C++: when we should use "this->" PLUS parameters by reference - c++

suppose we have a class
class Foo {
private:
int PARTS;
public:
Foo( Graph & );
int howBig();
}
int Foo::howBig() { return this->PARTS; }
int Foo::howBig() { return PARTS;       }
Foo::Foo( Graph &G ) {
<Do something with G.*>
}
Which one of howBig()-variants is correct?
The &-sign ensures that only the reference for Graph object
is passed to initialization function?
In C I would simply do something like some_function( Graph *G ),
but in C++ we have both & and *-type variables, never understood
the difference...
Thank you.

When you've local variable inside a member function, then you must have to use this as:
Foo::MemberFunction(int a)
{
int b = a; //b is initialized with the parameter (which is a local variable)
int c = this->a; //c is initialized with member data a
this->a = a; //update the member data with the parameter
}
But when you don't have such cases, then this is implicit; you need to explicity write it, which means in your code, both versions of howBig is correct.
However, in member initialization list, the rules are different. For example:
struct A
{
int a;
A(int a) : a(a) {}
};
In this code, a(a) means, the member data a is being initialized with the parameter a. You don't have to write this->a(a). Just a(a) is enough. Understand this visually:
A(int a) : a ( a ) {}
// ^ ^
// | this is the parameter
// this is the member data

You can use this-> to resolve the dependent name issue without explicitly having to spell out the name of the base. If the name of the base is big this could arguably improve readability.
This issue only occurs when writing templates and using this-> is only appropriate if they're member functions, e.g.:
template <typename T>
struct bar {
void func();
};
template <typename T>
struct foo : public bar {
void derived()
{
func(); // error
this->func(); // fine
bar<T>::func(); // also fine, but potentially a lot more verbose
}
};

Which one of howBig()-variants is correct?
both in your case, the compiler will produce the same code
The &-sign ensures that only the reference for Graph object is passed to initialization function? In C I would simply do something like some_function( Graph *G ), but in C++ we have both & and *-type variables, never understood the difference...
there is no difference as per the use of the variable inside the method(except syntax) - in the case of reference(&) imagine as if you've been passed an invisible pointer that you can use without dereferencing
it(the &) might be "easier" for clients to use

Both forms of Foo::howBig() are correct. I tend to use the second in general, but there are situations that involve templates where the first is required.
The main difference between references and pointers is the lack of "null references". You can use reference arguments when you don't want to copy the whole object but you want to force the caller to pass one.

Both are correct. Usually shorter code is easier to read, so only use this-> if you need it to disambiguate (see the other answers) or if you would otherwise have trouble understanding where the symbol comes from.
References can't be rebound and can't be (easily) bound to NULL, so:
Prefer references to pointers where you can use them. Since they cannot be null and they cannot be deleted, you have fewer things to worry about when using code that uses references.
Use const references instead of values to pass objects that are large (more than say 16 or 20 bytes) or have complex copy constructors to save copy overhead while treating it as if it was pass by value.
Try to avoid return arguments altogether, whether by pointer or reference. Return complex object or std::pair or boost::tuple or std::tuple (C++11 or TR1 only) instead. It's more readable.

Related

What does operator()() define?

I'm sorry if this question gets reported but I can't seem to easily find a solution online. If I override operator()() what behavior does this define?
The operator() is the function call operator, i.e., you can use an object of the corresponding type as a function object. The second set of parenthesis contains the list of arguments (as usual) which is empty. For example:
struct foo {
int operator()() { return 17; };
};
int main() {
foo f;
return f(); // use object like a function
}
The above example just shows how the operator is declared and called. A realistic use would probably access member variables in the operator. Function object are used in many places in the standard C++ library as customization points. The advantage of using an object rather than a function pointer is that the function object can have data attached to it.

c++ variable assignment, is this a normal way..?

