too, not so interesting here):
JS_FN(#GET_METHOD, (js##TYPE::GetByRefMethod<js##TYPE, RETURN_JS_TYPE, RETURN_PRIVATE_TYPE, PARAM_JS_TYPE, PARAM_PRIVATE_TYPE, &TYPE::GET_METHOD>), 1, 0)
I wish to be able to handle variable arguments, according to the statistics more philosophical, but interesting. The idea would be opposite to the C++, probably, and not as expected.
How would I expect it:
I wish to add variadic parameters meta-information, like:
template
static bool Method(JSContext *cx, unsigned argc, JS::Value *vp)
{
JS::CallArgs args = CallArgsFromVp(argc, vp);
try
{
ReturnPrivateType result;
*1st challenge: Loop through the variadic list of meta-parameters and create their corresponding object instances here and initialize the IN ones with values from the *args* collection passed by the SpiderMonkey engine*
if (jsType::Suite() && (jsType::Suite()->*Method))
result = (jsType::Suite()->*Method)(*2nd challenge: pass arguments here: probably by using a variadic macro?*);
else
return false; // TODO throw a meaningful error
if ((jsReturnType::IsNoError(result)) && (argc > 0) && (args[0].isObject()))
{
JSObject *obj = &args[0].toObject();
JSObject *value = NULL;
if (!jsParamType::FromAIObject<jsParamType>(cx, &ppt, value))
return false;
if (!value)
return false;
jsProperty::SetProperty(cx, &obj, "value", value, true);
}
JSObject *obj = JS_NewObject(cx, &jsDataClass<jsReturnType>::fClass);
JS_SetPrivate(obj, new ReturnPrivateType(result));
args.rval().setObject(*obj);
}
EXCEPTION_CATCH_CONVERT();
return true;
}
As you can see, it is not as C++ expected, it is a bit reversed, by trying to avoid writing templates to deduct the parameters, here, I know the parameters first and try to write a code to generate the right parameters by knowing their meta-information first and I have a clear set of types and I promise to write the right code to generate the correct wrappers. I don't need to validate much regarding the data of the parameters, as things are mostly passed without a huge business logic in the process.
EDIT 3
About the parameters meta-information, I could write a few types with statics to specify the data type of the parameter, whether it is a return type, whether it is an IN, an OUT or an IN/OUT parameter, its jsType etc..
They would be the variadic list of the template parameters function above.
I still am having some difficulty understanding exactly what you want to do, but this should let you call a function(without variardic parameters) using a variardic template function, getting the parameters from an array and allowing a conversion operation to apply to each parameter before being passed to the function:
#include <functional>
template<typename T, typename JST> T getParam(const JST& a)
{
//Do whatever conversion necessary
return a;
}
namespace detail
{
template<typename R, typename... Args, int... S> R jsCaller(std::function<R(Args...)> f, seq<S...>, const JS::CallArgs& args)
{
return f(getParam<Args, /*Whatever type should go here */>(args[S])...);
}
}
//Actually use this to call the function and get the result
template<typename R, typename... Args> R jsCall(std::function<R(Args...)> f, const JS::CallArgs& args)
{
return detail::jsCaller(f, GenSequence<sizeof...(Args)>(), args);
}
Where GenSequence extends seq<0, 1, 2, ... , N - 1> and can be implemented as follows:
template<int... N>
struct seq {};
template<int N, int... S>
struct gens : gens<N-1, N-1, S...> {};
template<int... S>
struct gens<0, S...>
{
typedef seq<S...> type;
};
template<int N> using GenSequence<N> = typename gens<N>::type;
This creates a parameter pack of integers, and expands the function call using them- See this question.
You can call your method using jsCall:
Result r = jsCall((Method), args);
Assuming Method can be converted to std::function- if not, you can still do it by making a lambda which conforms to std::function. Does this solve the problem?
[Continued from part 1: https://stackoverflow.com/a/35109026/5386374 ]
There is an issue, however. We had to change the way our code is written to accomodate ExecuteMethod(), which may not always be possible. Is there a way around that, so that it functions exactly the same as your previously specified ExecuteMethod(), and doesn't need to take the variable it modifies as a macro parameter? The answer is... yes!
// Variadic function-like macro to automatically create, use, and destroy functor.
// Uncomment whichever one is appropriate for the compiler used.
// (The difference being that Visual C++ automatically removes the trailing comma if the
// macro has zero variadic arguments, while GCC needs a hint in the form of "##" to tell
// it to do so.)
// Instead of a do...while structure, we can just use a temporary Executor directly.
// MSVC:
// #define ExecuteMethod(M, ...) Executor<decltype(&M), decltype(&M)>{}(M, __VA_ARGS__)
// GCC:
#define ExecuteMethod(M, ...) Executor<decltype(&M), decltype(&M)>{}(M, ##__VA_ARGS__)
// For your example function WriteDocument(), defined as
// int WriteDocument(const FilePath &file, const char *fileFormatName, bool askForParms);
bool c = ExecuteMethod(WriteDocument, file, fileFormatName, askForParams);
This is all well and good, but there is one more change we can make to simplify things without impacting performance. At the moment, this functor can only take function pointers (and maybe lambdas, I'm not familiar with their syntax), not other types of function objects. If this is intended, it means that we can rewrite it to do away with the first template parameter (the entire signature), since the second and third parameters are themselves components of the signature.