This may be a silly question, but still I'm a bit curious...
Recently I was working on one of my former colleague projects, and I've noticed that he really loved to use something like this:
int foo(7);
instead of:
int foo = 7;
Is this a normal/good way to do in C++ language?
Is there some kind of benefits to it? (Or is this just some silly programming style that he was into..?)
This really reminds me a bit of a good way how class member variables can be assigned in the class constructor... something like this:
class MyClass
{
public:
MyClass(int foo) : mFoo(foo)
{ }
private:
int mFoo;
};
instead of this:
class MyClass
{
public:
MyClass(int foo)
{
mFoo = foo;
}
private:
int mFoo;
};
For basic types there's no difference. Use whichever is consistent with the existing code and looks more natural to you.
Otherwise,
A a(x);
performs direct initialization, and
A a = x;
performs copy initialization.
The second part is a member initializer list, there's a bunch of Q&As about it on StackOverflow.
Both are valid. For builtin types they do the same thing; for class types there is a subtle difference.
MyClass m(7); // uses MyClass(int)
MyClass n = 3; // uses MyClass(int) to create a temporary object,
// then uses MyClass(const MyClass&) to copy the
// temporary object into n
The obvious implication is that if MyClass has no copy constructor, or it has one but it isn't accessible, the attempted construction fails. If the construction would succeed, the compiler is allowed to skip the copy constructor and use MyClass(int) directly.
All the answers above are correct. Just add that to it that C++11 supports another way, a generic one as they say to initialize variables.
int a = {2} ;
or
int a {2} ;
Several other good answers point out the difference between constructing "in place" (ClassType v(<constructor args>)) and creating a temporary object and using the copy constructor to copy it (ClassType v = <constructor arg>). Two additional points need to be made, I think. First, the second form obviously has only a single argument, so if your constructor takes more than one argument, you should prefer the first form (yes, there are ways around that, but I think the direct construction is more concise and readable - but, as has been pointed out, that's a personal preferance).
Secondly, the form you use matters if your copy constructor does something significantly different than your standard constructor. This won't be the case most of the time, and some will argue that it's a bad idea to do so, but the language does allow for this to be the case (all surprises you end up dealing with because of it, though, are your own fault).
It's a C++ style of initializing variables - C++ added it for fundamental types so the same form could be used for fundamental and user-defined types. this can be very important for template code that's intended to be instantiated for either kind of type.
Whether you like to use it for normal initialization of fundamental types is a style preference.
Note that C++11 also adds the uniform initialization syntax which allows the same style of initialization to be used for all types - even aggregates like POD structs and arrays (though user defined types may need to have a new type of constructor that takes an initialization list to allow the uniform syntax to be used with them).
Yours is not a silly question at all as things are not as simple as they may seem. Suppose you have:
class A {
public:
A() {}
};
and
class B {
public:
class B(A const &) {}
};
Writing
B b = B(A());
Requires that B's copy constructor be accessible. Writing
B b = A();
Requires also that B's converting constructor B(A const &) be not declared explicit. On the other hand if you write
A a;
B b(a);
all is well, but if you write
B b(A());
This is interpreted by the compiler as the declaration of a function b that takes a nameless argument which is a parameterless function returning A, resulting in mysterious bugs. This is known as C++'s most vexing parse.
I prefer using the parenthetical style...though I always use a space to distinguish from function or method calls, on which I don't use a space:
int foo (7); // initialization
myVector.push_back(7); // method call
One of my reasons for preferring using this across the board for initialization is because it helps remind people that it is not an assignment. Hence overloads to the assignment operator will not apply:
#include <iostream>
class Bar {
private:
int value;
public:
Bar (int value) : value (value) {
std::cout << "code path A" << "\n";
}
Bar& operator=(int right) {
value = right;
std::cout << "code path B" << "\n";
return *this;
}
};
int main() {
Bar b = 7;
b = 7;
return 0;
}
The output is:
code path A
code path B
It feels like the presence of the equals sign obscures the difference. Even if it's "common knowledge" I like to make initialization look notably different than assignment, since we are able to do so.
It's just the syntax for initialization of something :-
SomeClass data(12, 134);
That looks reasonable, but
int data(123);
Looks strange but they are the same syntax.

Initialise C-structs in C++

I am creating a bunch of C structs so i can encapsulate data to be passed over a dll c interface. The structs have many members, and I want them to have defaults, so that they can be created with only a few members specified.
As I understand it, the structs need to remain c-style, so can't contain constructors. Whats the best way to create them? I was thinking a factory?
struct Foo {
static Foo make_default ();
};
A factory is overkill. You use it when you want to create instances of a given interface, but the runtime type of the implementation isn't statically known at the site of creation.
The C-Structs can still have member functions. Problems will, however, arise if you start using virtual functions as this necessitates a virtual table somewhere in the struct's memory. Normal member functions (such as a constructor) don't actually add any size to the struct. You can then pass the struct to the DLL with no problems.
I would use a constructor class:
struct Foo { ... };
class MakeFoo
{
Foo x;
public:
MakeFoo(<Required-Members>)
{
<Initalize Required Members in x>
<Initalize Members with default values in x>
}
MakeFoo& optionalMember1(T v)
{
x.optionalMember1 = v;
}
// .. for the rest option members;
operator Foo() const
{
return x;
}
};
This allows to arbitrary set members of the struct in expression:
processFoo(MakeFoo(1,2,3).optionalMember3(5));
I have an easy idea, here is how:
Make the structure, just like you normally would, and create a simple function that initializes it:
struct Foo{...};
void Default(Foo &obj) {
// ... do the initialization here
}
If you have multiple structures, you are allowed in C++ to overload the function, so you can have many functions called 'default', each initializing its own type, for example:
struct Foo { //... };
struct Bar { //... };
void Default(Foo &obj) {...}
void Default(Bar &obj) {...}
The C++ compiler will know when to call the first or the second overload based on the parameter. The & makes obj a reference to whatever parameter you give it, so any changes made to obj will be reflected to the variable you put as parameter.
Edit:
I also have an idea for how to specify some parameters, you can do it by using default parameters. This is how it works:
For example you the following function; you can specify default values for parameters like this:
void Default (Foo &obj, int number_of_something = 0, int some_other_param = 10)
{ ... }

How do you call a constructor for global objects, for arrays of objects, and for objects inside classes/structs?