// Default functor.
template<typename... Ts>
struct Executor { };
// General case.
template<typename ReturnType, typename... Params>
struct Executor<ReturnType (*)(Params...)> {
private:
// Instead of explicitly taking M as a parameter, create it from
// the other parameters.
using M = ReturnType (*)(Params...);
public:
// Parameter match:
bool operator()(M method, Params... params) {
ReturnType r = method(params...);
// ...
}
// Parameter mismatch:
template<typename... Invalid_Params>
bool operator()(M method, Invalid_Params... ts) {
// Handle parameter type mismatch here.
}
};
// Special case to catch void return type.
template<typename... Params>
struct Executor<void (*)(Params...)> {
private:
// Instead of explicitly taking M as a parameter, create it from
// the other parameters.
using M = void (*)(Params...);
public:
// Parameter match:
bool operator()(M method, Params... params) {
method(params...);
// ...
}
// Parameter mismatch:
template<typename... Invalid_Params>
bool operator()(M method, Invalid_Params... ts) {
// Handle parameter type mismatch here.
}
};
// Variadic function-like macro to automatically create, use, and destroy functor.
// Uncomment whichever one is appropriate for the compiler used.
// (The difference being that Visual C++ automatically removes the trailing comma if the
// macro has zero variadic arguments, while GCC needs a hint in the form of "##" to tell
// it to do so.)
// Instead of a do...while structure, we can just use a temporary Executor directly.
// MSVC:
// #define ExecuteMethod(M, ...) Executor<decltype(&M)>{}(M, __VA_ARGS__)
// GCC:
#define ExecuteMethod(M, ...) Executor<decltype(&M)>{}(M, ##__VA_ARGS__)
// Note: If your compiler doesn't support C++11 "using" type aliases, replace them
// with the following:
// typedef ReturnType (*M)(Params...);
This results in cleaner code, but, as mentioned, limits the functor to only accepting function pointers.
When used like this, the functor expects parameters to be an exact match. It can handle reference-ness and cv-ness correctly, but may have issues with rvalues, I'm not sure. See here.
As to how to use this with your JSContext... I'm honestly not sure. I haven't learned about contexts yet, so someone else would be more helpful for that. I would suggest checking if one of the other answers here would be more useful in your situation, in all honesty.
Note: I'm not sure how easy it would be to modify the functor to work if its function parameter is a functor, lambda, std::function, or anything of the sort.
Note 2: As before, I'm not sure if there would be any negative effects on performance for doing something like this. There's likely a more efficient way, but I don't know what it would be.
I came up with the following C++11 solution, which gives the basic idea. It could very easily be improved, however, so I welcome suggestions. Live test here.
#include <iostream>
#include <tuple>
using namespace std;
// bar : does something with an arbitrary tuple
// (no variadic template arguments)
template <class Tuple>
void bar(Tuple t)
{
// .... do something with the tuple ...
std::cout << std::tuple_size<Tuple>::value;
}
// foo : takes a function pointer and an arbitrary number of other
// arguments
template <class Func, typename... Ts>
void foo(Func f, Ts... args_in)
{
// construct a tuple containing the variadic arguments
std::tuple<Ts...> t = std::make_tuple(args_in...);
// pass this tuple to the function f
f(t);
}
int main()
{
// this is not highly refined; you must provide the types of the
// arguments (any suggestions?)
foo(bar<std::tuple<int, const char *, double>>, 123, "foobar", 43.262);
return 0;
}
Edit: After seeing your "Edit 2", I don't believe this is the proper solution. Leaving it up for reference, though.
I believe I've found a potential solution that catches reference-ness, too. Scroll down to the bottom, to the "Edit 4" section.
If you're asking whether it's possible to dynamically check template argument types, you can. I'll start with a general example of how to use std::true_type and std::false_type to overload based on whether a specified condition is met, then move on to your problem specifically. Consider this:
#include <type_traits>
namespace SameComparison {
// Credit for the contents of this namespace goes to dyp ( https://stackoverflow.com/a/20047561/5386374 )
template<class T, class...> struct are_same : std::true_type{};
template<class T, class U, class... TT> struct are_same<T, U, TT...> :
std::integral_constant<bool, std::is_same<T, U>{} && are_same<T, TT...>{} >{};
} // namespace SameComparison
template<typename T> class SomeClass {
public:
SomeClass() = default;
template<typename... Ts> SomeClass(T arg1, Ts... args);
~SomeClass() = default;
void func(T arg1);
template<typename U> void func(U arg1);
template<typename... Ts> void func(T arg1, Ts... args);
template<typename U, typename... Ts> void func(U arg1, Ts... args);
// ...
private:
template<typename... Ts> SomeClass(std::true_type x, T arg1, Ts... args);
template<typename... Ts> SomeClass(std::false_type x, T arg1, Ts... args);
// ...
};
// Constructors:
// -------------
// Public multi-argument constructor.