How would you call the constructor of the following class in these three situations: Global objects, arrays of objects, and objects contained in another class/struct?
The class with the constructor (used in all three examples):
class Foo {
public:
Foo(int a) { b = a; }
private:
int b;
};
And here are my attempts at calling this constructor:
Global objects
Foo global_foo(3); // works, but I can't control when the constructor is called.
int main() {
// ...
}
Arrays of objects
int main() {
// Array on stack
Foo array_of_foos[30](3); // doesn't work
// Array on heap
Foo *pointer_to_another_array = new Foo(3) [30]; // doesn't work
}
There I'm attempting to call the constructor for all elements of the arrays, but I'd also like to know how to call it on individual elements.
Objects contained in classes/structs
class Bar {
Foo foo(3); // doesn't work
};
int main() {
Bar bar;
}
Global objects
Yours is the only way. On the other hand, try to avoid this. It’s better to use functions (or even other objects) as factories instead. That way, you can control the time of creation.
Arrays of objects
There’s no way to do this directly. Non-POD objects will always be default-constructed. std::fill is often a great help. You might also want to look into allocators and std::uninitialized_fill.
Objects contained in classes/structs
Use initialization lists in your constructor:
class Bar {
Foo foo;
Bar() : foo(3) { }
};
Static members must actually be defined outside the class:
class Bar {
static Foo foo;
};
Foo Bar::foo(3);
To correct some misconceptions about globals:
The order is well defined within a compilation unit.
It is the same as the order of definition
The order across compilation units is undefined.
The order of destruction is the EXACT opposite of creation.
Not something I recommend but: So a simple solution is to to put all globals into a single compilation unit.
Alternatively you can tweak the use of function static variables.
Basically you can have a function the returns a reference to the global you want (defining the global inside the function). It will be created on first use (and destroyed in reverse order of creation).
Foo& getGlobalA() // passed parameters can be passed to constructor
{
static Foo A;
return A;
}
Foo& getGlobalB()
{
static Foo B;
return B;
}
etc.
The Konrad reply is OK, just a puntualization about the arrays....
There is a way to create an array of items(not pointers) and here it follows:
//allocate raw memory for our array
void *rawMemory = operator new[](30 * sizeof(Foo))
// point array_of_foos to this memory so we can use it as an array of Foo
Foo *array_of_foos = static_cast<Foo *>(rawMemory);
// and now we can create the array of objects(NOT pointers to the objects)
// using the buffered new operator
for (int i = 0; i < 30; i++)
new(array_of_foos[i])Foo(3);
This approach is described here: http://www.amazon.com/gp/product/0321334876?ie=UTF8&tag=aristeia.com-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321334876
For the global case there is no way to control when it is called. The C++ spec essentially says it will be called before main() and will be destroyed sometime afterwards. Other than that' the compiler is free to do as it pleases.
In the first array case you are creating a static array of Foo objects. By default each value in the array will be initialized with the default constructor of Foo(). There is no way with a raw C++ array to force a particular overloaded constructor to be called. You can infer a bit of control by switching to a vector instead of an array. The vector constructor has an overloaded constructor vector(size,defaultValue) which should achieve what you are looking for. But in this case you must be careful because instead of calling Foo(3) it will call Foo(const Foo& other) where other is Foo(3).
The second array case is very similar to the first case. The only real difference is where the memory is allocated (on the heap instead of the stack). It has the same limitation with regards to calling to the constructor.
The contained case is a different issue. C++ has a clear separation between the definition of a field within an object and the initialization of the field. To get this to work in C++ you'll need to change your Bar definition to the following
class Bar{
Foo foo;
Bar() : foo(3){}
};
There seems to be the general gist in this thread that you cannot initialize members of an array other than using the default constructor. One answer even creates another type, just to call another constructor. Even though you can (if the array is not part as a member of a class!):
struct foo {
foo(int a): a(a) { }
explicit foo(std::string s): s(s) { }
private:
int a;
std::string s;
};
/* global */
foo f[] = { foo("global"), foo("array") };
int main() {
/* local */
foo f[] = { 10, 20, 30, foo("a"), foo("b") };
}
The type, however, needs to be copy-able: The items given are copy-initialized into the members of the array.
For arrays as members in classes, it's the best to use containers currently:
struct bar {
/* create a vector of 100 foo's, initialized with "initial" */
bar(): f(100, foo("initial")) { }
private:
std::vector<foo> f;
};
Using the placement-new technique described by andy.gurin is an option too. But note it will complicate things. You will have to call destructors yourself. And if any constructor throws, while you are still building up the array, then you need to figure where you stopped... Altogether, if you want to have arrays in your class, and want to initialize them, use of a std::vector is a simple bet.
Construction of arrays of objects:
You can modify your original example by using default parameters.
Currently only the default constructor is supported.
This is something that is being addressed by the next version (because everybody asks this question)
C++0X initializer lists solve this problem for the arrays of objects case. See this Herb Sutter blog entry, where he describes them in detail.
In the meantime you might be able to work around the problem like so:
class Foo {
public:
Foo(int a) : b(a) {}
private:
int b;
};
class Foo_3 : public Foo {
public:
Foo_3() : Foo(3) {}
};
Foo_3 array_of_foos[30];
Here, the Foo_3 class exists solely for the purpose of calling the Foo constructor with the correct argument. You could make it a template even:
template <int i>
class Foo_n : public Foo {
public:
Foo_n() : Foo(i) {}
};
Foo_n<3> array_of_foos[30];
Again this might not do exactly what you want but may provide some food for thought.
(Also note that in your Foo class you really should get into the habit of using member initializer lists instead of assignments in the constructor, as per my example above)
I reckon there are two ways to make sure global class objects' constructors are called safely at the time of their "creation":
Declare them in a namespace and make that namespace globally accessible.
Make it a global pointer to the class object and assign a new class object to it in main(), granted code for other global objects' constructors that access the object will execute before this.
Just my two cents.

Hidden Features of C++? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
No C++ love when it comes to the "hidden features of" line of questions? Figured I would throw it out there. What are some of the hidden features of C++?
Most C++ programmers are familiar with the ternary operator:
x = (y < 0) ? 10 : 20;
However, they don't realize that it can be used as an lvalue:
(a == 0 ? a : b) = 1;
which is shorthand for
if (a == 0)
a = 1;
else
b = 1;
Use with caution :-)
You can put URIs into C++ source without error. For example:
void foo() {
http://stackoverflow.com/
int bar = 4;
...
}
Pointer arithmetics.
C++ programmers prefer to avoid pointers because of the bugs that can be introduced.
The coolest C++ I've ever seen though? Analog literals.
I agree with most posts there: C++ is a multi-paradigm language, so the "hidden" features you'll find (other than "undefined behaviours" that you should avoid at all cost) are clever uses of facilities.
Most of those facilities are not build-in features of the language, but library-based ones.
The most important is the RAII, often ignored for years by C++ developers coming from the C world. Operator overloading is often a misunderstood feature that enable both array-like behaviour (subscript operator), pointer like operations (smart pointers) and build-in-like operations (multiplying matrices.
The use of exception is often difficult, but with some work, can produce really robust code through exception safety specifications (including code that won't fail, or that will have a commit-like features that is that will succeed, or revert back to its original state).
The most famous of "hidden" feature of C++ is template metaprogramming, as it enables you to have your program partially (or totally) executed at compile-time instead of runtime. This is difficult, though, and you must have a solid grasp on templates before trying it.
Other make uses of the multiple paradigm to produce "ways of programming" outside of C++'s ancestor, that is, C.
By using functors, you can simulate functions, with the additional type-safety and being stateful. Using the command pattern, you can delay code execution. Most other design patterns can be easily and efficiently implemented in C++ to produce alternative coding styles not supposed to be inside the list of "official C++ paradigms".
By using templates, you can produce code that will work on most types, including not the one you thought at first. You can increase type safety,too (like an automated typesafe malloc/realloc/free). C++ object features are really powerful (and thus, dangerous if used carelessly), but even the dynamic polymorphism have its static version in C++: the CRTP.
I have found that most "Effective C++"-type books from Scott Meyers or "Exceptional C++"-type books from Herb Sutter to be both easy to read, and quite treasures of info on known and less known features of C++.
Among my preferred is one that should make the hair of any Java programmer rise from horror: In C++, the most object-oriented way to add a feature to an object is through a non-member non-friend function, instead of a member-function (i.e. class method), because:
In C++, a class' interface is both its member-functions and the non-member functions in the same namespace
non-friend non-member functions have no privileged access to the class internal. As such, using a member function over a non-member non-friend one will weaken the class' encapsulation.
This never fails to surprise even experienced developers.
(Source: Among others, Herb Sutter's online Guru of the Week #84: http://www.gotw.ca/gotw/084.htm )
One language feature that I consider to be somewhat hidden, because I had never heard about it throughout my entire time in school, is the namespace alias. It wasn't brought to my attention until I ran into examples of it in the boost documentation. Of course, now that I know about it you can find it in any standard C++ reference.
namespace fs = boost::filesystem;
fs::path myPath( strPath, fs::native );
Not only can variables be declared in the init part of a for loop, but also classes and functions.
for(struct { int a; float b; } loop = { 1, 2 }; ...; ...) {
...
}
That allows for multiple variables of differing types.
The array operator is associative.
A[8] is a synonym for *(A + 8). Since addition is associative, that can be rewritten as *(8 + A), which is a synonym for..... 8[A]
You didn't say useful... :-)
One thing that's little known is that unions can be templates too:
template<typename From, typename To>
union union_cast {
From from;
To to;
union_cast(From from)
:from(from) { }
To getTo() const { return to; }
};
And they can have constructors and member functions too. Just nothing that has to do with inheritance (including virtual functions).
C++ is a standard, there shouldn't be any hidden features...
C++ is a multi-paradigm language, you can bet your last money on there being hidden features. One example out of many: template metaprogramming. Nobody in the standards committee intended there to be a Turing-complete sublanguage that gets executed at compile-time.