// Passes to one of two private constructors, depending on whether all types in paramater pack match T.
template<typename T> template<typename... Ts> SomeClass<T>::SomeClass(T arg1, Ts... args) :
SomeClass(SameComparison::are_same<T, Ts...>{}, arg1, args...) { }
// All arguments match.
template<typename T> template<typename... Ts> SomeClass<T>::SomeClass(std::true_type x, T arg1, Ts... args) { }
// One or more arguments is incorrect type.
template<typename T> template<typename... Ts> SomeClass<T>::SomeClass(std::false_type x, T arg1, Ts... args) {
static_assert(x.value, "Arguments wrong type.");
}
/*
Note that if you don't need to use Ts... in the parameter list, you can combine the previous two into a single constructor:
template<typename T> template<bool N, typename... Ts> SomeClass<T>::SomeClass(std::integral_constant<bool, N> x, T arg1, Ts... args) {
static_assert(x.value, "Arguments wrong type.");
}
x will be true_type (value == true) on type match, or false_type (value == false) on type mismatch. Haven't thoroughly tested this, just ran a similar function through an online compiler to make sure it could determine N.
*/
// Member functions:
// -----------------
// Single argument, type match.
template<typename T> void SomeClass<T>::func(T arg1) {
// code
}
// Single argument, type mismatch.
// Also catches true_type from multi-argument functions after they empty their parameter pack, and silently ignores it.
template<typename T> template<typename U> void SomeClass<T>::func(U arg1) {
if (arg1 != std::true_type{}) {
std::cout << "Argument " << arg1 << " wrong type." << std::endl;
}
}
// Multiple arguments, argument 1 type match.
template<typename T> template<typename... Ts> void SomeClass<T>::func(T arg1, Ts... args) {
func(arg1);
func(args...);
// func(SameComparison::are_same<T, Ts...>{}, vals...);
}
// Multiple arguments, argument 1 type mismatch.
template<typename T> template<typename U, typename... Ts> void SomeClass<T>::func(U arg1, Ts... args) {
// if (arg1 != std::true_type{}) {
// std::cout << "Argument " << arg1 << " wrong type." << std::endl;
// }
func(vals...);
}
First, SameComparison::are_same there is an extension of std::is_same, that applies it to an entire parameter pack. This is the basis of the check, with the rest of the example showing how it can be used. The lines commented out of the last two functions show how it could be applied there, as well.
Now, onto your problem specifically. Since you know what the methods are, you can make similar comparison structs for them.
int (*GetColor) ( int16_t *color);
int(*GetFile) ( FilePath &file );
int(*WriteDocument) ( const FilePath &file, const char *fileFormatName, bool askForParms);
Could have...
namespace ParameterCheck {
template<typename T, typename... Ts> struct parameter_match : public std::false_type {};
// Declare (GetColor, int16_t*) valid.
template<> struct parameter_match<int (*)(int16_t*), int16_t*> : public std::true_type {};
// Declare (GetFile, FilePath&) valid.
// template<> struct parameter_match<int (*)(FilePath&), FilePath&> : public std::true_type {}; // You'd think this would work, but...
template<> struct parameter_match<int (*)(FilePath&), FilePath> : public std::true_type {}; // Nope!
// For some reason, reference-ness isn't part of the templated type. It acts as if it was "template<typename T> void func(T& arg)" instead.
// Declare (WriteDocument, const FilePath&, const char*, bool) valid.
// template<> struct parameter_match<int (*)(const FilePath&, const char*, bool), const FilePath, const char*, bool> : public std::true_type {};
// template<> struct parameter_match<int (*)(const FilePath&, const char*, bool), const FilePath&, const char*, bool> : public std::true_type {};
template<> struct parameter_match<int (*)(const FilePath&, const char*, bool), FilePath, const char*, bool> : public std::true_type {};
// More reference-as-template-parameter wonkiness: Out of these three, only the last works.
} // namespace ParameterCheck
Here, we make a general-case struct that equates to std::false_type, then specialise it so that specific cases are true_type instead. What this does is tell the compiler, "These parameter lists are good, anything else is bad," where each list starts with a function pointer and ends with the arguments to the function. Then, you can do something like this for your caller:
// The actual calling function.
template<typename Func, typename... Ts> void caller2(std::true_type x, Func f, Ts... args) {
std::cout << "Now calling... ";
f(args...);
}
// Parameter mismatch overload.
template<typename Func, typename... Ts> void caller2(std::false_type x, Func f, Ts... args) {
std::cout << "Parameter list mismatch." << std::endl;
}
// Wrapper to check for parameter mismatch.
template<typename Func, typename... Ts> void caller(Func f, Ts... args) {
caller2(ParameterCheck::parameter_match<Func, Ts...>{}, f, args...);
}
As for return type deduction... that depends on where you want to deduce it:
Determine variable type from contents: Use auto when declaring the variable.
Determine return type from passed function return type: If your compiler is C++14-compatible, that's easy. Just use auto. [VStudio 2015 and GCC 4.8.0 (with -std=c++1y) are compatible with auto return type.]
The former can be done like this:
int i = 42;
int func1() { return 23; }
char func2() { return 'c'; }
float func3() { return -0.0f; }
auto a0 = i; // a0 is int.
auto a1 = func1(); // a1 is int.
auto a2 = func2(); // a2 is char.
auto a3 = func3(); // a3 is float.
The latter, however, is more complex.
std::string stringMaker() {
return std::string("Here, have a string!");
}
int intMaker() {
return 5;
}
template<typename F> auto automised(F f) {
return f();
}
// ...
auto a = automised(stringMaker); // a is std::string.
auto b = automised(intMaker); // a is int.
If your compiler isn't compatible with auto or decltype(auto) return type... well, it's a bit more verbose, but we can do this:
namespace ReturnTypeCapture {
// Credit goes to Angew ( https://stackoverflow.com/a/18695701/5386374 )
template<typename T> struct ret_type;
template<typename RT, typename... Ts> struct ret_type<RT (*)(Ts...)> {
using type = RT;
};
} // namespace ReturnTypeCapture
// ...
std::string f1() {
return std::string("Nyahaha.");
}
int f2() {
return -42;
}
char f3() {
return '&';
}
template<typename R, typename F> auto rtCaller2(R r, F f) -> typename R::type {
return f();
}
template<typename F> void rtCaller(F f) {
auto a = rtCaller2(ReturnTypeCapture::ret_type<F>{}, f);
std::cout << a << " (type: " << typeid(a).name() << ")" << std::endl;
}
// ...
rtCaller(f1); // Output (with gcc): "Nyahaha. (type: Ss)"
rtCaller(f2); // Output (with gcc): "-42 (type: i)"
rtCaller(f3); // Output (with gcc): "& (type: c)"
Furthermore, we can simplify it even more, and check the return type without a separate wrapper.
template<typename F> auto rtCaller2(F f) -> typename ReturnTypeCapture::ret_type<F>::type {
return f();
}
template<typename F> void rtCaller(F f) {
auto a = rtCaller2(f);
std::cout << a << " (type: " << typeid(a).name() << ")" << std::endl;
}
// ...
rtCaller(f1); // Output (with gcc): "Nyahaha. (type: Ss)"
rtCaller(f2); // Output (with gcc): "-42 (type: i)"
rtCaller(f3); // Output (with gcc): "& (type: c)"
// Same output.
Having that sticking off the end there is really ugly, though, so can't we do better than that? The answer is... yes! We can use an alias declaration to make a typedef, leaving a cleaner name. And thus, the final result here is:
namespace ReturnTypeCapture {
// Credit goes to Angew ( https://stackoverflow.com/a/18695701/5386374 )
template<typename T> struct ret_type;
template<typename RT, typename... Ts> struct ret_type<RT (*)(Ts...)> {
using type = RT;
};
} // namespace ReturnTypeCapture
template <typename F> using RChecker = typename ReturnTypeCapture::ret_type<F>::type;
std::string f1() { return std::string("Nyahaha."); }
int f2() { return -42; }
char f3() { return '&'; }
template<typename F> auto rtCaller2(F f) -> RChecker<F> {
return f();
}
template<typename F> void rtCaller(F f) {
auto a = rtCaller2(f);
std::cout << a << " (type: " << typeid(a).name() << ")" << std::endl;
}
So now, if we combine parameter checking & return type deduction...
// Parameter match checking.
namespace ParameterCheck {
template<typename T, typename... Ts> struct parameter_match : public std::false_type {};
// Declare (GetColor, int16_t*) valid.
template<> struct parameter_match<int (*)(int16_t*), int16_t*> : public std::true_type {};
// Declare (GetFile, FilePath&) valid.
template<> struct parameter_match<int (*)(FilePath&), FilePath> : public std::true_type {};
// Declare (WriteDocument, const FilePath&, const char*, bool) valid.
template<> struct parameter_match<int (*)(const FilePath&, const char*, bool), FilePath, const char*, bool> : public std::true_type {};
// Declare everything without a parameter list valid.
template<typename T> struct parameter_match<T (*)()> : public std::true_type { };
} // namespace ParameterCheck
// Discount return type deduction:
namespace ReturnTypeCapture {
// Credit goes to Angew ( https://stackoverflow.com/a/18695701/5386374 )
template<typename T> struct ret_type;
template<typename RT, typename... Ts> struct ret_type<RT (*)(Ts...)> {
using type = RT;
};
} // namespace ReturnTypeCapture
// Alias declarations:
template<typename F, typename... Ts> using PChecker = ParameterCheck::parameter_match<F, Ts...>;
template<typename F> using RChecker = typename ReturnTypeCapture::ret_type<F>::type;
// ---------------
int GetColor(int16_t* color);
int GetFile(FilePath& file);
int WriteDocument(const FilePath& file, const char* fileFormatName, bool askForParams);
std::string f1() { return std::string("Nyahaha."); }
int f2() { return -42; }
char f3() { return '&'; }
// ---------------
// Calling function (C++11):
// The actual calling function.
template<typename Func, typename... Ts> auto caller2(std::true_type x, Func f, Ts... args) -> RChecker<Func> {
std::cout << "Now calling... ";
return f(args...);
}
// Parameter mismatch overload.
template<typename Func, typename... Ts> auto caller2(std::false_type x, Func f, Ts... args) -> RChecker<Func> {
std::cout << "Parameter list mismatch." << std::endl;
return static_cast<RChecker<Func> >(0); // Just to make sure we don't break stuff.