Another hidden feature that doesn't work in C is the functionality of the unary + operator. You can use it to promote and decay all sorts of things
Converting an Enumeration to an integer
+AnEnumeratorValue
And your enumerator value that previously had its enumeration type now has the perfect integer type that can fit its value. Manually, you would hardly know that type! This is needed for example when you want to implement an overloaded operator for your enumeration.
Get the value out of a variable
You have to use a class that uses an in-class static initializer without an out of class definition, but sometimes it fails to link? The operator may help to create a temporary without making assumptins or dependencies on its type
struct Foo {
static int const value = 42;
};
// This does something interesting...
template<typename T>
void f(T const&);
int main() {
// fails to link - tries to get the address of "Foo::value"!
f(Foo::value);
// works - pass a temporary value
f(+Foo::value);
}
Decay an array to a pointer
Do you want to pass two pointers to a function, but it just won't work? The operator may help
// This does something interesting...
template<typename T>
void f(T const& a, T const& b);
int main() {
int a[2];
int b[3];
f(a, b); // won't work! different values for "T"!
f(+a, +b); // works! T is "int*" both time
}
Lifetime of temporaries bound to const references is one that few people know about. Or at least it's my favorite piece of C++ knowledge that most people don't know about.
const MyClass& x = MyClass(); // temporary exists as long as x is in scope
A nice feature that isn't used often is the function-wide try-catch block:
int Function()
try
{
// do something here
return 42;
}
catch(...)
{
return -1;
}
Main usage would be to translate exception to other exception class and rethrow, or to translate between exceptions and return-based error code handling.
Many know of the identity / id metafunction, but there is a nice usecase for it for non-template cases: Ease writing declarations:
// void (*f)(); // same
id<void()>::type *f;
// void (*f(void(*p)()))(int); // same
id<void(int)>::type *f(id<void()>::type *p);
// int (*p)[2] = new int[10][2]; // same
id<int[2]>::type *p = new int[10][2];
// void (C::*p)(int) = 0; // same
id<void(int)>::type C::*p = 0;
It helps decrypting C++ declarations greatly!
// boost::identity is pretty much the same
template<typename T>
struct id { typedef T type; };
A quite hidden feature is that you can define variables within an if condition, and its scope will span only over the if, and its else blocks:
if(int * p = getPointer()) {
// do something
}
Some macros use that, for example to provide some "locked" scope like this:
struct MutexLocker {
MutexLocker(Mutex&);
~MutexLocker();
operator bool() const { return false; }
private:
Mutex &m;
};
#define locked(mutex) if(MutexLocker const& lock = MutexLocker(mutex)) {} else
void someCriticalPath() {
locked(myLocker) { /* ... */ }
}
Also BOOST_FOREACH uses it under the hood. To complete this, it's not only possible in an if, but also in a switch:
switch(int value = getIt()) {
// ...
}
and in a while loop:
while(SomeThing t = getSomeThing()) {
// ...
}
(and also in a for condition). But i'm not too sure whether these are all that useful :)
Preventing comma operator from calling operator overloads
Sometimes you make valid use of the comma operator, but you want to ensure that no user defined comma operator gets into the way, because for instance you rely on sequence points between the left and right side or want to make sure nothing interferes with the desired action. This is where void() comes into game:
for(T i, j; can_continue(i, j); ++i, void(), ++j)
do_code(i, j);
Ignore the place holders i put for the condition and code. What's important is the void(), which makes the compiler force to use the builtin comma operator. This can be useful when implementing traits classes, sometimes, too.
Array initialization in constructor.
For example in a class if we have a array of int as:
class clName
{
clName();
int a[10];
};
We can initialize all elements in the array to its default (here all elements of array to zero) in the constructor as:
clName::clName() : a()
{
}
Oooh, I can come up with a list of pet hates instead:
Destructors need to be virtual if you intend use polymorphically
Sometimes members are initialized by default, sometimes they aren't
Local clases can't be used as template parameters (makes them less useful)
exception specifiers: look useful, but aren't
function overloads hide base class functions with different signatures.
no useful standardisation on internationalisation (portable standard wide charset, anyone? We'll have to wait until C++0x)
On the plus side
hidden feature: function try blocks. Unfortunately I haven't found a use for it. Yes I know why they added it, but you have to rethrow in a constructor which makes it pointless.
It's worth looking carefully at the STL guarantees about iterator validity after container modification, which can let you make some slightly nicer loops.