}
// Wrapper to check for parameter mismatch.
template<typename Func, typename... Ts> auto caller(Func f, Ts... args) -> RChecker<Func> {
// return caller2(ParameterCheck::parameter_match<Func, Ts...>{}, f, args...);
return caller2(PChecker<Func, Ts...>{}, f, args...);
}
// ---------------
// Calling function (C++14):
// The actual calling function.
template<typename Func, typename... Ts> auto caller2(std::true_type x, Func f, Ts... args) {
std::cout << "Now calling... ";
return f(args...);
}
// Parameter mismatch overload.
template<typename Func, typename... Ts> auto caller2(std::false_type x, Func f, Ts... args) {
std::cout << "Parameter list mismatch." << std::endl;
}
// Wrapper to check for parameter mismatch.
template<typename Func, typename... Ts> auto caller(Func f, Ts... args) {
// return caller2(ParameterCheck::parameter_match<Func, Ts...>{}, f, args...);
return caller2(PChecker<Func, Ts...>{}, f, args...);
}
You should be able to get the functionality you want out of this, I believe. The only caveat is that if you do it this way, you need to explicitly declare functions valid in ParameterCheck, by making a template specialisation for the function & its parameter list, derived from std::true_type instead of std::false_type. I'm not sure if there's a way to get true dynamic parameter list checking, but it's a start.
[I'm not sure if you can just overload caller() or if you explicitly need to use caller2() as well. All my attempts to overload caller() via template parameters ended up crashing the compiler; for some reason, it chose template<typename Func, typename... Ts> void caller(Func f, Ts... args) as a better match for caller(std::true_type, f, args...) than template<typename Func, typename... Ts> caller(std::true_type x, Func f, Ts... args), even with the latter listed before the former, and tried to recursively expand it until it ran out of memory. (Tested on two online gcc compilers: Ideone, and TutorialsPoint's compiler (with -std=c++11). I'm not sure if this is a gcc problem, or if I was a bit off about how template matching works. Unfortunately, the online VStudio compiler is down for maintenance, and the only version of VS I have available to me offline at the moment doesn't support variadic templates, so I can't check which is the case.) Unless someone says otherwise, or says how to fix that particular issue, it's probably best to just use caller() as a wrapper & caller2() to do the heavy lifting.]
Examples of pretty much everything here that would be relevant to your problem: here
Also, note that you can't easily pull individual arguments from a parameter pack. You can use recursion to strip arguments off the front a few at a time, you can use them to initialise member variables in a constructor's initialisation list, you can check how many arguments are in the pack, you can specialise it (as we did for parameter_match), & you can pass the whole pack to a function that takes the right number of arguments, but I believe that's it at the moment. This can make them a bit more awkward than C-style varargs at times, despite being more efficient. However, if your ExecuteMethod()'s argument list consists of a function and its argument list, and nothing else, this isn't an issue. As long as the parameter match succeeds, we can just give the entire pack to the passed function, no questions asked. On that note, we can rewrite ExecuteMethod() into something like...
// Not sure what cx is, leaving it alone.
// Assuming you wanted ExecuteMethod to take parameters in the order (cx, function, function_parameter_list)...
// Parameter list match.
template<typename M, typename... Parameters>
static bool ExecuteMethodWorker(std::true_type x, JSContext* cx, M method, Parameters... params)
{
auto r = method(params...);
// ...
}
// Parameter list mismatch.
template<typename M, typename... Parameters>
static bool ExecuteMethodWorker(std::false_type x, JSContext* cx, M method, Parameters... params)
{
// Handle parameter type mismatch here.
// Omit if not necessary, though it's likely better to use it to log errors, terminate, throw an exception, or something.
}
// Caller.
template<typename M, typename... Parameters>
static bool ExecuteMethod(JSContext* cx, M method, Parameters... params)
{
return ExecuteMethodWorker(PChecker<M, Parameters...>{}, cx, method, params...);
}
Make sure to either prototype or define the worker functions before ExecuteMethod(), so the compiler can resolve the call properly.
(Apologies for any typoes I may have missed anywhere in there, I'm a bit tired.)
Edit: I've located the problem with passing references to a template. It seems that using templates to determine types does indeed remove reference-ness in and of itself, hence notation like template<typename T> void func(T&) for functions that take a reference. Sadly, I'm not yet sure how to fix this issue. I did, however, come up with a new version of PChecker that dynamically reflects types for any function that doesn't use reference types. So far, however, you still need to add references manually, and non-const references probably won't work properly for now.
namespace ParameterCheck {
namespace ParamGetter {
// Based on an answer from GManNickG ( https://stackoverflow.com/a/4693493/5386374 )
// Turn the type list into a single type we can use with std::is_same.
template<typename... Ts> struct variadic_typedef { };
// Generic case, to catch passed parameter types list.
template<typename... Ts> struct variadic_wrapper {
using type = variadic_typedef<Ts...>;
};
// Special case to catch void parameter types list.
template<> struct variadic_wrapper<> {
using type = variadic_typedef<void>;
};
// Generic case to isolate parameter list from function signature.
template<typename RT, typename... Ts> struct variadic_wrapper<RT (*)(Ts...)> {
using type = variadic_typedef<Ts...>;
};
// Special case to isolate void parameter from function signature.
template<typename RT> struct variadic_wrapper<RT (*)()> {
using type = variadic_typedef<void>;
};
} // namespace ParamGetter
template<typename... Ts> using PGetter = typename ParamGetter::variadic_wrapper<Ts...>::type;
// Declare class template.
template<typename... Ts> struct parameter_match;
// Actual class. Becomes either std::true_type or std::false_type.
template<typename F, typename... Ts> struct parameter_match<F, Ts...> : public std::integral_constant<bool, std::is_same<PGetter<F>, PGetter<Ts...> >{}> {};
// Put specialisations for functions with const references here.
} // namespace ParameterCheck
template<typename F, typename... Ts> using PChecker = ParameterCheck::parameter_match<F, Ts...>;
See here.
--
Edit 2: Okay, can't figure out how to grab the passed function's parameter list and use it directly. It might be possible using tuples, perhaps using the rest of GManNickG's code (the convert_in_tuple struct), but I haven't looked into them, and don't really know how to grab the entire type list from a tuple at the same time, or if it's even possible. [If anyone else knows how to fix the reference problem, feel free to comment.]
If you're only using references to minimise passing overhead, and not to actually change data, you should be fine. If your code uses reference parameters to modify the data that the parameter is pointing to, however, I'm not sure how to help you. Sorry.
--
Edit 3: It looks like RChecker might not be as necessary for C++11 function forwarding, we can apparently use decltype([function call]) for that. So...
// caller2(), using decltype. Valid, as args... is a valid parameter list for f.
template<typename Func, typename... Ts> auto caller2(std::true_type x, Func f, Ts... args) -> decltype(f(args...)) {
std::cout << "Now calling... ";
return f(args...);
}
// Parameter mismatch overload.
// decltype(f(args...)) would be problematic, since args... isn't a valid parameter list for f.
template<typename Func, typename... Ts> auto caller2(std::false_type x, Func f, Ts... args) -> RChecker<Func> {
std::cout << "Parameter list mismatch." << std::endl;
return static_cast<RChecker<Func> >(0); // Make sure we don't break stuff.
}
// Wrapper to check for parameter mismatch.
// decltype(caller2(PChecker<Func, Ts...>{}, f, args...)) is valid, but would be more verbose than RChecker<Func>.
template<typename Func, typename... Ts> auto caller(Func f, Ts... args) -> RChecker<Func> {
// return caller2(ParameterCheck::parameter_match<Func, Ts...>{}, f, args...);
return caller2(PChecker<Func, Ts...>{}, f, args...);
}
However, as noted, decltype can have issues when it can't find a function call that matches what it's passed exactly. So, for any case where the parameter mismatch version of caller2() is called, trying to use decltype(f(args...)) to determine return type would likely cause issues. However, I'm not sure if decltype(auto), introduced in C++14, would have that issue.
Also, in C++14-compatible compilers, it's apparently better to use decltype(auto) than just auto for automatic return type determination; auto doesn't preserve const-ness, volatile-ness, or reference-ness, while decltype(auto) does. It can be used either as a trailing return type, or as a normal return type.
// caller2(), using decltype(auto).
template<typename Func, typename... Ts> decltype(auto) caller2(std::true_type x, Func f, Ts... args) {
std::cout << "Now calling... ";
return f(args...);
}
decltype(auto) can also be used when declaring variables. See here for more information.
Edit 4: I believe I may have found a potential solution that preserves the passed function's parameter list properly, using functors. However, it may or may not create unwanted overhead, I'm not sure.
// Default functor.
template<typename... Ts>
struct Executor { };
// General case.
template<typename M, typename ReturnType, typename... Params>
struct Executor<M, ReturnType (*)(Params...)> {
public:
// Parameter match:
bool operator()(M method, Params... params) {
ReturnType r = method(params...);
// ...
}
// Parameter mismatch:
template<typename... Invalid_Params>
bool operator()(M method, Invalid_Params... ts) {
// Handle parameter type mismatch here.
}
};
// Special case to catch void return type.
template<typename M, typename... Params>
struct Executor<M, void (*)(Params...)> {
public:
// Parameter match:
bool operator()(M method, Params... params) {
method(params...);
// ...
}
// Parameter mismatch:
template<typename... Invalid_Params>
bool operator()(M method, Invalid_Params... ts) {
// Handle parameter type mismatch here.
}
};
// Variadic function-like macro to automatically create, use, and destroy functor.
// Uncomment whichever one is appropriate for the compiler used.
// (The difference being that Visual C++ automatically removes the trailing comma if the
// macro has zero variadic arguments, while GCC needs a hint in the form of "##" to tell
// it to do so.)
// Also note that the "do { ... } while (false)" structure is used to swallow the trailing
// semicolon, so it doesn't inadvertently break anything; most compilers will optimise it
// out, leaving just the code inside.
// (Source: https://gcc.gnu.org/onlinedocs/cpp/Swallowing-the-Semicolon.html )
// MSVC:
// #define ExecuteMethod(C, M, ...) \
// do { \
// Executor<decltype(&M), decltype(&M)> temp; \
// C = temp(M, __VA_ARGS__); \
// } while (false)
// GCC:
#define ExecuteMethod(C, M, ...) \
do { \
Executor<decltype(&M), decltype(&M)> temp; \
C = temp(M, ##__VA_ARGS__); \
} while (false)
In this case, you can use it as:
ExecuteMethod(return_value_holder, function_name, function_parameter_list);
Which expands to...
do {
Executor<decltype(&function_name), decltype(&function_name)> temp;
return_value_holder = temp(function_name, function_parameter_list);
} while (false);
With this, there's no need to manually go through the parameter pack and make sure each one matches the passed function's parameters. As the passed function's parameter list is quite literally built into Executor as Params..., we can simply overload the function call operator based on whether the arguments it was passed match Params... or not. If the parameters match the function, it calls the Parmas... overload; if they don't, it calls the Invalid_Params... overload. A bit more awkward than true reflection, IMO, but it seems to match everything properly.