Boost - it's hardly a secret but it's worth using.
Return value optimisation (not obvious, but it's specifically allowed by the standard)
Functors aka function objects aka operator(). This is used extensively by the STL. not really a secret, but is a nifty side effect of operator overloading and templates.
You can access protected data and function members of any class, without undefined behavior, and with expected semantics. Read on to see how. Read also the defect report about this.
Normally, C++ forbids you to access non-static protected members of a class's object, even if that class is your base class
struct A {
protected:
int a;
};
struct B : A {
// error: can't access protected member
static int get(A &x) { return x.a; }
};
struct C : A { };
That's forbidden: You and the compiler don't know what the reference actually points at. It could be a C object, in which case class B has no business and clue about its data. Such access is only granted if x is a reference to a derived class or one derived from it. And it could allow arbitrary piece of code to read any protected member by just making up a "throw-away" class that reads out members, for example of std::stack:
void f(std::stack<int> &s) {
// now, let's decide to mess with that stack!
struct pillager : std::stack<int> {
static std::deque<int> &get(std::stack<int> &s) {
// error: stack<int>::c is protected
return s.c;
}
};
// haha, now let's inspect the stack's middle elements!
std::deque<int> &d = pillager::get(s);
}
Surely, as you see this would cause way too much damage. But now, member pointers allow circumventing this protection! The key point is that the type of a member pointer is bound to the class that actually contains said member - not to the class that you specified when taking the address. This allows us to circumvent checking
struct A {
protected:
int a;
};
struct B : A {
// valid: *can* access protected member
static int get(A &x) { return x.*(&B::a); }
};
struct C : A { };
And of course, it also works with the std::stack example.
void f(std::stack<int> &s) {
// now, let's decide to mess with that stack!
struct pillager : std::stack<int> {
static std::deque<int> &get(std::stack<int> &s) {
return s.*(pillager::c);
}
};
// haha, now let's inspect the stack's middle elements!
std::deque<int> &d = pillager::get(s);
}
That's going to be even easier with a using declaration in the derived class, which makes the member name public and refers to the member of the base class.
void f(std::stack<int> &s) {
// now, let's decide to mess with that stack!
struct pillager : std::stack<int> {
using std::stack<int>::c;
};
// haha, now let's inspect the stack's middle elements!
std::deque<int> &d = s.*(&pillager::c);
}
Another hidden feature is that you can call class objects that can be converted to function pointers or references. Overload resolution is done on the result of them, and arguments are perfectly forwarded.
template<typename Func1, typename Func2>
class callable {
Func1 *m_f1;
Func2 *m_f2;
public:
callable(Func1 *f1, Func2 *f2):m_f1(f1), m_f2(f2) { }
operator Func1*() { return m_f1; }
operator Func2*() { return m_f2; }
};
void foo(int i) { std::cout << "foo: " << i << std::endl; }
void bar(long il) { std::cout << "bar: " << il << std::endl; }
int main() {
callable<void(int), void(long)> c(foo, bar);
c(42); // calls foo
c(42L); // calls bar
}
These are called "surrogate call functions".
Hidden features:
Pure virtual functions can have implementation. Common example, pure virtual destructor.
If a function throws an exception not listed in its exception specifications, but the function has std::bad_exception in its exception specification, the exception is converted into std::bad_exception and thrown automatically. That way you will at least know that a bad_exception was thrown. Read more here.
function try blocks
The template keyword in disambiguating typedefs in a class template. If the name of a member template specialization appears after a ., ->, or :: operator, and that name has explicitly qualified template parameters, prefix the member template name with the keyword template. Read more here.
function parameter defaults can be changed at runtime. Read more here.
A[i] works as good as i[A]
Temporary instances of a class can be modified! A non-const member function can be invoked on a temporary object. For example:
struct Bar {
void modify() {}
}
int main (void) {
Bar().modify(); /* non-const function invoked on a temporary. */
}
Read more here.
If two different types are present before and after the : in the ternary (?:) operator expression, then the resulting type of the expression is the one that is the most general of the two. For example:
void foo (int) {}
void foo (double) {}
struct X {
X (double d = 0.0) {}
};
void foo (X) {}
int main(void) {
int i = 1;
foo(i ? 0 : 0.0); // calls foo(double)
X x;
foo(i ? 0.0 : x); // calls foo(X)
}
map::operator[] creates entry if key is missing and returns reference to default-constructed entry value. So you can write:
map<int, string> m;
string& s = m[42]; // no need for map::find()