Note that:
I'm not sure whether using functors liberally can cause any performance or memory use overhead. I'm... not all that familiar with them at the moment.
I don't know if it's possible to combine the general case and the "void return type" special case into a single functor. The compiler complained when I tried, but I'm not sure if it's because it isn't possible or because I was doing it wrong.
Considering #2, when modifying this version of ExecuteMethod()'s parameters, you have to modify it and both versions of Executor to match.
Like so, where JSContext* cx is added to the parameter list:
template<typename M, typename ReturnType, typename... Params>
struct Executor<M, ReturnType (*)(Params...)> {
public:
bool operator()(JSContext* cx, M method, Params... params);
};
template<typename M, typename... Params>
struct Executor<M, void (*)(Params...)> {
public:
bool operator()(JSContext* cx, M method, Params... params);
};
#define ExecuteMethod(C, cx, M, ...) \
do { \
Executor<decltype(&M), decltype(&M)> temp; \
C = temp(cx, M, ##__VA_ARGS__); \
} while (false)
This may be the solution, but it requires further testing to see if it has any negative impacts on performance. At the very least, it'll make sure const-ness and reference-ness is preserved by ExecuteMethod(), and it's a lot cleaner than my old ideas.
See here.
There are further improvements that can be made, however. As I'm out of space, see here.
Notes:
int16_t (a.k.a. std::int16_t) is in the header <cstdint>.
std::true_type and std::false_type are in the header <type_traits>.
It's difficult to tell from your description, but this is my closest interpretation to what you asked:
auto foo(int) { cout << "foo int" << endl; }
auto foo(float) { cout << "foo float" << endl; }
//... other foo overloads...
template <class T>
auto uber_function(T t)
{
foo(t);
}
template <class T, class... Args>
auto uber_function(T t, Args... args)
{
foo(t);
uber_function(args...);
}
auto main() -> int
{
uber_function(3, 2.4f);
return 0;
}
Of course this can be improved to take references, to make forwarding. This is just for you to have a starting point. As you weren't more clear, I can't give a more specific answer.
I wrote a program in C++ & boost. Is it possible to write a template class producing functors from functions with an unknown number of arguments, e.g. my_call<func>(vector<variant>), where fun can be bool fun(string) or bool fun(int, int, string), etc.?
First, it is important to recognize that boost::variant<> is a class template that requires the list of all the possible types it can hold. So, you won't have just a vector<variant>, but rather a vector<variant<string, double>>, or vector<variant<int, double, string, my_class>>, and you won't be able to mix them.
This made me think you might want to use boost::any rather than boost::variant<>. Thus, I present here a solution that works with boost::variant and can be slightly modified to use boost::any, so you can pick the version you prefer.
To begin with, I must admit that the solution is simple to use but not so simple to understand, so I will have to introduce some machinery first. This machinery is common to both the variant-based and the any-based solution.
//=============================================================================
// META-FUNCTIONS FOR CREATING INDEX LISTS
// The structure that encapsulates index lists
template <size_t... Is>
struct index_list
{
};
// Collects internal details for generating index ranges [MIN, MAX)
namespace detail
{
// Declare primary template for index range builder
template <size_t MIN, size_t N, size_t... Is>
struct range_builder;
// Base step
template <size_t MIN, size_t... Is>
struct range_builder<MIN, MIN, Is...>
{
typedef index_list<Is...> type;
};
// Induction step
template <size_t MIN, size_t N, size_t... Is>
struct range_builder : public range_builder<MIN, N - 1, N - 1, Is...>
{
};
}
// Meta-function that returns a [MIN, MAX) index range
template<size_t MIN, size_t MAX>
using index_range = typename detail::range_builder<MIN, MAX>::type;
The meta-class index_range allows defining compile-time sequences of integers. An interesting proposal have been made by Jonathan Wakely to standardize this kind of construct, so that this whole machinery would not be needed. For the moment, however, we have to hand code this as done above.
Now that we can build compile-time integer sequences, we can exploit variadic templates and argument unpacking to create a dispatching mechanism that translates a vector of variant arguments into a regular argument list. Notice how the concrete variant<> type must be provided as a template argument. This will not be needed for the solution based on any.
// Headers needed for the implementation of the dispatcher
#include <vector>
#include <functional>
#include <boost/variant.hpp>
// Just for convenience
using namespace std;
using boost::variant;
//============================================================================
// DISPATCHER IMPLEMENTATION
// Call dispatching mechanism: notice how the underlying variant type
// must be provided as a template argument (the first one)
template<typename VT, typename R, typename... Args>
struct dispatcher
{
template<typename F>
dispatcher(F f) : _f(f) { }
// The call operator which performs the variant dispatch
R operator () (vector<VT> const& v)
{
if (v.size() != sizeof...(Args))
{
// Wrong number of arguments provided!
return false;
}
// Delegates to internal function call: needed for deducing
// a sequence of integers to be used for unpacking.
index_range<0, sizeof...(Args)> indexes;
return do_call(v, indexes);
}
private:
// The heart of the dispatching mechanism
template<size_t... Is>
R do_call(vector<VT> const& v, index_list<Is...> indexes)
{
return _f((get_ith<Args>(v, Is))...);
}
// Helper function that extracts a typed value from the variant.
template<typename T>
T get_ith(vector<VT> const& v, size_t i)
{
return boost::get<T>(v[i]);
}
// Wrapper that holds the function to be invoked.
function<R(Args...)> _f;
};
// Helper function that allows deducing the input function signature
template<typename VT, typename R, typename... Args>
function<R (vector<VT> const&)> get_dispatcher(R (*f)(Args...))
{
dispatcher<VT, R, Args...> d(f);
return d;
}
Finally, a short demonstration of how you could use this. Suppose we have two test functions such as the ones below:
#include <iostream>
bool test1(string s, double d)
{
cout << s << " " << d << endl;
return true;
}
bool test2(int i1, int i2, string s1, string s2)
{
cout << i1 << " " << i2 << " " << s1 << " " << s2 << endl;
return true;
}
What we want is to invoke them by building a vector of variants and have it dispatched to the desired function. Once again, I must stress the fact that we need to specify the list of all the types our variant can hold. Here, I will assume these types are string, double, and int, but your program might work with different ones.
Also, the solution is based on std::function<> for realizing the type erasure that allows you creating functors of different types and yet invoke them uniformly. Thus, a convenience type definition for this std::function<> (which in turn depends on the variant<> type we use) is provided as well:
int main()
{
// A helper type definition for the variant
typedef variant<int, double, string> vt;
// A helper type definition for the function wrapper
typedef function<bool (vector<vt>)> dispatcher_type;
// Get a caller for the first function
dispatcher_type f1 = get_dispatcher<vt>(test1);
// Prepare arguments for the first function
vector<vt> v = {"hello", 3.14};
// Invoke the first function
f1(v);
// Get a caller for the second function
dispatcher_type f2 = get_dispatcher<vt>(test2);
// Prepare arguments for the second function
v.assign({1, 42, "hello", "world"});
// Invoke the second function
f2(v);
}
Since all dispatchers have type dispatcher_type, you can easily put them into a container. However, you must be aware of the fact that attempts to invoke a function with the wrong number of arguments will be detected only at run-time (it is impossible to know at compile-time how many elements an std::vector<> contains). Thus, proper care must be taken.
As promised, I will now slightly modify this solution to use boost::any rather than boost::variant. The advantage is that since boost::any can hold any value, it is not necessary to specify the list of the possible types which can be used as function arguments.
While the helper machinery is unchanged, the core dispatcher class template must be modified as follows:
#include <vector>
#include <functional>
#include <boost/any.hpp>
using namespace std;
using boost::any;
//=============================================================================
// DISPATCHER IMPLEMENTATION
template<typename R, typename... Args>
struct dispatcher
{
template<typename F>
dispatcher(F f) : _f(f) { }
// The call operator which performs the dispatch
R operator () (vector<any> const& v)
{
if (v.size() != sizeof...(Args))
{
// Wrong number of arguments provided!
return false;
}
// Delegates to internal function call: needed for deducing
// a sequence of integers to be used for unpacking.
index_range<0, sizeof...(Args)> indexes;
return do_call(v, indexes);
}
private:
// The heart of the dispatching mechanism
template<size_t... Is>
R do_call(vector<any> const& v, index_list<Is...> indexes)
{
return _f((get_ith<Args>(v, Is))...);
}
// Helper function that extracts a typed value from the variant.
template<typename T>
T get_ith(vector<any> const& v, size_t i)
{
return boost::any_cast<T>(v[i]);
}
// Wrapper that holds the function to be invoked.
function<R(Args...)> _f;
};
// Helper function
template<typename R, typename... Args>
function<R (vector<any> const&)> get_dispatcher(R (*f)(Args...))
{
dispatcher<R, Args...> d(f);
return d;
}
As you see, the VT template argument has vanished. In particular, it is possible to call get_dispatcher without explicitly specifying any template argument. Using the same test functions we have defined for the variant-based solution, here is how you would adapt the main() routine:
int main()
{
// Helper type definition
typedef function<bool (vector<any>)> dispatcher_type;
// Get a caller for the first function
dispatcher_type f1 = get_dispatcher(test1);
// Get a caller for the second function
dispatcher_type f2 = get_dispatcher(test2);
// Prepare arguments for the first function
vector<any> v = {string("hello"), 3.14};
// Invoke the first function
f1(v);
// Prepare arguments for the second function
v.assign({1, 42, string("hello"), string("world")});
// Invoke the second function
f2(v);
}
The only disadvantage is that with boost::any you cannot assign string literals explicitly, because string literals are of type char [], and arrays cannot be used to initialize objects of type any:
any a = "hello"; // ERROR!
Thus, you have to either wrap them into string objects, or explicitly convert them to a pointer to char const*:
any a = string("hello"); // OK
any b = (char const*)"hello"; // OK
If this is not a huge problem for you, it's probably better to go for this second solution.