if (s.empty()) { // assuming we never store empty values in m
s.assign(...);
}
cout << s;
I'm amazed at how many C++ programmers don't know this.
Putting functions or variables in a nameless namespace deprecates the use of static to restrict them to file scope.
Defining ordinary friend functions in class templates needs special attention:
template <typename T>
class Creator {
friend void appear() { // a new function ::appear(), but it doesn't
… // exist until Creator is instantiated
}
};
Creator<void> miracle; // ::appear() is created at this point
Creator<double> oops; // ERROR: ::appear() is created a second time!
In this example, two different instantiations create two identical definitions—a direct violation of the ODR
We must therefore make sure the template parameters of the class template appear in the type of any friend function defined in that template (unless we want to prevent more than one instantiation of a class template in a particular file, but this is rather unlikely). Let's apply this to a variation of our previous example:
template <typename T>
class Creator {
friend void feed(Creator<T>*){ // every T generates a different
… // function ::feed()
}
};
Creator<void> one; // generates ::feed(Creator<void>*)
Creator<double> two; // generates ::feed(Creator<double>*)
Disclaimer: I have pasted this section from C++ Templates: The Complete Guide / Section 8.4
void functions can return void values
Little known, but the following code is fine
void f() { }
void g() { return f(); }
Aswell as the following weird looking one
void f() { return (void)"i'm discarded"; }
Knowing about this, you can take advantage in some areas. One example: void functions can't return a value but you can also not just return nothing, because they may be instantiated with non-void. Instead of storing the value into a local variable, which will cause an error for void, just return a value directly
template<typename T>
struct sample {
// assume f<T> may return void
T dosomething() { return f<T>(); }
// better than T t = f<T>(); /* ... */ return t; !
};
Read a file into a vector of strings:
vector<string> V;
copy(istream_iterator<string>(cin), istream_iterator<string>(),
back_inserter(V));
istream_iterator
You can template bitfields.
template <size_t X, size_t Y>
struct bitfield
{
char left : X;
char right : Y;
};
I have yet to come up with any purpose for this, but it sure as heck surprised me.
One of the most interesting grammars of any programming languages.
Three of these things belong together, and two are something altogether different...
SomeType t = u;
SomeType t(u);
SomeType t();
SomeType t;
SomeType t(SomeType(u));
All but the third and fifth define a SomeType object on the stack and initialize it (with u in the first two case, and the default constructor in the fourth. The third is declaring a function that takes no parameters and returns a SomeType. The fifth is similarly declaring a function that takes one parameter by value of type SomeType named u.
Getting rid of forward declarations:
struct global
{
void main()
{
a = 1;
b();
}
int a;
void b(){}
}
singleton;
Writing switch-statements with ?: operators:
string result =
a==0 ? "zero" :
a==1 ? "one" :
a==2 ? "two" :
0;
Doing everything on a single line:
void a();
int b();
float c = (a(),b(),1.0f);
Zeroing structs without memset:
FStruct s = {0};
Normalizing/wrapping angle- and time-values:
int angle = (short)((+180+30)*65536/360) * 360/65536; //==-150
Assigning references:
struct ref
{
int& r;
ref(int& r):r(r){}
};
int b;
ref a(b);
int c;
*(int**)&a = &c;
The ternary conditional operator ?: requires its second and third operand to have "agreeable" types (speaking informally). But this requirement has one exception (pun intended): either the second or third operand can be a throw expression (which has type void), regardless of the type of the other operand.
In other words, one can write the following pefrectly valid C++ expressions using the ?: operator
i = a > b ? a : throw something();
BTW, the fact that throw expression is actually an expression (of type void) and not a statement is another little-known feature of C++ language. This means, among other things, that the following code is perfectly valid
void foo()
{
return throw something();
}
although there's not much point in doing it this way (maybe in some generic template code this might come handy).
The dominance rule is useful, but little known. It says that even if in a non-unique path through a base-class lattice, name-lookup for a partially hidden member is unique if the member belongs to a virtual base-class:
struct A { void f() { } };
struct B : virtual A { void f() { cout << "B!"; } };
struct C : virtual A { };
// name-lookup sees B::f and A::f, but B::f dominates over A::f !
struct D : B, C { void g() { f(); } };
I've used this to implement alignment-support that automatically figures out the strictest alignment by means of the dominance rule.
This does not only apply to virtual functions, but also to typedef names, static/non-virtual members and anything else. I've seen it used to implement overwritable traits in meta-programs.